• Open access
  • Published: 02 September 2024

The tales of two cities: use of evidence for introducing 20 miles per hour speed limits in Edinburgh and Belfast (United Kingdom)

  • Karen Milton   ORCID: orcid.org/0000-0002-0506-2214 1 ,
  • Graham Baker 2 ,
  • Claire L. Cleland 3 ,
  • Andy Cope 4 ,
  • Ruth F. Hunter 5 ,
  • Ruth Jepson 6 ,
  • Frank Kee 3 ,
  • Paul Kelly 2 ,
  • Andrew J. Williams 7 &
  • Michael P. Kelly 8  

Health Research Policy and Systems volume  22 , Article number:  120 ( 2024 ) Cite this article

Metrics details

In 2016, large-scale 20 miles per hour speed limits were introduced in the United Kingdom cities of Edinburgh and Belfast. This paper investigates the role that scientific evidence played in the policy decisions to implement lower speed limits in the two cities.

Using a qualitative case study design, we undertook content analysis of a range of documents to explore and describe the evolution of the two schemes and the ways in which evidence informed decision-making. In total, we identified 16 documents for Edinburgh, published between 2006 and 2016, and 19 documents for Belfast, published between 2002 and 2016.

In both cities, evidence on speed, collisions and casualties was important for initiating discussions on large-scale 20 mph policies. However, the narrative shifted over time to the idea that 20 mph would contribute to a wider range of aspirations, none of which were firmly grounded in evidence, but may have helped to neutralize opposing discourses.

Discussion and conclusions

The relationship between evidence and decision-making in Edinburgh and Belfast was neither simple nor linear. Widening of the narrative appears to have helped to frame the idea in such a way that it had broad acceptability, without which there would have been no implementation, and probably a lot more push back from vested interests and communities than there was.

Peer Review reports

Introduction

In transport policy in the United Kingdom (UK), there has been a long-standing interest in the development and use of evidence. In 1933, the Road Research Laboratory was established and many of the policies that have improved vehicle and pedestrian safety over the years in the UK are a consequence of the engineering–scientific approach of the old Ministry of Transport and that continued by the Department for Transport [ 6 ]. The idea that the best scientific evidence should be a major part of policy decision-making processes gained considerable traction in the last several decades in arenas other than transport, including the widespread promotion and adoption of evidence-based medicine [ 39 , 40 , 48 ] and subsequently evidence-based public health [ 2 ].

Even if the acceptance by decision-makers of scientific evidence is sometimes more rhetorical than real, the notion that evidence is important in decision-making is widely acknowledged [ 17 , 24 , 26 , 38 ]. There is a recognized need for transparency in the policy decision-making process, such that the public, as well as experts and officials, can understand the science and motivation behind a policy [ 45 ]. However, the policy-making process involves an extremely complex “web” of individuals, organizations, events and decisions. As such, many factors other than evidence play into the decision-making processes, including public opinion, interest groups and the economic climate, to name but a few [ 3 ].

The complexity of policy-making is exemplified by the range of theories that aim to simplify the process so that it can be more easily understood (see [ 5 ]). Some commentators have talked about “policy narratives”, which have been defined as currents that sit above policies, acting as a rallying call to those across government and between government and non-government entities, providing directional pointers and broad benchmarks for change [ 15 ]. The analysis of policy narratives is concerned with the way in which policy actors frame issues to focus the attention of their audience and to shape the way they interpret information.

A transport policy trialled in several UK cities over the past 10–15 years is 20 miles per hour (mph) speed restrictions, which have typically taken two forms. More traditionally used are 20 mph “zones” which involve the installation of physical infrastructure such as speed bumps or chicanes. The other approach is 20 mph “limits”, which involve the installation of “signs and/or lines” without any other physical traffic calming infrastructure [ 28 ]. While there is evidence that zones are effective in reducing collisions and casualties, prior to the introduction of 20 mph limits in Edinburgh and Belfast, rather less was known about their effectiveness [ 13 ]. Nonetheless, decisions were made in the two UK cities of Edinburgh and Belfast to implement large-scale 20 mph limits in 2016.

Our previous research has highlighted that in both Edinburgh and Belfast the policy decisions to enact 20 mph speed limits followed many years of discussion and deliberation [ 29 ]. While a range of factors have been identified as being important in decision-making processes locally, for example, a favourable national policy context, political leadership and public support [ 29 ], one key issue remains unexplored – the role of evidence itself. Therefore, the aim of this paper was to investigate the policy narratives in the two cities and the role that evidence played (or not) in the processes that led to the introduction of 20 mph speed limits in the two cities.

Study design

Due to the complex contextual factors influencing the decisions to introduce 20 mph speed limits, a qualitative case study design was deemed appropriate [ 56 ]. The cases were defined as the policies to introduce 20 mph speed limits in each city and were bounded in time, dating back to the earliest documented discussions about the schemes, up to the decisions to proceed with implementation in 2016.

Data sources and collection

The data reported here were gathered as part of a broader National Institute for Health Research (NIHR)-funded project examining the processes and outcomes of the introduction of 20 mph speed limit interventions in the cities of Edinburgh and Belfast [ 25 ].

The data were collected from documents available in the grey literature. We conducted searches of relevant websites to identify papers about 20 mph interventions, including UK-wide and Scottish and Northern Irish developments. The websites included those of the national governments (Scotland and Northern Ireland) and the City of Edinburgh Council – the local authority responsible for services such as education, housing and waste disposal in Edinburgh. We did not look for local council documents in Belfast, as the initiative there was led and managed by the Northern Ireland Government – the Department for Regional Development, which changed its name to the Department for Infrastructure in May 2016. We searched the websites for any documents related to transport policy and road safety. We sought to identify legislation, policy statements, responses to public consultations, research reports and official statistics, as well as other written records of events including official announcements, committee reports, and debates. Search terms included “20mph”, “speed limits”, “speed restrictions” and “road safety”. No limit was set on publication date.

Grey literature can be difficult to search and retrieve [ 1 , 30 ], and we found this to be the case, particularly for Belfast. As such, a member of the research team (RFH) worked closely with the Department for Infrastructure in Northern Ireland to determine what documents existed and how the research team could gain access to them. Building good relationships was important in subsequently obtaining relevant documentation for Belfast.

We compiled a timeline of the publication of relevant documents for each of the two cities, respectively. These were shared with a range of stakeholders in both places, including members of the NIHR study steering committee and people who took part in interviews as part of the broader project [ 25 ]. These stakeholders were asked to confirm the accuracy and comprehensiveness of the list of documents in the timelines. Any additional documents identified by the stakeholders were located and included in the analysis. In total, we identified 16 documents for Edinburgh, published between 2006 and 2016, and 19 documents for Belfast, published between 2002 and 2016 (See Tables 1 and 2 for a chronological list of documents for each city). We obtained electronic copies of all documents for inclusion in the analysis.

All documents were imported to N-Vivo 12 software [ 37 ]. Our analysis followed the READ approach, which is recommended for documentary analysis in health policy research [ 16 ]. READ involves a four stage process to conduct document analysis for qualitative policy research: R ead materials, E xtract data, A nalyse data, D istill. The research team did not seek to develop themes from the data, which is common in qualitative research. Rather, we were interested in extracting information about evidence (whether, and how much, evidence was referred to throughout the deliberation processes) and the ways in which evidence was used (for example, to make the case for the policy, or in defence against opposition). This information was used to construct a chronological timeline of evidence use in each city. Documents relevant to Edinburgh and Belfast were analysed separately due to the differing contexts and the nature of the interventions (city-wide versus city centre). Data were extracted independently by two members of the research team (K.M. and M.K.), who then worked collaboratively to piece together a chronological narrative of the role that evidence played in decision-making in each of the cities.

The role of evidence in the decisions to implement large-scale 20 mph speed limits in Edinburgh and Belfast is presented as two case studies below.

The Edinburgh narrative

Over many years, the national transport-related documents in Scotland consistently drew upon evidence about speed and safety. For example, in 2009 the Scottish Government published Go Safe on Scotland’s Roads: It’s Everyone’s Responsibility: Scotland’s Road Safety Framework to 2020 [ 42 ]. This document included a specific chapter on evidence, in which the importance of evidence in informing every stage of policy-making and delivery was emphasized. The report highlighted a range of statistics related to injuries and deaths of pedestrians, cyclists and car users on Scotland’s roads.

In June 2010, the Scottish government launched the country’s first Cycling Action Plan for Scotland (CAPS), with an aspiration that, by 2020, 10% of all journeys taken in Scotland would be by bicycle [ 43 ]. The key evidence considered in the development of CAPS came from over 6000 qualitative responses to a public consultation on the barriers to increased cycle use and the measures people felt were required to get “more people cycling more often”. That qualitative evidence highlighted that reducing vehicle speeds would be a key factor in encouraging people to make the choice of walking or cycling. This was considered sufficient evidence by decision-makers to make the case, despite a lack of quantitative data on the relationship between vehicle speed and active travel choices.

In 2014, Transport Scotland (the national transport agency for Scotland) published the Good Practice Guide on 20 mph Speed Restrictions (Transport [ 50 ]). The Good Practice Guide noted that higher speeds lead to collisions that are more serious. It used data from the UK Department for Transport concerning pedestrian fatalities and speed as well as speed and the number of collisions, which drew in turn upon data from the European Transport Safety Council [ 19 , 20 ]. It referred to much international evidence supporting these arguments (e.g. [ 54 ]). It noted that excessive speed is reported in 13% of all reported collisions and 20% of fatal collisions.

At the local authority level, there were references to evidence in many of Edinburgh Council’s own documents. In 2010, the council explored the relationship between speed and risk [ 8 ]. Echoing the national narrative, the evidence was interpreted to mean that risk increases slowly until impact speeds of about 30 mph. The council noted that even though the risk of a pedestrian fatality at 30 mph is “relatively low”, approximately half of pedestrian fatalities occur at that impact speed or below.

The Council document argued that vehicle speed was the most important single factor in the severity of road collisions, with the risk of fatal injury to pedestrians being more than eight times higher at 30 mph than 20 mph. It noted that the chance of survival halves between 30 mph and 40 mph. It also observed that streets with slower traffic are more attractive to residents, pedestrians, cyclists and children, and can improve the environment for business and social interaction. It was argued that cars travelling at 20 mph generate less noise. An emphasis was placed on the fact that a high proportion of pedestrian and cyclist casualties occur on the busiest streets in the inner areas of the city. Whilst it was noted that in many of these streets, average speeds were already relatively low, it was suggested that a 20 mph limit had the potential to help rebalance street use in favour of pedestrians and cyclists.

The Council then planned a pilot study of the implementation of lower speed restrictions in the south of the city. A pilot scheme would allow the Council to demonstrate the feasibility of implementing 20 mph speed limits at scale, as well as to collect before and after data to show the impact of the new 20 mph limit on speed, collisions and casualties. Therefore, in addition to “using” evidence, the Council committed to “generating” the evidence it felt was needed to convince people to support the policy.

A proposal for a 20 mph Speed Limit Pilot in South Edinburgh was submitted to the Transport Infrastructure and Environment Committee of the council on 21 September 2010, seeking approval for a large-scale pilot of a 20 mph speed limit in residential streets [ 7 ]. This document included many references to evidence including the effectiveness of 20 mph zones in parts of Edinburgh and the reported reductions in average vehicle speed and casualties following the introduction of 20 mph speed limits in Portsmouth. Reference was also made to the Active Travel Action Plan, which claimed that lower traffic speeds can help in encouraging walking and cycling [ 7 ]. At the Transport, Infrastructure and Environmental Committee on 2 August 2011, approval was given to introduce a 20 mph speed limit on a number of roads on the south side of the city [ 8 ].

The pilot scheme was launched on 23 March 2012. The evaluation report showed some contradictory findings. Average speeds before implementation were 22.8 mph, while after implementation speeds fell to 20.9 mph; an average fall of 1.9 mph. Four locations across the pilot saw slight increases in average vehicle speeds from the “before” to the “after” survey; four locations continued to have average speeds at or above 24 mph; and there was an overall increase in the number of vehicles on most streets from the “before” to the “after” period, although in no location was this deemed “notable” [ 10 ].

In reporting the attitudes of residents “ [t]he main benefits of the pilot, as viewed by residents, were (in priority order) safety for children walking about the area, safety for children to play in the street, better conditions for walking, less traffic incidents, and better cycling conditions” [ 10 ]. The evaluation report stated that: “The overall level of support for the 20 mph speed limit has increased from 68% ‘before’ to 79% ‘after’, while the proportion of respondents strongly supporting the 20 mph speed limit increased significantly from 14% ‘before’ to 37% ‘after’. Only 4% were opposed, from 6% ‘before’” [ 10 ].

Whilst the evaluation findings were slightly mixed, the Council felt that having no evidence against the pilot was sufficient to take scaled-up action. The council claimed that the intervention encouraged a slower and safer environment and for journeys to be undertaken by environmentally friendly modes of walking and cycling [ 10 ]. The idea of a more liveable, cleaner, sustainable, healthier city was thus woven into the narrative.

A narrative originally about the specific intent to reduce collisions and casualties gradually shifted to the idea that 20 mph would contribute to a wider range of aspirations. By 2011, Edinburgh Council documents relating to the slower speed limit were arguing that 20 mph would contribute to people living longer healthier lives, free from crime and disorder, in well-designed, sustainable places with access to amenities and services [ 9 ]. The suggestion was that it would be easier to value and enjoy the built and natural environment and protect and enhance it for future generations. This in turn would reduce the local and global impact of consumption and production. No attempt was made to cite any evidence for these potential wider benefits of 20 mph speed limits. By 2014, the council had stopped referring to evidence on road safety, and instead were pursuing a more general public relations exercise to generate support for its plans [ 11 ].

Following almost 10 years of discussion, approval was granted in March 2015 for the roll-out of the city-wide 20 mph network [ 12 ]. The scheme would be introduced using a staged approach across six areas. This would allow comparisons to be made on factors that influence effectiveness including physical characteristics such as topography, junction density and the extent of parking available, as well as “human characteristics” such as relative affluence/deprivation, demographic distribution and car ownership.

The Belfast narrative

There is a rich stream of transport-related documents emanating from the Northern Ireland Administration. In November 2002, the Northern Ireland Road Safety Strategy (2002–2012) was published to address rising trends in road traffic casualties [ 34 ]. The evidence used to inform the strategy came from a consultation that was distributed widely and sought input on: what would represent challenging yet realistic targets; the combination of existing and new measures that would be needed to achieve these; and, in particular, ideas about how best to reduce road casualties and to secure the commitment of road users to improving road safety. Responses were received from more than 70 organizations and individuals. The strategy stated an objective to improve road safety for pedestrians and other vulnerable road users. This would be achieved by influencing drivers to avoid excessive speed and to drive more responsibly, although it was not explicit as to how this would be achieved.

In April 2010 the Department for Infrastructure published a document entitled Setting Local Speed Limits , which presented a range of evidence [ 32 ]. It argued that 20 mph zones are very effective at reducing collisions and casualties. It noted that 20 mph may reduce overall average annual collision frequency by around 60%, and the number of collisions involving children may be reduced by up to two thirds. It observed that 20 mph zones help reduce traffic flow and reduce casualties by over a quarter (quoting [ 53 ]). They also, it noted, produced a shift towards more walking and cycling. The authors pointed out that signed-only 20 mph speed limits generally led to only small reductions in traffic speeds and are most appropriate for areas where vehicle speeds are already low [ 32 ].

The same document pointed out that there was clear evidence of the impact of reducing traffic speeds on collisions and casualties, as collision frequency is lower at slower speeds, and where crashes do occur, there is a lower risk of fatality at lower speeds. It noted that on urban roads with low average traffic speeds, any 1 mph reduction in average speed can reduce the collision frequency by around 6% (quoting [ 47 ]). It argued that the other benefits of 20 mph speed limit interventions include quality of life and community benefits, and encouragement of healthier and more sustainable transport modes such as walking and cycling, although no evidence was cited to support these claims. It suggested that there may also be environmental benefits, as generally driving more slowly at a steady pace will save fuel and reduce carbon dioxide emissions, unless an unnecessarily low gear is used.

Later documents made reference to the economic benefit of preventing collisions and casualties. For example, one document published in 2014 stated that the average value of preventing a collision is approximately £72 700 [ 49 ]. It continued that an approximate saving of this amount can be made every time a collision is prevented by means of road safety engineering.

A paper published in 2014, examining key trends in road traffic collisions in Northern Ireland, observed that over the previous 13 calendar years the number of people killed annually on Northern Ireland roads had reduced significantly [ 27 ]. However, it went on to observe that although the number of people killed had declined significantly over the previous decade, between 2005 and 2012, the number of casualties actually increased – because of an increase in slight injuries. This document reported that vulnerable road users (i.e. pedestrians, pedal cyclists and motor cyclists) represent just over one third of the total number of fatalities between 2008 and 2012 and this remained relatively constant for each year [15 out of 48 in 2012 (31%) compared with 36 out of 107 (34%) in 2008].

The Northern Ireland Road Safety Strategy to 2020 contained a large amount of information and evidence, largely focussed on the number of people of all ages killed or seriously injured on the roads [ 35 ]. The same document also considered inequalities in child pedestrian casualties [ 35 ]. It reported that child pedestrian casualties (aged 0–15 years) were higher in more deprived areas and that this relationship was highly statistically significant, with a trend that was stronger for male pedestrians than for female pedestrians and for children than for adults. The authors noted that a child living in the most deprived area is almost five times more likely to be injured in a collision than a child living in a least deprived area.

The strategy contained a commitment to pilot schemes for signed only 20 mph limits. However, it took a further 5 years for this commitment to translate into tangible action. It is worth noting a distinction in the use of the term “pilot” in the two cities. In Edinburgh this term was used to describe a trial which, if successful, would be scaled up across the city. In Belfast, there was no small-scale trial, rather, they proceeded straight to the full-scale city centre intervention. The term pilot implied the scheme may have been removed if proven to be ineffective, although it cannot be known whether or not that would have been the case.

In Belfast, although the narrative was less all-embracing than Edinburgh, the proclaimed benefits of 20 mph broadened over time. The 2010 document on setting local speed limits presented a range of evidence [ 32 ]. In addition to reducing collisions and injuries, 20 mph restrictions were linked to overcoming social exclusion and strengthening rural communities, as well as aiding wider economic and environmental objectives, although no specific evidence was cited. It was noted that 20 mph speed limits might reduce overall average annual collision frequency by around 60%, and the number of collisions involving injury to children may be reduced by up to two thirds. Drawing upon published data, 20 mph “zones” (with traffic calming infrastructure) were observed to help reduce traffic flow, where research has shown a reduction in injuries by over a quarter as well as a modal shift towards more walking and cycling [ 53 ].

Policy narratives are the strategies used to influence beliefs and gain support for a particular course of action. Policy narratives are attempts to unite actors behind a common goal. They are not intended to directly modify behaviour, rather, they frame or create shifts in values and the ways in which problems are perceived, and may therefore be an important precursor to change [ 23 ]. Theory suggests that the success of such narratives is influenced by the receptiveness of the audience and/or how well the narrative aligns with their beliefs.

In Edinburgh, evidence demonstrating the impact of lower speed limits on collisions and casualties was used to gain attention on the potential benefits of 20 mph speed limits. However, the narrative shifted over time from a specific intent to reduce collisions and casualties, to 20 mph contributing to a wider range of aspirations, with no supporting scientific evidence about the wider benefits presented. For example, the council argued that their approach would contribute to people living longer healthier lives, in well-designed, sustainable places, free from crime and disorder. These interventions were also expected to contribute to enhancing the Council’s reputation for excellence. Whether this shift in narrative was deliberate, or emerged through the bureaucratic and political processes, or was simply absorbing wider social and cultural currents, is not possible to detect from the published documents. However, the shift may have helped to neutralize opposing discourses, which would have made it more difficult to introduce the new speed limit. Indeed, previous research has shown that very little opposition to the schemes was expressed on social media, which can be a frequently used platform for sharing disagreement with policy decisions [ 44 ].

In Edinburgh, we see a widening story; the discussions evolved into a tale of the common good [ 18 , 41 ]. The political achievement was to turn the discourse of evidence into something non-partisan, with an appeal which went beyond the evidence and reached out to much more aspirational goals for the city. This might be because politicians were involved and had to develop an account that would be acceptable to a broad constituency, emphasizing very broad public health and community benefits. While the idea of traffic speed controls was hardly unthinkable – speed limits have been around for a long time – the idea of city-wide restrictions at a speed lower than 30 mph was a significant shift. What was achieved was to make the idea appear overwhelmingly appealing such that by the time it was enacted, it was to a significant degree mainstream and unexceptional – an example perhaps of changing perceptions of 20 mph such that it was within what has been referred to as the “Overton Window” [ 22 ].

The Belfast documents drew far more heavily on the scientific evidence on speed and risk than what was observed for Edinburgh. In Belfast, the narrative was less aspirational, although the proclaimed benefits of 20 mph speed limits also broadened over time. For example, 20 mph was linked to overcoming social exclusion and strengthening rural communities, as well as aiding wider economic and environmental objectives. Belfast was a smaller intervention, which was driven by the civil service, specifically those in transport. The whole effort has a much more administrative feel to it, which may be why the Belfast documents presented more evidence.

Building or honing the narrative in a variety of ways for different audiences and purposes is rather akin to what Galea called incremental gradualism [ 23 ], or Ogilvie et al. referred to as pragmatic pluralism [ 36 ]. Indeed, storytelling is even now embraced by epidemiologists who acknowledge its power for galvanizing action and building a bridge to evidence translation [ 14 ]. In the context of the Edinburgh and Belfast interventions, this means finding a way to make the policy change palatable, and perhaps even agreeable, among a wide range of stakeholders and the general public.

It is well recognized that scientific evidence, in isolation, is generally insufficient to achieve policy change. Policy-making is not a systematic step-by-step process but rather a fluid deliberative process [ 46 ]. This paper sought to understand the use of evidence in the deliberative processes of speed limit policies in two major UK cities. The policy-making processes in both cities required the clever and subtle use of policy narratives to drive change. Once the benefits of 20 mph were recognized, the next step for policy-makers was to establish how to get the interventions in place. Thus the question shifted from “is there evidence that we have a problem?” or “is there evidence that such interventions will work in the way we think they will?” to “how do we make this happen in practice?” In the case of Edinburgh, this was via a process of bringing various parties on board and appealing to the greater good of the city as a whole. In Belfast, it was done administratively through the civil service and thus there was little room for political contestation of evidence. That said, the Northern Ireland Executive’s policy “playbook” acknowledges the need to go beyond the evidence and consider implementation challenges from the outset of any policy-making journey [ 31 ].

These case studies show that evidence was not used to enact decisions but was used astutely to influence others to support the schemes, such that when implementation eventually occurred, it appears to have been regarded in the communities as largely unremarkable [ 55 ]. The changing narratives had framed the idea in such a way that it had broad acceptability [ 4 , 21 , 52 ].

It is worth noting that in both cities the 20 mph speed limits are still in place, and it is anticipated that they will remain a permanent feature. In Edinburgh discussions have begun about potentially reducing 40 mph streets to 30 mph [ 51 ]. Since the implementation of the Belfast intervention, 20 mph limits have been introduced outside 100 schools, and discussions are underway about widening the intervention further [ 33 ].

Evidence is a starting point, but a lot has to happen to bring interventions such as these to fruition. The cases of Edinburgh and Belfast are worth examining because they did successfully implement speed restrictions, and in Edinburgh in particular, there has been a marked decline in collisions, casualties and fatalities, and positive trends in Belfast for a smaller, city centre intervention, were also observed [ 25 ]. The implementing organizations drew upon the descriptive evidence about the effects of speed restriction. Nevertheless, on its own that evidence did not lead to the political position that allowed the local jurisdictions to act. The evidence had to go through a process of honing and shaping to provide the basis for action. It took rather different directions in the two cities – their tales are different – but in the end, the different tales fitted the local political contexts.

Some limitations of this work may be noted. Our analysis was confined to documentary evidence. Whilst policy documents provide a detailed account of evidence and proposed actions, they may provide only a partial picture of the types of evidence that were considered and how that evidence influenced decision-making. Secondly, documents often provide a specific storyline and may reflect what the relevant authorities wanted to convey about the process, rather than necessarily revealing the full truth about what happened in reality. Thirdly, whilst all documents were analysed independently by two researchers, those researchers inevitably bring their own pre-conceived ideas and biases to the process; it is possible that other researchers may have drawn different conclusions from the evidence. Finally, we sought to explore the discourse that emerged throughout the years of deliberation on the schemes, rather than to test a particular theory of policy-making. It is possible that the application of one or more theoretical frameworks may have yielded different or additional insights.

Conclusions

In recent years, the UK cities of Belfast and Edinburgh introduced 20 mph speed limit interventions – city-wide in Edinburgh and in the city centre in Belfast. Tales, or narratives, about the use of evidence prior to the successful introduction of the slower speed restrictions were constructed in both places. The relationship between evidence and decision-making in Edinburgh and Belfast was neither simple nor linear. While organizations such as national governments may well be imbued with a culture that recognizes the importance of evidence, evidence still has to find its way into practice at a local level. One element in the process concerns the way evidence is actually used, not only to guide decision-making, but also in the political processes that precede and accompany formal decision-making.

These narratives are some way distant from the hard data points and P -values of primary evidence of purported effectiveness and are in themselves part of an interpretative process of that evidence. Nevertheless, we contend that the narratives – the tales or stories – were critically important in the way things evolved in the two cities, and without which there would have been no implementation, and probably a lot more push back from vested interests and communities than there was.

Availability of data and materials

Much of the data are publicly available. We have made it clear which documents are not publicly available.

Adams J, Hillier-Brown FC, Moores HJ, Lakes AA, Araujo-Soares V, White M, Summerbell C. Searching and synthesising ‘grey literature’ and ‘grey information’ in public health: critical reflections on three case studies. Syst Rev. 2016;5:164. https://doi.org/10.1186/s13643-016-0337-y .

Article   PubMed   PubMed Central   Google Scholar  

Brownson RC, Fielding JE, Maylahn CM. Evidence-based public health: a fundamental concept for public health practice. Ann Rev Public Health. 2009;30:175–201.

Article   Google Scholar  

Burstein P. The determinants of public policy: what matters ad how much? Policy Stud J. 2020;48(1):207–30.

Cairney P. Evidence-based best practice is more political than it looks: a case study of the ‘Scottish approach.’ Evid Policy. 2017;13(3):499–515.

Cairney P, Kippin S. Politics and policy making in the UK. Bristol: Bristol University Press; 2023.

Book   Google Scholar  

Charlesworth G. A history of the transport and road research laboratory 1933–1983. Aldershot: Gower; 1987.

Google Scholar  

City of Edinburgh Council—Transport and Environment Committee. Proposal for 20mph speed limit pilot in South Edinburgh. Edinburgh: City of Edinburgh Council; 2010.

City of Edinburgh Council—Transport and Environment Committee. 20mph speed limit pilot in South Edinburgh—Variation to traffic regulation order. Edinburgh: City of Edinburgh Council; 2011a.

City of Edinburgh Council—Transport and Environment Committee. South Edinburgh 20mph limit pilot—Response to TRO consultation. Edinburgh: City of Edinburgh Council; 2011b

City of Edinburgh Council—Transport and Environment Committee. South Central Edinburgh 20mph limit pilot evaluation. Edinburgh: City of Edinburgh Council; 2013.

City of Edinburgh Council—Transport and Environment Committee. Delivering the Local Transport Strategy 2014–2019: 20mph speed limit roll out—consultation proposal. Edinburgh: City of Edinburgh Council; 2014.

City of Edinburgh Council—Transport and Environment Committee. 20 for Edinburgh: 20mph network implementation. Edinburgh: City of Edinburgh Council; 2015.

Cleland CL, McComb K, Kee F, Jepson R, Kelly M, Milton K, Nightingale G, Kelly P, Baker G, Craig N, Williams A, Hunter R. Effects of 20 mph interventions on a range of public health outcomes using the meta-narrative method. J Transp Health. 2020. https://doi.org/10.1016/j.jth.2019.100633 .

Cofiño R, Prieto M, Suárez O, Malecki K. The art of drawing numbers and stories in the air: epidemiology, information, emotion and action. Epidemiol Commun Health. 2014. https://doi.org/10.1136/jech-2014-203883 .

Crammond B, Carey G. What is policy and where do we look for it when we want to research it? Epidemiol Commun Health. 2016. https://doi.org/10.1136/jech-2016-207945 .

Dalglish SL, Khalid H, McMahon SA. Document analysis in health policy research: the READ approach. Health Policy Plan. 2020;35(10):1424–31.

Article   PubMed Central   Google Scholar  

Davies HTO, Nutley SM, Smith PC. What works? Evidence based policy and practices in public services. Bristol: Policy Press; 2000.

Etzioni A. Reclaiming patriotism. Charlottesville: University of Virginia Press; 2019.

European Transport Safety Council. Reducing traffic injuries resulting from excess and inappropriate speed. Brussels: European Transport Safety Council; 1995.

European Transport Safety Council. Speed fact sheet 7: Setting appropriate, safe, and credible speed limits. Brussels: European Transport Safety Council; 2010.

FrameWorks Institute. Framing and policy making—How does framing help advance our public policy goals? Washington: FrameWorks Institute; 2018.

Galea S. Well. New York: Oxford University Press; 2019.

Galea S. A radical vision, an incremental approach to achieving the aspirations of public health. Milbank Q. 2020. https://doi.org/10.1599/mqop.2020.1014 .

Government Office for Science. Realising our ambition through science: a review of government science capability. London: Government Office for Science; 2019.

Jepson R, Baker G, Cleland C, Cope A, Craig N, Foster C, Hunter R, Kee F, Kelly MP, Kelly P, Milton K, Nightingale G, Turner K, Williams AJ, Woodcock J. Evaluation of 20mph speed limits in Edinburgh and Belfast on a range of public health outcomes: a mixed methods approach. London: National Institute of Health Research; 2022.

Kelly MP. The relation between the social and the biological and COVID-19. Public Health. 2021;196:18–23.

Article   CAS   PubMed   Google Scholar  

McKibbin D. An overview of key road traffic collisions statistics in Northern Ireland. Belfast: Northern Ireland Assembly; 2014.

Milton K, Kelly MP, Baker G, Cleland C, Cope A, Craig N, Hunter R, Foster C, Kee F, Kelly P, Nightingale G, Turner K, Williams AJ, Woodcock J, Jepson R. Use of natural experimental studies to evaluate 20mph speed limits in two major UK cities. J Transp Health. 2021;22: 101141. https://doi.org/10.1016/j.jth.2021.101141 .

Milton K, Turner K, Baker G, Cleland CL, Foster C, Hunter RF, Jepson R, Kee F, Kelly P, Kelly MP. The processes of transport and public health policy change: 20mph speed limits in Edinburgh and Belfast. Case Stud Trans Policy. 2022;10:1855–61.

National Institute for Health and Care Excellence. Physical activity: walking and cycling—Public health guideline [PH41]. London: National Institute for Health and Care Excellence; 2012.

Northern Ireland Executive. A practical guide to policy making in Northern Ireland. Belfast: Northern Ireland Executive; 2016.

Northern Ireland Government. Setting local speed limits in Northern Ireland. Belfast: Northern Ireland Government; 2010.

Northern Ireland Government. Mallon announces further roll out of 20mph speed limit schemes at 106 schools ; 2021. https://www.infrastructure-ni.gov.uk/news/mallon-announces-further-roll-out-20mph-speed-limit-schemes-106-schools . Accessed 6th Aug 2022.

Northern Ireland Government. Northern Ireland Road Safety Strategy 2002–2012. Belfast: Northern Ireland Government; 2002.

Northern Ireland Government. Northern Ireland’s Road Safety Strategy to 2020. Belfast: Northern Ireland Government; 2011.

Ogilvie D, Bauman A, Foley L, Guell C, Humphreys D, Panter J. Making sense of the evidence in population health intervention research: building a dry-stone wall. BMJ Glob Health. 2020;5: e004017. https://doi.org/10.1136/bmjgh-2020-004017 .

QSR International Pty Ltd. NVivo (Version 12); 2018. https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home .

Reynolds JP, Stautz K, Pilling M, van der Linden S, Marteau TM. Communicating the effectiveness and ineffectiveness of government policies and their impact on public support: a systematic review with meta-analysis. R Soc Open Sci. 2020;7: 190522.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sackett DL, Haynes RB, Guyatt GH, Tugwell P. Clinical epidemiology: a basic science for clinical medicine. Boston: Little Brown and Co; 1991.

Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312:71.

Sandel MJ. The tyranny of merit: What became of the common good? New York: Farrar, Strauss and Giroux; 2020.

Scottish Government. Go safe on Scotland’s roads- it’s everyone’s responsibility: Scotland’s road safety framework to 2020. Edinburgh: Scottish Government; 2009.

Scottish Government. Cycling Action Plan for Scotland (CAPS). Edinburgh: Scottish Government; 2010

Semwal T, Milton K, Jepson R, Kelly M. Tweeting about twenty: analysing interest, public sentiments and opinion about 20mph speed restrictions in Edinburgh and Belfast using Twitter data. BMC Public Health. 2021. https://doi.org/10.1186/s12889-021-12084-x .

Sense about Science. Transparency of evidence: an assessment of government policy proposals May 2015 to May 2016. London: Sense about Science; 2016.

Smith K. Beyond evidence based policy in public health: the interplay of ideas. Basingstoke: Palgrave Macmillan; 2013.

Taylor MC, Lynam DA, Baruya A. The effects of drivers’ speed on the frequency of road accidents. Crowthorne: Transport Research Laboratory; 2000.

The Evidence-Based Medicine Working Group. Evidence-based medicine: a new approach to teaching the practice of medicine. J Am Med Assoc. 1992;268(17):2420–5.

Transport Northern Ireland. Road safety engineering procedures. Belfast: Transport Northern Ireland; 2014.

Transport Scotland. Good practice guide on 20mph speed restrictions. Edinburgh: Transport Scotland; 2014.

Turvill D. Edinburgh Council set to lower speed limit on 22 roads across the city; 2022. https://www.edinburghlive.co.uk/news/edinburgh-news/edinburgh-council-set-lower-speed-22885636 . Accessed 6th Aug 2022.

Tversky A, Kahneman D. The framing of decisions and the psychology of choice. Science. 1981;211:453–8.

Webster DC, Mackie A. TRL project report 215—Review of traffic calming schemes in 20mph zones. Crowthorne: Transport Research Laboratory; 1996.

World Health Organization. World report on road traffic injury prevention. Geneva: World Health Organization; 2004.

Yanovitzky I, Weber M. Analysing use of evidence in public policymaking processes: a theory-grounded content analysis methodology. Evidence & Policy. 2020;16(1):65–82.

Yin RK. Case study research and applications: design and methods. 6th ed. London: Sage; 2018.

Download references

Acknowledgements

The Is 20 plenty for health? project was funded by a National Institute for Health Research (NIHR) Public Health Research (PHR) grant 15/82/12. This paper presents independent research funded by the NIHR. The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR or the Department of Health and Social Care. The funding was awarded to: Professor Ruth Jepson (PI) of Edinburgh University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and affiliations.

Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, United Kingdom

Karen Milton

Physical Activity for Health Research Centre (PAHRC), Institute for Sport, Physical Education and Health Sciences, University of Edinburgh, Edinburgh, United Kingdom

Graham Baker & Paul Kelly

School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University, Belfast, United Kingdom

Claire L. Cleland & Frank Kee

Sustrans, United Kingdom

Centre for Public Health, Queen’s University, Belfast, United Kingdom

Ruth F. Hunter

Scottish Collaboration for Public Health Research and Policy, University of Edinburgh, Edinburgh, United Kingdom

Ruth Jepson

Division of Population and Behavioural Science, School of Medicine, University of St Andrews, St Andrews, United Kingdom

Andrew J. Williams

Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom

Michael P. Kelly

You can also search for this author in PubMed   Google Scholar

Contributions

K.M. and M.K. conceived the idea. K.M. and M.K. conducted the web searches and were assisted by G.B., C.C. and R.F.H. to obtain relevant documents. K.M. and M.K. undertook the data analysis and drafted the manuscript. All authors edited the manuscript for important intellectual content and approved the final version.

Corresponding author

Correspondence to Karen Milton .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

R.F.H. is a member of the NIHR PHR funding panel that funded the study. All other authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Milton, K., Baker, G., Cleland, C.L. et al. The tales of two cities: use of evidence for introducing 20 miles per hour speed limits in Edinburgh and Belfast (United Kingdom). Health Res Policy Sys 22 , 120 (2024). https://doi.org/10.1186/s12961-024-01213-8

Download citation

Received : 24 July 2023

Accepted : 14 August 2024

Published : 02 September 2024

DOI : https://doi.org/10.1186/s12961-024-01213-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Speed limit

Health Research Policy and Systems

ISSN: 1478-4505

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

importance of case study research design

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

buildings-logo

Article Menu

importance of case study research design

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Building information modeling and ai algorithms for optimizing energy performance in hot climates: a comparative study of riyadh and dubai.

importance of case study research design

1. Introduction

2. literature review, 2.1. residential building envelopes (bes) and insulation materials in hot climates, 2.2. green buildings in hot climates, 2.3. bim, ml, and optimization in building energy efficiency, 2.4. purpose and significance, 3. materials and methods, 3.1. study area and climate, 3.2. bim modeling, 3.2.1. key features modeled, 3.2.2. scenario development, 3.3. energy simulation, 3.4. machine learning models, 3.4.1. data preparation, 3.4.2. model training.

  • E U I i is the observed Energy Use Intensity for the i -th scenario,
  • F e a t u r e i j is the value of the j -th building feature in the i -th scenario,
  • β j are the regression coefficients for the building features,
  • λ is the regularization parameter,
  • N is the number of scenarios (building configurations),
  • P is the number of building features.

3.4.3. Model Evaluation

3.5. optimization, 4.1. model performance analysis, 4.1.1. visual assessments of model predictions, 4.1.2. comparison with the existing literature, 4.2. feature importance analysis, 4.3. building envelopes energy analysis, 4.3.1. analysis of roof types, 4.3.2. analysis of exterior wall types, 4.3.3. analysis of window types, 4.3.4. comparison with the existing literature, 4.4. machine learning-based optimization, 4.4.1. the worst scenario for the case study located in both riyadh and dubai, 4.4.2. the best scenario for the case study located in riyadh, 4.4.3. the best scenario for the case study located in dubai’s, 5. discussion, 5.1. the novelty of the study, 5.2. the value of the findings, 5.3. theoretical, practical, and policy implications, 5.4. limitations of the study, 5.5. future research directions, 6. conclusions, author contributions, data availability statement, conflicts of interest, abbreviations.

BIMBuilding Information Modeling
MLMachine Learning
BEsBuilding Envelopes
GBSAutodesk Green Building Studio
EUIEnergy Use Intensity
GBMGradient Boosting Machine
RFRandom Forest Regressor
SVMSupport Vector Machine
LRLasso Regression
FIAFeature Importance Analysis
DSDubai scenarios
RSRiyadh scenarios
SDGsSustainable Development Goals
WWRWindow–Wall Ratio
IES-VEIntegrated Environmental Solutions—Virtual Environment
RWRock Wool
GWGlass Wool
PUPolyurethane board
EPSExpanded Polystyrene
SIPsStructural Insulated Panels
OSBOriented Strand Board
VIPsVacuum Insulation Panels
PCMsPhase Change Materials
BEBuilding Envelope
ZEBZero-Energy Buildings
BEPBuilding Energy Performance
BEMBuilding Energy Modeling
ANNArtificial Neural Network
MOPSOMulti-Objective Particle Swarm Optimization
XGBExtreme Gradient Boosting
HVACHeating, Ventilation and Air-Conditioning
GPGypsum Plaster
CPCement Plaster
XPSExtruded Polystyrene
PVPhotovoltaic
gbXMLGreen Building XML
CSVComma-separated values
PCCPearson’s correlation coefficient
SHAPShapley Additive exPlanations
MAEMean Absolute Error
RMSERoot Mean Squared Error
R R-squared
BCSBest-Case Scenario
WCSWorst-Case Scenario
XGBoostExtreme Gradient Boosting
BSBase Scenario
RWCSRiyadh’s Worst-Case Scenario
RBCSRiyadh’s Best-Case Scenario
DBCSDubai’s Best-Case Scenario
  • Energy Efficiency 2019. Available online: https://www.iea.org/reports/energy-efficiency-2019 (accessed on 23 July 2024).
  • Energy Efficiency. Available online: https://www.iea.org/topics/energy-efficiency (accessed on 12 July 2024).
  • Energy Efficiency. Available online: https://www.eea.europa.eu/en/topics/in-depth/energy-efficiency (accessed on 12 July 2024).
  • World Energy Outlook 2020. Available online: www.iea.org/weo (accessed on 15 July 2024).
  • Australian Energy Update 2023. Available online: https://www.energy.gov.au/publications/australian-energy-update-2023 (accessed on 15 July 2024).
  • Residential Buildings. Available online: https://www.dcceew.gov.au/energy/energy-efficiency/buildings/residential-buildings (accessed on 12 July 2024).
  • Al-Homoud, M.S.; Krarti, M. Energy efficiency of residential buildings in the kingdom of Saudi Arabia: Review of status and future roadmap. J. Build. Eng. 2021 , 36 , 102143. [ Google Scholar ] [ CrossRef ]
  • Petri, I.; Kubicki, S.; Rezgui, Y.; Guerriero, A.; Li, H. Optimizing Energy Efficiency in Operating Built Environment Assets through Building Information Modeling: A Case Study. Energies 2017 , 10 , 1167. [ Google Scholar ] [ CrossRef ]
  • Felimban, A.; Prieto, A.; Knaack, U.; Klein, T.; Qaffas, Y. Assessment of Current Energy Consumption in Residential Buildings in Jeddah, Saudi Arabia. Buildings 2019 , 9 , 163. [ Google Scholar ] [ CrossRef ]
  • Saudi Arabia Energy Report. Available online: https://www.kapsarc.org/research/publications/saudi-arabia-energy-report/ (accessed on 18 July 2024).
  • Abdul Mujeebu, M.; Alshamrani, O.S. Prospects of energy conservation and management in buildings—The Saudi Arabian scenario versus global trends. Renew. Sustain. Energy Rev. 2016 , 58 , 1647–1663. [ Google Scholar ] [ CrossRef ]
  • Saudi Arabia Oil Production. Available online: https://ycharts.com/indicators/saudi_arabia_oil_production (accessed on 15 July 2024).
  • Dwellings and Housing. Available online: https://portal.saudicensus.sa/portal/public/8/24/100775?type=TABLE (accessed on 15 July 2024).
  • Saudi Energy Conservation Code—Low Rise (SBC 602). Available online: https://sbc.gov.sa/Ar/BC/Pages/buildingcode/BCHome.aspx (accessed on 15 July 2024).
  • Firoiu, D.; Ionescu, G.H.; Cismaș, L.M.; Vochița, L.; Cojocaru, T.M.; Bratu, R.-Ș. Can Europe Reach Its Environmental Sustainability Targets by 2030? A Critical Mid-Term Assessment of the Implementation of the 2030 Agenda. Sustainability 2023 , 15 , 16650. [ Google Scholar ] [ CrossRef ]
  • Al-Qahtani, L.A.H.; Elgizawi, L.S.E. Building envelope and energy saving case study: A residential building in Al-Riyadh, Saudi Arabia. Int. J. Low-Carbon Technol. 2020 , 15 , 555–564. [ Google Scholar ] [ CrossRef ]
  • Alyami, S.H.; Almutlaqa, A.A.; Alqahtany, A.M.; Ashraf, N. Likelihood of Reaching Zero Energy Building Design in Hot Dry Climate: Saudi Arabia. IEEE Access 2021 , 9 , 167054–167066. [ Google Scholar ] [ CrossRef ]
  • Aldersoni, A.; Albaker, A.; Alturki, M.; Said, M.A. The Impact of Passive Strategies on the Overall Energy Performance of Traditional Houses in the Kingdom of Saudi Arabia. Buildings 2022 , 12 , 1837. [ Google Scholar ] [ CrossRef ]
  • Alsaqabi, Y.; Almhafdy, A.; Haider, H.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Ali, A.A.M. Techno-Environmental Assessment of Insulation Materials in Saudi Arabia: Integrating Thermal Performance and LCA. Buildings 2023 , 13 , 331. [ Google Scholar ] [ CrossRef ]
  • Alyami, S.H.; Alqahtany, A.; Ashraf, N.; Osman, A.; Aldossary, N.A.; Almutlaqa, A.; Al-Maziad, F.; Alshammari, M.S.; Al-Gehlani, W.A.G. Impact of Location and Insulation Material on Energy Performance of Residential Buildings as per Saudi Building Code (SBC) 601/602 in Saudi Arabia. Materials 2022 , 15 , 9079. [ Google Scholar ] [ CrossRef ]
  • Dhaif, M.; Stephan, A. A Life Cycle Cost Analysis of Structural Insulated Panels for Residential Buildings in a Hot and Arid Climate. Buildings 2021 , 11 , 255. [ Google Scholar ] [ CrossRef ]
  • Abdelrady, A.; Abdelhafez, M.H.H.; Ragab, A. Use of Insulation Based on Nanomaterials to Improve Energy Efficiency of Residential Buildings in a Hot Desert Climate. Sustainability 2021 , 13 , 5266. [ Google Scholar ] [ CrossRef ]
  • Sovetova, M.; Memon, S.A.; Kim, J. Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Sol. Energy 2019 , 189 , 357–371. [ Google Scholar ] [ CrossRef ]
  • Mahmoud, S.; Ismaeel, W.S.E. Developing sustainable design guidelines for roof design in a hot arid climate. Archit. Sci. Rev. 2019 , 62 , 507–519. [ Google Scholar ] [ CrossRef ]
  • Ragab, A.; Abdelrady, A. Impact of Green Roofs on Energy Demand for Cooling in Egyptian Buildings. Sustainability 2020 , 12 , 5729. [ Google Scholar ] [ CrossRef ]
  • Andric, I.; Kamal, A.; Al-Ghamdi, S.G. Efficiency of green roofs and green walls as climate change mitigation measures in extremely hot and dry climate: Case study of Qatar. Energy Rep. 2020 , 6 , 2476–2489. [ Google Scholar ] [ CrossRef ]
  • Pragati, S.; Shanthi Priya, R.; Pradeepa, C.; Senthil, R. Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate. Sustainability 2023 , 15 , 2006. [ Google Scholar ] [ CrossRef ]
  • Amani, N.; Reza Soroush, A.A. Effective energy consumption parameters in residential buildings using Building Information Modeling. Glob. J. Environ. Sci. Manag. 2020 , 6 , 467–480. [ Google Scholar ] [ CrossRef ]
  • Gao, H.; Koch, C.; Wu, Y. Building information modelling based building energy modelling: A review. Appl. Energy 2019 , 238 , 320–343. [ Google Scholar ] [ CrossRef ]
  • Albatayneh, A. Optimisation of building envelope parameters in a semi-arid and warm Mediterranean climate zone. Energy Rep. 2021 , 7 , 2081–2093. [ Google Scholar ] [ CrossRef ]
  • Chegari, B.; Tabaa, M.; Simeu, E.; Moutaouakkil, F.; Medromi, H. Multi-objective optimization of building energy performance and indoor thermal comfort by combining artificial neural networks and metaheuristic algorithms. Energy Build. 2021 , 239 , 110839. [ Google Scholar ] [ CrossRef ]
  • Egwim, C.N.; Alaka, H.; Egunjobi, O.O.; Gomes, A.; Mporas, I. Comparison of machine learning algorithms for evaluating building energy efficiency using big data analytics. J. Eng. Des. Technol. 2024 , 22 , 1325–1350. [ Google Scholar ] [ CrossRef ]
  • Guo, H.; Duan, D.; Yan, J.; Ding, K.; Xiang, F.; Peng, R. Machine Learning-Based Method for Detached Energy-Saving Residential Form Generation. Buildings 2022 , 12 , 1504. [ Google Scholar ] [ CrossRef ]
  • Seyedzadeh, S.; Rahimian, F.P.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018 , 6 , 5. [ Google Scholar ] [ CrossRef ]
  • Barbaresi, A.; Ceccarelli, M.; Menichetti, G.; Torreggiani, D.; Tassinari, P.; Bovo, M. Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need. Energies 2022 , 15 , 1266. [ Google Scholar ] [ CrossRef ]
  • Kamel, E.; Memari, A.M. Review of BIM’s application in energy simulation: Tools, issues, and solutions. Autom. Constr. 2019 , 97 , 164–180. [ Google Scholar ] [ CrossRef ]
  • Joseph, V.R. Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 2022 , 15 , 531–538. [ Google Scholar ] [ CrossRef ]
  • Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996 , 58 , 267–288. [ Google Scholar ] [ CrossRef ]
  • Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004 , 14 , 199–222. [ Google Scholar ] [ CrossRef ]
  • Breiman, L. Random Forests. Mach. Learn. 2001 , 45 , 5–32. [ Google Scholar ] [ CrossRef ]
  • Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001 , 29 , 1189–1232. [ Google Scholar ] [ CrossRef ]
  • El Alaoui, M.; Chahidi, L.O.; Rougui, M.; Lamrani, A.; Mechaqrane, A. Prediction of energy consumption of an administrative building using machine learning and statistical methods. Civ. Eng. J. 2023 , 9 , 1007–1022. [ Google Scholar ] [ CrossRef ]
  • James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R ; Springer: New York, NY, USA, 2013. [ Google Scholar ]
  • What is Considered a Good vs. Bad Residual Plot? Available online: https://www.statology.org/good-vs-bad-residual-plot/ (accessed on 23 July 2024).
  • Bahij, M.; Cherkaoui, M.; Labbadi, M. Energy Consumption Forecasting in Industrial Sector Using Machine Learning Approaches ; Springer International Publishing: Cham, Switzerland, 2020; pp. 155–164. [ Google Scholar ]
  • Bahij, M.; Labbadi, M.; Cherkaoui, M.; Chatri, C.; Lakrit, S. A Comparison Study of Machine Learning Methods for Energy Consumption Forecasting in Industry ; Springer International Publishing: Cham, Switzerland, 2021; pp. 165–175. [ Google Scholar ]
  • Archibong-Eso, E.U.; Archibong-Eso, A.; Enyia, J.D. Machine Learning Models for Energy Prediction in a Low Carbon Building. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 31 July–2 August 2023. [ Google Scholar ]
  • Zhong, H.; Wang, J.; Jia, H.; Mu, Y.; Lv, S. Vector field-based support vector regression for building energy consumption prediction. Appl. Energy 2019 , 242 , 403–414. [ Google Scholar ] [ CrossRef ]
  • Yang, L.; Ma, H.; Zhang, Y.; Li, S. Research on energy consumption prediction of public buildings based on improved support vector machine. In Proceedings of the 2023 35th Chinese Control and Decision Conference (CCDC), Yichang, China, 20–22 May 2023; pp. 2699–2704. [ Google Scholar ]
  • Papadopoulos, S.; Azar, E.; Woon, W.-L.; Kontokosta, C.E. Evaluation of tree-based ensemble learning algorithms for building energy performance estimation. J. Build. Perform. Simul. 2018 , 11 , 322–332. [ Google Scholar ] [ CrossRef ]
  • Han, J.; Shu, K.; Wang, Z. Predicting energy use in construction using Extreme Gradient Boosting. PeerJ Comput. Sci. 2023 , 9 , e1500. [ Google Scholar ] [ CrossRef ]
  • Sisman, N.; Kahya, E.; Aras, N.; Aras, H. Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’s different degree-day regions. Energy Policy 2007 , 35 , 5151–5155. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

RiyadhDubai
Weather StationGBS_06M12_18_213128GBS_06M12_18_281137
LocationKing Abdulaziz District, RiyadhDubai, Dubai
CoordinatesLatitude 24.7000, Longitude 46.7333Latitude 25.2000, Longitude 55.2833
Elevation627 m10 m
NoRoof TypeLayersThicknessR-ValueThermal Mass
R1Concrete RoofGypsum Plaster (GP) (20 mm) + Concrete (200 mm) + Cement Plaster (CP) (15 mm)2350.24343.32
R2Insulated Concrete Roof GP (20 mm) + Mineral Wool (100 mm) + Reinforced concrete (200 mm) + Bitumen layer (4 mm) + Roofing Tiles (40 mm)356.53.2396.55
R3Green RoofGP (12.5 mm) + Air Gap (30 mm) + VIPs (100 mm) + Reinforced concrete (150 mm) + Waterproof layer + Drainage layer (50 mm) + Filter layer + Soil (150 mm) + Plant layer (150 mm)642.513.98799.26
R4Solar Reflective Roof GP (12.5 mm) + Aerogel Insulation Board (100 mm) + Concrete Deck (200 mm) + CP (15 mm) + Waterproof Membrane + Reflective Elastomeric Coating (5 mm) 332.55.4357.64
R5Double-Skin RoofGP (20 mm) + Air Gap (50 mm) + Reinforced Concrete Slab (150 mm) + Roofing Felt + Air Gap (30 mm) + Metal Panel (2 mm) 2523.37253.2
R6SIP High-Performance RoofGP (12.5 mm) + Air Gap (50 mm) + EPS Foam (100 mm) + Concrete Slab (150 mm) + EPS Foam (100 mm) + Vapor Retarder + Cement Screed (15 mm) + Asphalt Layer (5 mm)432.57.9277.45
R7Sloped Green RoofGreen Roof with 30% Slope642.513.98799.26
NoFlooring TypeLayersThicknessR-ValueThermal Mass
F1Wooden FlooringWooden Flooring (20 mm) + Vapor Retarder + Plywood, Sheathing (25 mm) + RW (100 mm) + Timber Joist (150 mm)1953.3454.6
F2Concrete FlooringMarble Tiles (30 mm) + Cement Screed (20 mm) + Vapor Retarder + Rigid insulation (100 mm) + Damp-proofing + Concrete, Cast in Situ (150 mm)3003.03329.53
NoInterior Wall TypeLayersThicknessR-ValueThermal Mass
IW1DrywallGP (12.5 mm) + Rockwool Insulation (50 mm) + Metal Stud Layer (75 mm) + GP (12.5 mm)1504.530.29
IW2Concrete Block WallGP (12.5 mm) + CP (15 mm) + Concrete Block (100 mm) + CP (15 mm) + GP (12.5 mm)1550.14219.63
IW3Brick WallGP (12.5 mm) + CP (15 mm) + Brick (100 mm) + CP (15 mm) + GP (12.5 mm)1550.25198.63
NoWindow TypeFrame MaterialR-ValueU-Value
W1Single glazing SC = 0.8Wood0.146.7
W2Double glazing − domestic SC = 0.6Aluminum0.352.85
W3Triple glazing − 1/8 in thick − low-E/clear/low-E (e = 0.1) glassuPVC0.651.53
W4Reflective double glazing − 1/4 in thick − 14% stainless steel on green glassAluminum0.51.98
W5Low-E triple glazing SC = 0.2uPVC0.681.45
FeaturesDetailsValues
AreaVarious total floor areas ranging from 170 to 370 m .6
WWRDifferent ratios range from 0% to 95% of the wall.4
Building OrientationVarious orientations from 0 to 360 degrees.8
Infiltration RateDifferent rates from 0.17 to 2.0 ACH.6
HVAC SystemRevit defaults to eight different types of HVAC systems.8
Plug Load EfficiencyVarious rates from 0.6 to 2.6 W/sf.6
Daylighting and Occupancy ControlsPresence or absence of these controls.4
Lighting EfficiencyVarious rates from 0.3 to 1.9 W/sf.5
Photovoltaic (PV) RoofThe presence or absence of 60% solar panel coverage on the roof.2
NoExterior Wall TypeLayersThicknessR-ValueThermal Mass
EW1Brick WallGP (12.5 mm) + Brick (200 mm)212.50.39271.95
EW2Insulated Brick Wall GP (12.5 mm) + RW (50 mm) + Brick (200 mm)262.51.86279.05
EW3Concrete Blocks with Stone Cladding GP (12.5 mm) + Phenolic Foam Insulation (100 mm) + Concrete Blocks (200 mm) + Cement Mortar (20 mm) + Stone Cladding (40 mm)372.55.8439.33
EW4Dense Concrete WallGP (12.5 mm) + Concrete (200 mm) + CP (15 mm)227.50.22336.44
EW5Double Brick Wall with VIP InsulationGP (12.5 mm) + Brick (100 mm) + VIPs (100 mm) + Brick (100 mm)312.510.33315.35
EW6Double Concrete Wall with Air GapGP (12.5 mm) + Concrete Blocks (100 mm) + Air Gap (100 mm) + Concrete Blocks (100 mm) + Mortar Bed (20 mm) + Marble (40 mm)372.54.24436.51
EW7Fiberglass Insulated Sandwich PanelsGP (12.5 mm) + Concrete (100 mm) + Fiberglass Batt (100 mm) + Concrete (100 mm) + CP (15 mm)327.55.49339.38
EW8Cellulose Insulated Sandwich PanelsGP (12.5 mm) + Concrete (100 mm) + Cellulose Insulation (50 mm) + Concrete (100 mm) + CP (15 mm)277.51.51339.4
EW9EPS SIPsGP (12.5 mm) + OSB (15 mm) + EPS (200 mm) + OSB (15 mm) + Cedar Cladding (10 mm) 252.5665.14
EW10XPS SIPsGP (12.5 mm) + OSB (15 mm) + XPS (Extruded Polystyrene) (200 mm) + OSB (15 mm) + Cedar Cladding (10 mm) 252.57.768.66
EW11Insulating Concrete FormGP (12.5 mm) + EPS Foam (100 mm) + Reinforced Concrete (100 mm) + EPS Foam (100 mm) + Exterior Finish (15 mm)327.55.85192.86
EW12Aerogel Insulated Wood FrameGP (12.5 mm) + Wood Frame (150 mm) + Cavity Aerogel Insulation (150 mm) + Exterior sheathing (13 mm) + Rendering (15 mm)190.5872.89
EW13Solar Reflective WallGP (12.5 mm) + Concrete Block (100 mm) + Vapor Retarder +Air (20 mm) + VIP Insulation (100 mm) + Air (20 mm) + Brick (100 mm) + CP (5 mm) + Reflective Elastomeric Coating (5 mm)362.511.95341.71
EW14Green WallGP (12.5 mm) + Brick (200 mm) + CP (10 mm) + Waterproof Membrane + Cavity (50 mm) + Polypropylene (50 mm) + Cultivated Soil (80 mm) + Vegetation (80 mm) 482.52.89634.19
EW15Cavity Green WallGP (12.5 mm) + Brick (100 mm) +Air (20 mm) + VIP Insulation (100 mm) + Air (20 mm) + Concrete Block (100 mm) + CP (10 mm) + Vapor Retarder + Soil (80 mm) + Vegetation (80 mm) 522.512.14596.17
GBMRFSVMLR
Evaluation ResultsInitial DatasetExpanded DatasetInitial DatasetExpanded DatasetInitial DatasetExpanded DatasetInitial DatasetExpanded Dataset
MAE9.537.0622.9814.9233.3970.156.0773.6
RMSE18.111.2944.8725.1557.2998.4173.55104.25
R 0.9230.9890.7070.9420.3460.4680.3860.593
NoExterior WallRoofWindowFlooringInterior WallPredicted EUIActual EUI
1EW15R7W4F2IW1430.8432.8
2EW15R7W4F1IW1431.6433.5
3EW15R7W4F1IW2432.1434.6
4EW15R7W4F2IW2432.4433.9
5EW15R7W5F2IW1433.9439.8
6EW13R7W4F1IW2434.2434.3
7EW13R7W4F1IW1434.2433.2
8EW15R7W5F1IW1434.7440.5
9EW15R7W5F1IW2434.9441.6
10EW13R7W4F1IW3435.0434.0
NoExterior WallRoofWindowFlooringInterior WallPredicted EUIActual EUI
1EW5R7W4F2IW1465.8466.1
2EW5R7W4F1IW2466.7468.8
3EW5R7W4F1IW3467.1468.5
4EW5R7W4F1IW1468.0467.3
5EW5R7W4F2IW2468.6467.7
6EW5R7W4F2IW3468.7467.3
7EW15R7W4F1IW1468.8470.4
8EW7R7W4F2IW1468.9468.8
9EW15R7W4F2IW1469.0469.2
10EW7R7W4F1IW1469.0469.9
Location Year)Electricity Use (kWh)Fuel Use (kWh)Total Energy (kWh)
Riyadh894.770,23118,11688,346
Dubai800.775,813324979,061
Location Year) Electricity Use (kWh)Fuel Use (kWh)Total Energy (kWh)
Riyadh432.840,599350144,100
Dubai466.144,337323347,570
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Mehraban, M.H.; Alnaser, A.A.; Sepasgozar, S.M.E. Building Information Modeling and AI Algorithms for Optimizing Energy Performance in Hot Climates: A Comparative Study of Riyadh and Dubai. Buildings 2024 , 14 , 2748. https://doi.org/10.3390/buildings14092748

Mehraban MH, Alnaser AA, Sepasgozar SME. Building Information Modeling and AI Algorithms for Optimizing Energy Performance in Hot Climates: A Comparative Study of Riyadh and Dubai. Buildings . 2024; 14(9):2748. https://doi.org/10.3390/buildings14092748

Mehraban, Mohammad H., Aljawharah A. Alnaser, and Samad M. E. Sepasgozar. 2024. "Building Information Modeling and AI Algorithms for Optimizing Energy Performance in Hot Climates: A Comparative Study of Riyadh and Dubai" Buildings 14, no. 9: 2748. https://doi.org/10.3390/buildings14092748

Article Metrics

Further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

796k Accesses

1111 Citations

42 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

importance of case study research design

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Applied Research

Applied Research – Types, Methods and Examples

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Survey Research

Survey Research – Types, Methods, Examples

Observational Research

Observational Research – Methods and Guide

Phenomenology

Phenomenology – Methods, Examples and Guide

Textual Analysis

Textual Analysis – Types, Examples and Guide

Case Study Research

  • First Online: 29 September 2022

Cite this chapter

importance of case study research design

  • Robert E. White   ORCID: orcid.org/0000-0002-8045-164X 3 &
  • Karyn Cooper 4  

2283 Accesses

1 Citations

As a footnote to the previous chapter, there is such a beast known as the ethnographic case study. Ethnographic case study has found its way into this chapter rather than into the previous one because of grammatical considerations. Simply put, the “case study” part of the phrase is the noun (with “case” as an adjective defining what kind of study it is), while the “ethnographic” part of the phrase is an adjective defining the type of case study that is being conducted. As such, the case study becomes the methodology, while the ethnography part refers to a method, mode or approach relating to the development of the study.

The experiential account that we get from a case study or qualitative research of a similar vein is just so necessary. How things happen over time and the degree to which they are subject to personality and how they are only gradually perceived as tolerable or intolerable by the communities and the groups that are involved is so important. Robert Stake, University of Illinois, Urbana-Champaign

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bartlett, L., & Vavrus, F. (2017). Rethinking case study research . Routledge.

Google Scholar  

Bauman, Z. (2000). Liquid modernity . Polity Press.

Bhaskar, R., & Danermark, B. (2006). Metatheory, interdisciplinarity and disability research: A critical realist perspective. Scandinavian Journal of Disability Research, 8 (4), 278–297.

Article   Google Scholar  

Bulmer, M. (1986). The Chicago School of sociology: Institutionalization, diversity, and the rise of sociological research . University of Chicago Press.

Campbell, D. T. (1975). Degrees of freedom and the case study. Comparative Political Studies, 8 (1), 178–191.

Campbell, D. T., & Stanley, J. C. (1966). Experimental and quasi-experimental designs for research . Houghton Mifflin.

Chua, W. F. (1986). Radical developments in accounting thought. The Accounting Review, 61 (4), 601–632.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Sage.

Creswell, J. W., & Poth, C. N. (2017). Qualitative inquiry and research design . Sage.

Davey, L. (1991). The application of case study evaluations. Practical Assessment, Research, & Evaluation 2 (9) . Retrieved May 28, 2018, from http://PAREonline.net/getvn.asp?v=2&n=9

Demetriou, H. (2017). The case study. In E. Wilson (Ed.), School-based research: A guide for education students (pp. 124–138). Sage.

Denzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative research . Sage.

Flyvbjerg, B. (2004). Five misunderstandings about case-study research. In C. Seale, G. Gobo, J. F. Gubrium, & D. Silverman (Eds.), Qualitative research practice (pp. 420–433). Sage.

Hamel, J., Dufour, S., & Fortin, D. (1993). Case study methods . Sage.

Book   Google Scholar  

Healy, M. E. (1947). Le Play’s contribution to sociology: His method. The American Catholic Sociological Review, 8 (2), 97–110.

Johansson, R. (2003). Case study methodology. [Keynote speech]. In International Conference “Methodologies in Housing Research.” Royal Institute of Technology, Stockholm, September 2003 (pp. 1–14).

Klonoski, R. (2013). The case for case studies: Deriving theory from evidence. Journal of Business Case Studies, 9 (31), 261–266.

McDonough, J., & McDonough, S. (1997). Research methods for English language teachers . Routledge.

Merriam, S. B. (1998). Qualitative research and case study applications in education . Jossey-Bass.

Miles, M. B. (1979). Qualitative data as an attractive nuisance: The problem of analysis. Administrative Science Quarterly, 24 (4), 590–601.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage.

Mills, A. J., Durepos, G. & E. Wiebe (Eds.) (2010). What is a case study? Encyclopedia of case study research, Volumes I and II. Sage.

National Film Board of Canada. (2012, April). Here at home: In search of the real cost of homelessness . [Web documentary]. Retrieved February 9, 2020, from http://athome.nfb.ca/#/athome/home

Popper, K. (2002). Conjectures and refutations: The growth of scientific knowledge . Routledge.

Ridder, H.-G. (2017). The theory contribution of case study research designs. Business Research, 10 (2), 281–305.

Rolls, G. (2005). Classic case studies in psychology . Hodder Education.

Seawright, J., & Gerring, J. (2008). Case-Selection techniques in case study research: A menu of qualitative and quantitative options. Political Research Quarterly, 61 , 294–308.

Stake, R. E. (1995). The art of case study research . Sage.

Stake, R. E. (2005). Multiple case study analysis . Guilford Press.

Swanborn, P. G. (2010). Case study research: What, why and how? Sage.

Thomas, W. I., & Znaniecki, F. (1996). The Polish peasant in Europe and America: A classic work in immigration history . University of Illinois Press.

Yin, R. K. (1981). The case study crisis: Some answers. Administrative Science Quarterly, 26 (1), 58–65.

Yin, R. K. (1991). Advancing rigorous methodologies : A Review of “Towards Rigor in Reviews of Multivocal Literatures….”. Review of Educational Research, 61 (3), 299–305.

Yin, R. K. (1999). Enhancing the quality of case studies in health services research. Health Services Research, 34 (5) Part II, 1209–1224.

Yin, R. K. (2012). Applications of case study research (3rd ed.). Sage.

Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Sage.

Zaretsky, E. (1996). Introduction. In W. I. Thomas & F. Znaniecki (Eds.), The Polish peasant in Europe and America: A classic work in immigration history (pp. vii–xvii). University of Illinois Press.

Download references

Author information

Authors and affiliations.

Faculty of Education, St. Francis Xavier University, Antigonish, NS, Canada

Robert E. White

OISE, University of Toronto, Toronto, ON, Canada

Karyn Cooper

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Robert E. White .

A Case in Case Study Methodology

Christine Benedichte Meyer

Norwegian School of Economics and Business Administration

Meyer, C. B. (2001). A Case in Case Study Methodology. Field Methods 13 (4), 329-352.

The purpose of this article is to provide a comprehensive view of the case study process from the researcher’s perspective, emphasizing methodological considerations. As opposed to other qualitative or quantitative research strategies, such as grounded theory or surveys, there are virtually no specific requirements guiding case research. This is both the strength and the weakness of this approach. It is a strength because it allows tailoring the design and data collection procedures to the research questions. On the other hand, this approach has resulted in many poor case studies, leaving it open to criticism, especially from the quantitative field of research. This article argues that there is a particular need in case studies to be explicit about the methodological choices one makes. This implies discussing the wide range of decisions concerned with design requirements, data collection procedures, data analysis, and validity and reliability. The approach here is to illustrate these decisions through a particular case study of two mergers in the financial industry in Norway.

In the past few years, a number of books have been published that give useful guidance in conducting qualitative studies (Gummesson 1988; Cassell & Symon 1994; Miles & Huberman 1994; Creswell 1998; Flick 1998; Rossman & Rallis 1998; Bryman & Burgess 1999; Marshall & Rossman 1999; Denzin & Lincoln 2000). One approach often mentioned is the case study (Yin 1989). Case studies are widely used in organizational studies in the social science disciplines of sociology, industrial relations, and anthropology (Hartley 1994). Such a study consists of detailed investigation of one or more organizations, or groups within organizations, with a view to providing an analysis of the context and processes involved in the phenomenon under study.

As opposed to other qualitative or quantitative research strategies, such as grounded theory (Glaser and Strauss 1967) or surveys (Nachmias & Nachmias 1981), there are virtually no specific requirements guiding case research. Yin (1989) and Eisenhardt (1989) give useful insights into the case study as a research strategy, but leave most of the design decisions on the table. This is both the strength and the weakness of this approach. It is a strength because it allows tailoring the design and data collection procedures to the research questions. On the other hand, this approach has resulted in many poor case studies, leaving it open to criticism, especially from the quantitative field of research (Cook and Campbell 1979). The fact that the case study is a rather loose design implies that there are a number of choices that need to be addressed in a principled way.

Although case studies have become a common research strategy, the scope of methodology sections in articles published in journals is far too limited to give the readers a detailed and comprehensive view of the decisions taken in the particular studies, and, given the format of methodology sections, will remain so. The few books (Yin 1989, 1993; Hamel, Dufour, & Fortin 1993; Stake 1995) and book chapters on case studies (Hartley 1994; Silverman 2000) are, on the other hand, mainly normative and span a broad range of different kinds of case studies. One exception is Pettigrew (1990, 1992), who places the case study in the context of a research tradition (the Warwick process research).

Given the contextual nature of the case study and its strength in addressing contemporary phenomena in real-life contexts, I believe that there is a need for articles that provide a comprehensive overview of the case study process from the researcher’s perspective, emphasizing methodological considerations. This implies addressing the whole range of choices concerning specific design requirements, data collection procedures, data analysis, and validity and reliability.

WHY A CASE STUDY?

Case studies are tailor-made for exploring new processes or behaviors or ones that are little understood (Hartley 1994). Hence, the approach is particularly useful for responding to how and why questions about a contemporary set of events (Leonard-Barton 1990). Moreover, researchers have argued that certain kinds of information can be difficult or even impossible to tackle by means other than qualitative approaches such as the case study (Sykes 1990). Gummesson (1988:76) argues that an important advantage of case study research is the opportunity for a holistic view of the process: “The detailed observations entailed in the case study method enable us to study many different aspects, examine them in relation to each other, view the process within its total environment and also use the researchers’ capacity for ‘verstehen.’ ”

The contextual nature of the case study is illustrated in Yin’s (1993:59) definition of a case study as an empirical inquiry that “investigates a contemporary phenomenon within its real-life context and addresses a situation in which the boundaries between phenomenon and context are not clearly evident.”

The key difference between the case study and other qualitative designs such as grounded theory and ethnography (Glaser & Strauss 1967; Strauss & Corbin 1990; Gioia & Chittipeddi 1991) is that the case study is open to the use of theory or conceptual categories that guide the research and analysis of data. In contrast, grounded theory or ethnography presupposes that theoretical perspectives are grounded in and emerge from firsthand data. Hartley (1994) argues that without a theoretical framework, the researcher is in severe danger of providing description without meaning. Gummesson (1988) says that a lack of preunderstanding will cause the researcher to spend considerable time gathering basic information. This preunderstanding may arise from general knowledge such as theories, models, and concepts or from specific knowledge of institutional conditions and social patterns. According to Gummesson, the key is not to require researchers to have split but dual personalities: “Those who are able to balance on a razor’s edge using their pre-understanding without being its slave” (p. 58).

DESCRIPTION OF THE ILLUSTRATIVE STUDY

The study that will be used for illustrative purposes is a comparative and longitudinal case study of organizational integration in mergers and acquisitions taking place in Norway. The study had two purposes: (1) to identify contextual factors and features of integration that facilitated or impeded organizational integration, and (2) to study how the three dimensions of organizational integration (integration of tasks, unification of power, and integration of cultures and identities) interrelated and evolved over time. Examples of contextual factors were relative power, degree of friendliness, and economic climate. Integration features included factors such as participation, communication, and allocation of positions and functions.

Mergers and acquisitions are inherently complex. Researchers in the field have suggested that managers continuously underestimate the task of integrating the merging organizations in the postintegration process (Haspeslaph & Jemison 1991). The process of organizational integration can lead to sharp interorganizational conflict as the different top management styles, organizational and work unit cultures, systems, and other aspects of organizational life come into contact (Blake & Mounton 1985; Schweiger & Walsh 1990; Cartwright & Cooper 1993). Furthermore, cultural change in mergers and acquisitions is compounded by additional uncertainties, ambiguities, and stress inherent in the combination process (Buono & Bowditch 1989).

I focused on two combinations: one merger and one acquisition. The first case was a merger between two major Norwegian banks, Bergen Bank and DnC (to be named DnB), that started in the late 1980s. The second case was a study of a major acquisition in the insurance industry (i.e., Gjensidige’s acquisition of Forenede), that started in the early 1990s. Both combinations aimed to realize operational synergies though merging the two organizations into one entity. This implied disruption of organizational boundaries and threat to the existing power distribution and organizational cultures.

The study of integration processes in mergers and acquisitions illustrates the need to find a design that opens for exploration of sensitive issues such as power struggles between the two merging organizations. Furthermore, the inherent complexity in the integration process, involving integration of tasks, unification of power, and cultural integration stressed the need for in-depth study of the phenomenon over time. To understand the cultural integration process, the design also had to be linked to the past history of the two organizations.

DESIGN DECISIONS

In the introduction, I stressed that a case is a rather loose design that requires that a number of design choices be made. In this section, I go through the most important choices I faced in the study of organizational integration in mergers and acquisitions. These include: (1) selection of cases; (2) sampling time; (3) choosing business areas, divisions, and sites; and (4) selection of and choices regarding data collection procedures, interviews, documents, and observation.

Selection of Cases

There are several choices involved in selecting cases. First, there is the question of how many cases to include. Second, one must sample cases and decide on a unit of analysis. I will explore these issues subsequently.

Single or Multiple Cases

Case studies can involve single or multiple cases. The problem of single cases is limitations in generalizability and several information-processing biases (Eisenhardt 1989).

One way to respond to these biases is by applying a multi-case approach (Leonard-Barton 1990). Multiple cases augment external validity and help guard against observer biases. Moreover, multi-case sampling adds confidence to findings. By looking at a range of similar and contrasting cases, we can understand a single-case finding, grounding it by specifying how and where and, if possible, why it behaves as it does. (Miles & Huberman 1994)

Given these limitations of the single case study, it is desirable to include more than one case study in the study. However, the desire for depth and a pluralist perspective and tracking the cases over time implies that the number of cases must be fairly few. I chose two cases, which clearly does not support generalizability any more than does one case, but allows for comparison and contrast between the cases as well as a deeper and richer look at each case.

Originally, I planned to include a third case in the study. Due to changes in management during the initial integration process, my access to the case was limited and I left this case entirely. However, a positive side effect was that it allowed a deeper investigation of the two original cases and in hindsight turned out to be a good decision.

Sampling Cases

The logic of sampling cases is fundamentally different from statistical sampling. The logic in case studies involves theoretical sampling, in which the goal is to choose cases that are likely to replicate or extend the emergent theory or to fill theoretical categories and provide examples for polar types (Eisenhardt 1989). Hence, whereas quantitative sampling concerns itself with representativeness, qualitative sampling seeks information richness and selects the cases purposefully rather than randomly (Crabtree and Miller 1992).

The choice of cases was guided by George (1979) and Pettigrew’s (1990) recommendations. The aim was to find cases that matched the three dimensions in the dependent variable and provided variation in the contextual factors, thus representing polar cases.

To match the choice of outcome variable, organizational integration, I chose cases in which the purpose was to fully consolidate the merging parties’ operations. A full consolidation would imply considerable disruption in the organizational boundaries and would be expected to affect the task-related, political, and cultural features of the organizations. As for the contextual factors, the two cases varied in contextual factors such as relative power, friendliness, and economic climate. The DnB merger was a friendly combination between two equal partners in an unfriendly economic climate. Gjensidige’s acquisition of Forenede was, in contrast, an unfriendly and unbalanced acquisition in a friendly economic climate.

Unit of Analysis

Another way to respond to researchers’ and respondents’ biases is to have more than one unit of analysis in each case (Yin 1993). This implies that, in addition to developing contrasts between the cases, researchers can focus on contrasts within the cases (Hartley 1994). In case studies, there is a choice of a holistic or embedded design (Yin 1989). A holistic design examines the global nature of the phenomenon, whereas an embedded design also pays attention to subunit(s).

I used an embedded design to analyze the cases (i.e., within each case, I also gave attention to subunits and subprocesses). In both cases, I compared the combination processes in the various divisions and local networks. Moreover, I compared three distinct change processes in DnB: before the merger, during the initial combination, and two years after the merger. The overall and most important unit of analysis in the two cases was, however, the integration process.

Sampling Time

According to Pettigrew (1990), time sets a reference for what changes can be seen and how those changes are explained. When conducting a case study, there are several important issues to decide when sampling time. The first regards how many times data should be collected, while the second concerns when to enter the organizations. There is also a need to decide whether to collect data on a continuous basis or in distinct periods.

Number of data collections. I studied the process by collecting real time and retrospective data at two points in time, with one-and-a-half- and two-year intervals in the two cases. Collecting data twice had some interesting implications for the interpretations of the data. During the first data collection in the DnB study, for example, I collected retrospective data about the premerger and initial combination phase and real-time data about the second step in the combination process.

Although I gained a picture of how the employees experienced the second stage of the combination process, it was too early to assess the effects of this process at that stage. I entered the organization two years later and found interesting effects that I had not anticipated the first time. Moreover, it was interesting to observe how people’s attitudes toward the merger processes changed over time to be more positive and less emotional.

When to enter the organizations. It would be desirable to have had the opportunity to collect data in the precombination processes. However, researchers are rarely given access in this period due to secrecy. The emphasis in this study was to focus on the postcombination process. As such, the precombination events were classified as contextual factors. This implied that it was most important to collect real-time data after the parties had been given government approval to merge or acquire. What would have been desirable was to gain access earlier in the postcombination process. This was not possible because access had to be negotiated. Due to the change of CEO in the middle of the merger process and the need for renegotiating access, this took longer than expected.

Regarding the second case, I was restricted by the time frame of the study. In essence, I had to choose between entering the combination process as soon as governmental approval was given, or entering the organization at a later stage. In light of the previous studies in the field that have failed to go beyond the initial two years, and given the need to collect data about the cultural integration process, I chose the latter strategy. And I decided to enter the organizations at two distinct periods of time rather than on a continuous basis.

There were several reasons for this approach, some methodological and some practical. First, data collection on a continuous basis would have required use of extensive observation that I didn’t have access to, and getting access to two data collections in DnB was difficult in itself. Second, I had a stay abroad between the first and second data collection in Gjensidige. Collecting data on a continuous basis would probably have allowed for better mapping of the ongoing integration process, but the contrasts between the two different stages in the integration process that I wanted to elaborate would probably be more difficult to detect. In Table 1 I have listed the periods of time in which I collected data in the two combinations.

Sampling Business Areas, Divisions, and Sites

Even when the cases for a study have been chosen, it is often necessary to make further choices within each case to make the cases researchable. The most important criteria that set the boundaries for the study are importance or criticality, relevance, and representativeness. At the time of the data collection, my criteria for making these decisions were not as conscious as they may appear here. Rather, being restricted by time and my own capacity as a researcher, I had to limit the sites and act instinctively. In both cases, I decided to concentrate on the core businesses (criticality criterion) and left out the business units that were only mildly affected by the integration process (relevance criterion). In the choice of regional offices, I used the representativeness criterion as the number of offices widely exceeded the number of sites possible to study. In making these choices, I relied on key informants in the organizations.

SELECTION OF DATA COLLECTION PROCEDURES

The choice of data collection procedures should be guided by the research question and the choice of design. The case study approach typically combines data collection methods such as archives, interviews, questionnaires, and observations (Yin 1989). This triangulated methodology provides stronger substantiation of constructs and hypotheses. However, the choice of data collection methods is also subject to constraints in time, financial resources, and access.

I chose a combination of interviews, archives, and observation, with main emphasis on the first two. Conducting a survey was inappropriate due to the lack of established concepts and indicators. The reason for limited observation, on the other hand, was due to problems in obtaining access early in the study and time and resource constraints. In addition to choosing among several different data collection methods, there are a number of choices to be made for each individual method.

When relying on interviews as the primary data collection method, the issue of building trust between the researcher and the interviewees becomes very important. I addressed this issue by several means. First, I established a procedure of how to approach the interviewees. In most cases, I called them first, then sent out a letter explaining the key features of the project and outlining the broad issues to be addressed in the interview. In this letter, the support from the institution’s top management was also communicated. In most cases, the top management’s support of the project was an important prerequisite for the respondent’s input. Some interviewees did, however, fear that their input would be open to the top management without disguising the information source. Hence, it became important to communicate how I intended to use and store the information.

To establish trust, I also actively used my preunderstanding of the context in the first case and the phenomenon in the second case. As I built up an understanding of the cases, I used this information to gain confidence. The active use of my preunderstanding did, however, pose important challenges in not revealing too much of the research hypotheses and in balancing between asking open-ended questions and appearing knowledgeable.

There are two choices involved in conducting interviews. The first concerns the sampling of interviewees. The second is that you must decide on issues such as the structure of the interviews, use of tape recorder, and involvement of other researchers.

Sampling Interviewees

Following the desire for detailed knowledge of each case and for grasping different participant’s views the aim was, in line with Pettigrew (1990), to apply a pluralist view by describing and analyzing competing versions of reality as seen by actors in the combination processes.

I used four criteria for sampling informants. First, I drew informants from populations representing multiple perspectives. The first data collection in DnB was primarily focused on the top management level. Moreover, most middle managers in the first data collection were employed at the head offices, either in Bergen or Oslo. In the second data collection, I compensated for this skew by including eight local middle managers in the sample. The difference between the number of employees interviewed in DnB and Gjensidige was primarily due to the fact that Gjensidige has three unions, whereas DnB only has one. The distribution of interviewees is outlined in Table 2 .

The second criterion was to use multiple informants. According to Glick et al. (1990), an important advantage of using multiple informants is that the validity of information provided by one informant can be checked against that provided by other informants. Moreover, the validity of the data used by the researcher can be enhanced by resolving the discrepancies among different informants’ reports. Hence, I selected multiple respondents from each perspective.

Third, I focused on key informants who were expected to be knowledgeable about the combination process. These people included top management members, managers, and employees involved in the integration project. To validate the information from these informants, I also used a fourth criterion by selecting managers and employees who had been affected by the process but who were not involved in the project groups.

Structured versus unstructured. In line with the explorative nature of the study, the goal of the interviews was to see the research topic from the perspective of the interviewee, and to understand why he or she came to have this particular perspective. To meet this goal, King (1994:15) recommends that one have “a low degree of structure imposed on the interviewer, a preponderance of open questions, a focus on specific situations and action sequences in the world of the interviewee rather than abstractions and general opinions.” In line with these recommendations, the collection of primary data in this study consists of unstructured interviews.

Using tape recorders and involving other researchers. The majority of the interviews were tape-recorded, and I could thus concentrate fully on asking questions and responding to the interviewees’ answers. In the few interviews that were not tape-recorded, most of which were conducted in the first phase of the DnB-study, two researchers were present. This was useful as we were both able to discuss the interviews later and had feedback on the role of an interviewer.

In hindsight, however, I wish that these interviews had been tape-recorded to maintain the level of accuracy and richness of data. Hence, in the next phases of data collection, I tape-recorded all interviews, with two exceptions (people who strongly opposed the use of this device). All interviews that were tape-recorded were transcribed by me in full, which gave me closeness and a good grasp of the data.

When organizations merge or make acquisitions, there are often a vast number of documents to choose from to build up an understanding of what has happened and to use in the analyses. Furthermore, when firms make acquisitions or merge, they often hire external consultants, each of whom produces more documents. Due to time constraints, it is seldom possible to collect and analyze all these documents, and thus the researcher has to make a selection.

The choice of documentation was guided by my previous experience with merger and acquisition processes and the research question. Hence, obtaining information on the postintegration process was more important than gaining access to the due-diligence analysis. As I learned about the process, I obtained more documents on specific issues. I did not, however, gain access to all the documents I asked for, and, in some cases, documents had been lost or shredded.

The documents were helpful in a number of ways. First, and most important, they were used as inputs to the interview guide and saved me time, because I did not have to ask for facts in the interviews. They were also useful for tracing the history of the organizations and statements made by key people in the organizations. Third, the documents were helpful in counteracting the biases of the interviews. A list of the documents used in writing the cases is shown in Table 3 .

Observation

The major strength of direct observation is that it is unobtrusive and does not require direct interaction with participants (Adler and Adler 1994). Observation produces rigor when it is combined with other methods. When the researcher has access to group processes, direct observation can illuminate the discrepancies between what people said in the interviews and casual conversations and what they actually do (Pettigrew 1990).

As with interviews, there are a number of choices involved in conducting observations. Although I did some observations in the study, I used interviews as the key data collection source. Discussion in this article about observations will thus be somewhat limited. Nevertheless, I faced a number of choices in conducting observations, including type of observation, when to enter, how much observation to conduct, and which groups to observe.

The are four ways in which an observer may gather data: (1) the complete participant who operates covertly, concealing any intention to observe the setting; (2) the participant-as-observer, who forms relationships and participates in activities, but makes no secret of his or her intentions to observe events; (3) the observer-as-participant, who maintains only superficial contact with the people being studied; and (4) the complete observer, who merely stands back and eavesdrops on the proceedings (Waddington 1994).

In this study, I used the second and third ways of observing. The use of the participant-as-observer mode, on which much ethnographic research is based, was rather limited in the study. There were two reasons for this. First, I had limited time available for collecting data, and in my view interviews made more effective use of this limited time than extensive participant observation. Second, people were rather reluctant to let me observe these political and sensitive processes until they knew me better and felt I could be trusted. Indeed, I was dependent on starting the data collection before having built sufficient trust to observe key groups in the integration process. Nevertheless, Gjensidige allowed me to study two employee seminars to acquaint me with the organization. Here I admitted my role as an observer but participated fully in the activities. To achieve variation, I chose two seminars representing polar groups of employees.

As observer-as-participant, I attended a top management meeting at the end of the first data collection in Gjensidige and observed the respondents during interviews and in more informal meetings, such as lunches. All these observations gave me an opportunity to validate the data from the interviews. Observing the top management group was by far the most interesting and rewarding in terms of input.

Both DnB and Gjensidige started to open up for more extensive observation when I was about to finish the data collection. By then, I had built up the trust needed to undertake this approach. Unfortunately, this came a little late for me to take advantage of it.

DATA ANALYSIS

Published studies generally describe research sites and data-collection methods, but give little space to discuss the analysis (Eisenhardt 1989). Thus, one cannot follow how a researcher arrives at the final conclusions from a large volume of field notes (Miles and Huberman 1994).

In this study, I went through the stages by which the data were reduced and analyzed. This involved establishing the chronology, coding, writing up the data according to phases and themes, introducing organizational integration into the analysis, comparing the cases, and applying the theory. I will discuss these phases accordingly.

The first step in the analysis was to establish the chronology of the cases. To do this, I used internal and external documents. I wrote the chronologies up and included appendices in the final report.

The next step was to code the data into phases and themes reflecting the contextual factors and features of integration. For the interviews, this implied marking the text with a specific phase and a theme, and grouping the paragraphs on the same theme and phase together. I followed the same procedure in organizing the documents.

I then wrote up the cases using phases and themes to structure them. Before starting to write up the cases, I scanned the information on each theme, built up the facts and filled in with perceptions and reactions that were illustrative and representative of the data.

The documents were primarily useful in establishing the facts, but they also provided me with some perceptions and reactions that were validated in the interviews. The documents used included internal letters and newsletters as well as articles from the press. The interviews were less factual, as intended, and gave me input to assess perceptions and reactions. The limited observation was useful to validate the data from the interviews. The result of this step was two descriptive cases.

To make each case more analytical, I introduced the three dimensions of organizational integration—integration of tasks, unification of power, and cultural integration—into the analysis. This helped to focus the case and to develop a framework that could be used to compare the cases. The cases were thus structured according to phases, organizational integration, and themes reflecting the factors and features in the study.

I took all these steps to become more familiar with each case as an individual entity. According to Eisenhardt (1989:540), this is a process that “allows the unique patterns of each case to emerge before the investigators push to generalise patterns across cases. In addition it gives investigators a rich familiarity with each case which, in turn, accelerates cross-case comparison.”

The comparison between the cases constituted the next step in the analysis. Here, I used the categories from the case chapters, filled in the features and factors, and compared and contrasted the findings. The idea behind cross-case searching tactics is to force investigators to go beyond initial impressions, especially through the use of structural and diverse lenses on the data. These tactics improve the likelihood of accurate and reliable theory, that is, theory with a close fit to the data (Eisenhardt 1989).

As a result, I had a number of overall themes, concepts, and relationships that had emerged from the within-case analysis and cross-case comparisons. The next step was to compare these emergent findings with theory from the organizational field of mergers and acquisitions, as well as other relevant perspectives.

This method of generalization is known as analytical generalization. In this approach, a previously developed theory is used as a template with which to compare the empirical results of the case study (Yin 1989). This comparison of emergent concepts, theory, or hypotheses with the extant literature involves asking what it is similar to, what it contradicts, and why. The key to this process is to consider a broad range of theory (Eisenhardt 1989). On the whole, linking emergent theory to existent literature enhances the internal validity, generalizability, and theoretical level of theory-building from case research.

According to Eisenhardt (1989), examining literature that conflicts with the emergent literature is important for two reasons. First, the chance of neglecting conflicting findings is reduced. Second, “conflicting results forces researchers into a more creative, frame-breaking mode of thinking than they might otherwise be able to achieve” (p. 544). Similarly, Eisenhardt (1989) claims that literature discussing similar findings is important because it ties together underlying similarities in phenomena not normally associated with each other. The result is often a theory with a stronger internal validity, wider generalizability, and a higher conceptual level.

The analytical generalization in the study included exploring and developing the concepts and examining the relationships between the constructs. In carrying out this analytical generalization, I acted on Eisenhardt’s (1989) recommendation to use a broad range of theory. First, I compared and contrasted the findings with the organizational stream on mergers and acquisition literature. Then I discussed other relevant literatures, including strategic change, power and politics, social justice, and social identity theory to explore how these perspectives could contribute to the understanding of the findings. Finally, I discussed the findings that could not be explained either by the merger and acquisition literature or the four theoretical perspectives.

In every scientific study, questions are raised about whether the study is valid and reliable. The issues of validity and reliability in case studies are just as important as for more deductive designs, but the application is fundamentally different.

VALIDITY AND RELIABILITY

The problems of validity in qualitative studies are related to the fact that most qualitative researchers work alone in the field, they focus on the findings rather than describe how the results were reached, and they are limited in processing information (Miles and Huberman 1994).

Researchers writing about qualitative methods have questioned whether the same criteria can be used for qualitative and quantitative studies (Kirk & Miller 1986; Sykes 1990; Maxwell 1992). The problem with the validity criteria suggested in qualitative research is that there is little consistency across the articles as each author suggests a new set of criteria.

One approach in examining validity and reliability is to apply the criteria used in quantitative research. Hence, the criteria to be examined here are objectivity/intersubjectivity, construct validity, internal validity, external validity, and reliability.

Objectivity/Intersubjectivity

The basic issue of objectivity can be framed as one of relative neutrality and reasonable freedom from unacknowledged research biases (Miles & Huberman 1994). In a real-time longitudinal study, the researcher is in danger of losing objectivity and of becoming too involved with the organization, the people, and the process. Hence, Leonard-Barton (1990) claims that one may be perceived as, and may even become, an advocate rather than an observer.

According to King (1994), however, qualitative research, in seeking to describe and make sense of the world, does not require researchers to strive for objectivity and distance themselves from research participants. Indeed, to do so would make good qualitative research impossible, as the interviewer’s sensitivity to subjective aspects of his or her relationship with the interviewee is an essential part of the research process (King 1994:31).

This does not imply, however, that the issue of possible research bias can be ignored. It is just as important as in a structured quantitative interview that the findings are not simply the product of the researcher’s prejudices and prior experience. One way to guard against this bias is for the researcher to explicitly recognize his or her presuppositions and to make a conscious effort to set these aside in the analysis (Gummesson 1988). Furthermore, rival conclusions should be considered (Miles & Huberman 1994).

My experience from the first phase of the DnB study was that it was difficult to focus the questions and the analysis of the data when the research questions were too vague and broad. As such, developing a framework before collecting the data for the study was useful in guiding the collection and analysis of data. Nevertheless, it was important to be open-minded and receptive to new and surprising data. In the DnB study, for example, the positive effect of the reorganization process on the integration of cultures came as a complete surprise to me and thus needed further elaboration.

I also consciously searched for negative evidence and problems by interviewing outliers (Miles & Huberman 1994) and asking problem-oriented questions. In Gjensidige, the first interviews with the top management revealed a much more positive perception of the cultural integration process than I had expected. To explore whether this was a result of overreliance on elite informants, I continued posing problem-oriented questions to outliers and people at lower levels in the organization. Moreover, I told them about the DnB study to be explicit about my presuppositions.

Another important issue when assessing objectivity is whether other researchers can trace the interpretations made in the case studies, or what is called intersubjectivity. To deal with this issue, Miles & Huberman (1994) suggest that: (1) the study’s general methods and procedures should be described in detail, (2) one should be able to follow the process of analysis, (3) conclusions should be explicitly linked with exhibits of displayed data, and (4) the data from the study should be made available for reanalysis by others.

In response to these requirements, I described the study’s data collection procedures and processing in detail. Then, the primary data were displayed in the written report in the form of quotations and extracts from documents to support and illustrate the interpretations of the data. Because the study was written up in English, I included the Norwegian text in a separate appendix. Finally, all the primary data from the study were accessible for a small group of distinguished researchers.

Construct Validity

Construct validity refers to whether there is substantial evidence that the theoretical paradigm correctly corresponds to observation (Kirk & Miller 1986). In this form of validity, the issue is the legitimacy of the application of a given concept or theory to established facts.

The strength of qualitative research lies in the flexible and responsive interaction between the interviewer and the respondents (Sykes 1990). Thus, meaning can be probed, topics covered easily from a number of angles, and questions made clear for respondents. This is an advantage for exploring the concepts (construct or theoretical validity) and the relationships between them (internal validity). Similarly, Hakim (1987) says the great strength of qualitative research is the validity of data obtained because individuals are interviewed in sufficient detail for the results to be taken as true, correct, and believable reports of their views and experiences.

Construct validity can be strengthened by applying a longitudinal multicase approach, triangulation, and use of feedback loops. The advantage of applying a longitudinal approach is that one gets the opportunity to test sensitivity of construct measures to the passage of time. Leonard-Barton (1990), for example, found that one of her main constructs, communicability, varied across time and relative to different groups of users. Thus, the longitudinal study aided in defining the construct more precisely. By using more than one case study, one can validate stability of construct across situations (Leonard-Barton 1990). Since my study only consists of two case studies, the opportunity to test stability of constructs across cases is somewhat limited. However, the use of more than one unit of analysis helps to overcome this limitation.

Construct validity is strengthened by the use of multiple sources of evidence to build construct measures, which define the construct and distinguish it from other constructs. These multiple sources of evidence can include multiple viewpoints within and across the data sources. My study responds to these requirements in its sampling of interviewees and uses of multiple data sources.

Use of feedback loops implies returning to interviewees with interpretations and developing theory and actively seeking contradictions in data (Crabtree & Miller 1992; King 1994). In DnB, the written report had to be approved by the bank’s top management after the first data collection. Apart from one minor correction, the bank had no objections to the established facts. In their comments on my analysis, some of the top managers expressed the view that the political process had been overemphasized, and that the CEO’s role in initiating a strategic process was undervalued. Hence, an important objective in the second data collection was to explore these comments further. Moreover, the report was not as positive as the management had hoped for, and negotiations had to be conducted to publish the report. The result of these negotiations was that publication of the report was postponed one-and-a-half years.

The experiences from the first data collection in the DnB had some consequences. I was more cautious and brought up the problems of confidentiality and the need to publish at the outset of the Gjensidige study. Also, I had to struggle to get access to the DnB case for the second data collection and some of the information I asked for was not released. At Gjensidige, I sent a preliminary draft of the case chapter to the corporation’s top management for comments, in addition to having second interviews with a small number of people. Beside testing out the factual description, these sessions gave me the opportunity to test out the theoretical categories established as a result of the within-case analysis.

Internal Validity

Internal validity concerns the validity of the postulated relationships among the concepts. The main problem of internal validity as a criterion in qualitative research is that it is often not open to scrutiny. According to Sykes (1990), the researcher can always provide a plausible account and, with careful editing, may ensure its coherence. Recognition of this problem has led to calls for better documentation of the processes of data collection, the data itself, and the interpretative contribution of the researcher. The discussion of how I met these requirements was outlined in the section on objectivity/subjectivity above.

However, there are some advantages in using qualitative methods, too. First, the flexible and responsive methods of data collection allow cross-checking and amplification of information from individual units as it is generated. Respondents’ opinions and understandings can be thoroughly explored. The internal validity results from strategies that eliminate ambiguity and contradiction, filling in detail and establishing strong connections in data.

Second, the longitudinal study enables one to track cause and effect. Moreover, it can make one aware of intervening variables (Leonard-Barton 1990). Eisenhardt (1989:542) states, “Just as hypothesis testing research an apparent relationship may simply be a spurious correlation or may reflect the impact of some third variable on each of the other two. Therefore, it is important to discover the underlying reasons for why the relationship exists.”

Generalizability

According to Mitchell (1983), case studies are not based on statistical inference. Quite the contrary, the inferring process turns exclusively on the theoretically necessary links among the features in the case study. The validity of the extrapolation depends not on the typicality or representativeness of the case but on the cogency of the theoretical reasoning. Hartley (1994:225) claims, “The detailed knowledge of the organization and especially the knowledge about the processes underlying the behaviour and its context can help to specify the conditions under which behaviour can be expected to occur. In other words, the generalisation is about theoretical propositions not about populations.”

Generalizability is normally based on the assumption that this theory may be useful in making sense of similar persons or situations (Maxwell 1992). One way to increase the generalizability is to apply a multicase approach (Leonard-Barton 1990). The advantage of this approach is that one can replicate the findings from one case study to another. This replication logic is similar to that used on multiple experiments (Yin 1993).

Given the choice of two case studies, the generalizability criterion is not supported in this study. Through the discussion of my choices, I have tried to show that I had to strike a balance between the need for depth and mapping changes over time and the number of cases. In doing so, I deliberately chose to provide a deeper and richer look at each case, allowing the reader to make judgments about the applicability rather than making a case for generalizability.

Reliability

Reliability focuses on whether the process of the study is consistent and reasonably stable over time and across researchers and methods (Miles & Huberman 1994). In the context of qualitative research, reliability is concerned with two questions (Sykes 1990): Could the same study carried out by two researchers produce the same findings? and Could a study be repeated using the same researcher and respondents to yield the same findings?

The problem of reliability in qualitative research is that differences between replicated studies using different researchers are to be expected. However, while it may not be surprising that different researchers generate different findings and reach different conclusions, controlling for reliability may still be relevant. Kirk and Miller’s (1986:311) definition takes into account the particular relationship between the researcher’s orientation, the generation of data, and its interpretation:

For reliability to be calculated, it is incumbent on the scientific investigator to document his or her procedure. This must be accomplished at such a level of abstraction that the loci of decisions internal to the project are made apparent. The curious public deserves to know how the qualitative researcher prepares him or herself for the endeavour, and how the data is collected and analysed.

The study addresses these requirements by discussing my point of departure regarding experience and framework, the sampling and data collection procedures, and data analysis.

Case studies often lack academic rigor and are, as such, regarded as inferior to more rigorous methods where there are more specific guidelines for collecting and analyzing data. These criticisms stress that there is a need to be very explicit about the choices one makes and the need to justify them.

One reason why case studies are criticized may be that researchers disagree about the definition and the purpose of carrying out case studies. Case studies have been regarded as a design (Cook and Campbell 1979), as a qualitative methodology (Cassell and Symon 1994), as a particular data collection procedure (Andersen 1997), and as a research strategy (Yin 1989). Furthermore, the purpose for carrying out case studies is unclear. Some regard case studies as supplements to more rigorous qualitative studies to be carried out in the early stage of the research process; others claim that it can be used for multiple purposes and as a research strategy in its own right (Gummesson 1988; Yin 1989). Given this unclear status, researchers need to be very clear about their interpretation of the case study and the purpose of carrying out the study.

This article has taken Yin’s (1989) definition of the case study as a research strategy as a starting point and argued that the choice of the case study should be guided by the research question(s). In the illustrative study, I used a case study strategy because of a need to explore sensitive, ill-defined concepts in depth, over time, taking into account the context and history of the mergers and the existing knowledge about the phenomenon. However, the choice of a case study strategy extended rather than limited the number of decisions to be made. In Schramm’s (1971, cited in Yin 1989:22–23) words, “The essence of a case study, the central tendency among all types of case study, is that it tries to illuminate a decision or set of decisions, why they were taken, how they were implemented, and with what result.”

Hence, the purpose of this article has been to illustrate the wide range of decisions that need to be made in the context of a particular case study and to discuss the methodological considerations linked to these decisions. I argue that there is a particular need in case studies to be explicit about the methodological choices one makes and that these choices can be best illustrated through a case study of the case study strategy.

As in all case studies, however, there are limitations to the generalizability of using one particular case study for illustrative purposes. As such, the strength of linking the methodological considerations to a specific context and phenomenon also becomes a weakness. However, I would argue that the questions raised in this article are applicable to many case studies, but that the answers are very likely to vary. The design choices are shown in Table 4 . Hence, researchers choosing a longitudinal, comparative case study need to address the same set of questions with regard to design, data collection procedures, and analysis, but they are likely to come up with other conclusions, given their different research questions.

Adler, P. A., and P. Adler. 1994. Observational techniques. In Handbook of qualitative research, edited by N. K. Denzin and Y. S. Lincoln, 377–92. London: Sage.

Andersen, S. S. 1997. Case-studier og generalisering: Forskningsstrategi og design (Case studies and generalization: Research strategy and design). Bergen, Norway: Fagbokforlaget.

Blake, R. R., and J. S. Mounton. 1985. How to achieve integration on the human side of the merger. Organizational Dynamics 13 (3): 41–56.

Bryman, A., and R. G. Burgess. 1999. Qualitative research. London: Sage.

Buono, A. F., and J. L. Bowditch. 1989. The human side of mergers and acquisitions. San Francisco: Jossey-Bass.

Cartwright, S., and C. L. Cooper. 1993. The psychological impact of mergers and acquisitions on the individual: A study of building society managers. Human Relations 46 (3): 327–47.

Cassell, C., and G. Symon, eds. 1994. Qualitative methods in organizational research: A practical guide. London: Sage.

Cook, T. D., and D. T. Campbell. 1979. Quasi experimentation: Design & analysis issues for field settings. Boston: Houghton Mifflin.

Crabtree, B. F., and W. L. Miller. 1992. Primary care research: A multimethod typology and qualitative road map. In Doing qualitative research: Methods for primary care, edited by B. F. Crabtree and W. L. Miller, 3–28. Vol. 3. Thousand Oaks, CA: Sage.

Creswell, J. W. 1998. Qualitative inquiry and research design: Choosing among five traditions. Thousand Oaks, CA: Sage.

Denzin, N. K., and L. S. Lincoln. 2000. Handbook of qualitative research. London: Sage.

Eisenhardt, K. M. 1989. Building theories from case study research. Academy of Management Review 14 (4): 532–50.

Flick, U. 1998. An introduction to qualitative research. London: Sage.

George, A. L. 1979. Case studies and theory development: The method of structured, focused comparison. In Diplomacy: New approaches in history, theory, and policy, edited by P. G. Lauren, 43–68. New York: Free Press.

Gioia, D. A., and K. Chittipeddi. 1991. Sensemaking and sensegiving in strategic change initiation. Strategic Management Journal 12:433–48.

Glaser, B. G., and A. L. Strauss. 1967. The discovery of grounded theory: Strategies for qualitative research. Chicago: Aldine.

Glick, W. H, G. P. Huber, C. C. Miller, D. H. Doty, and K. M. Sutcliffe. 1990. Studying changes in organizational design and effectiveness: Retrospective event histories and periodic assessments. Organization Science 1 (3): 293–312.

Gummesson, E. 1988. Qualitative methods in management research. Lund, Norway: Studentlitteratur, Chartwell-Bratt.

Hakim, C. 1987. Research design. Strategies and choices in the design of social research. Boston: Unwin Hyman.

Hamel, J., S. Dufour, and D. Fortin. 1993. Case study methods. London: Sage.

Hartley, J. F. 1994. Case studies in organizational research. In Qualitative methods in organizational research: A practical guide, edited by C. Cassell and G. Symon, 209–29. London: Sage.

Haspeslaph, P., and D. B. Jemison. 1991. The challenge of renewal through acquisitions. Planning Review 19 (2): 27–32.

King, N. 1994. The qualitative research interview. In Qualitative methods in organizational research: A practical guide, edited by C. Cassell and G. Symon, 14–36. London: Sage.

Kirk, J., and M. L. Miller. 1986. Reliability and validity in qualitative research. Qualitative Research Methods Series 1. London: Sage.

Leonard-Barton, D. 1990.Adual methodology for case studies: Synergistic use of a longitudinal single site with replicated multiple sites. Organization Science 1 (3): 248–66.

Marshall, C., and G. B. Rossman. 1999. Designing qualitative research. London: Sage.

Maxwell, J. A. 1992. Understanding and validity in qualitative research. Harvard Educational Review 62 (3): 279–99.

Miles, M. B., and A. M. Huberman. 1994. Qualitative data analysis. 2d ed. London: Sage.

Mitchell, J. C. 1983. Case and situation analysis. Sociology Review 51 (2): 187–211.

Nachmias, C., and D. Nachmias. 1981. Research methods in the social sciences. London: Edward Arnhold.

Pettigrew, A. M. 1990. Longitudinal field research on change: Theory and practice. Organization Science 1 (3): 267–92.

___. (1992). The character and significance of strategic process research. Strategic Management Journal 13:5–16.

Rossman, G. B., and S. F. Rallis. 1998. Learning in the field: An introduction to qualitative research. Thousand Oaks, CA: Sage.

Schramm, W. 1971. Notes on case studies for instructional media projects. Working paper for Academy of Educational Development, Washington DC.

Schweiger, D. M., and J. P. Walsh. 1990. Mergers and acquisitions: An interdisciplinary view. In Research in personnel and human resource management, edited by G. R. Ferris and K. M. Rowland, 41–107. Greenwich, CT: JAI.

Silverman, D. 2000. Doing qualitative research: A practical handbook. London: Sage.

Stake, R. E. 1995. The art of case study research. London: Sage.

Strauss, A. L., and J. Corbin. 1990. Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.

Sykes, W. 1990. Validity and reliability in qualitative market research: A review of the literature. Journal of the Market Research Society 32 (3): 289–328.

Waddington, D. 1994. Participant observation. In Qualitative methods in organizational research, edited by C. Cassell and G. Symon, 107–22. London: Sage.

Yin, R. K. 1989. Case study research: Design and methods. Applied Social Research Series, Vol. 5. London: Sage.

___. 1993. Applications of case study research. Applied Social Research Series, Vol. 34. London: Sage.

Christine Benedichte Meyer is an associate professor in the Department of Strategy and Management in the Norwegian School of Economics and Business Administration, Bergen-Sandviken, Norway. Her research interests are mergers and acquisitions, strategic change, and qualitative research. Recent publications include: “Allocation Processes in Mergers and Acquisitions: An Organisational Justice Perspective” (British Journal of Management 2001) and “Motives for Acquisitions in the Norwegian Financial Industry” (CEMS Business Review 1997).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

White, R.E., Cooper, K. (2022). Case Study Research. In: Qualitative Research in the Post-Modern Era. Springer, Cham. https://doi.org/10.1007/978-3-030-85124-8_7

Download citation

DOI : https://doi.org/10.1007/978-3-030-85124-8_7

Published : 29 September 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-85126-2

Online ISBN : 978-3-030-85124-8

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Case Study | Definition, Examples & Methods

Case Study | Definition, Examples & Methods

Published on 5 May 2022 by Shona McCombes . Revised on 30 January 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organisation, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating, and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyse the case.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park in the US
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race, and age? Case studies of Deliveroo and Uber drivers in London

Prevent plagiarism, run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

Unlike quantitative or experimental research, a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

If you find yourself aiming to simultaneously investigate and solve an issue, consider conducting action research . As its name suggests, action research conducts research and takes action at the same time, and is highly iterative and flexible. 

However, you can also choose a more common or representative case to exemplify a particular category, experience, or phenomenon.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews, observations, and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data .

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis, with separate sections or chapters for the methods , results , and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyse its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, January 30). Case Study | Definition, Examples & Methods. Scribbr. Retrieved 2 September 2024, from https://www.scribbr.co.uk/research-methods/case-studies/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, correlational research | guide, design & examples, a quick guide to experimental design | 5 steps & examples, descriptive research design | definition, methods & examples.

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

importance of case study research design

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

5 Benefits of Learning Through the Case Study Method

Harvard Business School MBA students learning through the case study method

  • 28 Nov 2023

While several factors make HBS Online unique —including a global Community and real-world outcomes —active learning through the case study method rises to the top.

In a 2023 City Square Associates survey, 74 percent of HBS Online learners who also took a course from another provider said HBS Online’s case method and real-world examples were better by comparison.

Here’s a primer on the case method, five benefits you could gain, and how to experience it for yourself.

Access your free e-book today.

What Is the Harvard Business School Case Study Method?

The case study method , or case method , is a learning technique in which you’re presented with a real-world business challenge and asked how you’d solve it. After working through it yourself and with peers, you’re told how the scenario played out.

HBS pioneered the case method in 1922. Shortly before, in 1921, the first case was written.

“How do you go into an ambiguous situation and get to the bottom of it?” says HBS Professor Jan Rivkin, former senior associate dean and chair of HBS's master of business administration (MBA) program, in a video about the case method . “That skill—the skill of figuring out a course of inquiry to choose a course of action—that skill is as relevant today as it was in 1921.”

Originally developed for the in-person MBA classroom, HBS Online adapted the case method into an engaging, interactive online learning experience in 2014.

In HBS Online courses , you learn about each case from the business professional who experienced it. After reviewing their videos, you’re prompted to take their perspective and explain how you’d handle their situation.

You then get to read peers’ responses, “star” them, and comment to further the discussion. Afterward, you learn how the professional handled it and their key takeaways.

Learn more about HBS Online's approach to the case method in the video below, and subscribe to our YouTube channel for more.

HBS Online’s adaptation of the case method incorporates the famed HBS “cold call,” in which you’re called on at random to make a decision without time to prepare.

“Learning came to life!” said Sheneka Balogun , chief administration officer and chief of staff at LeMoyne-Owen College, of her experience taking the Credential of Readiness (CORe) program . “The videos from the professors, the interactive cold calls where you were randomly selected to participate, and the case studies that enhanced and often captured the essence of objectives and learning goals were all embedded in each module. This made learning fun, engaging, and student-friendly.”

If you’re considering taking a course that leverages the case study method, here are five benefits you could experience.

5 Benefits of Learning Through Case Studies

1. take new perspectives.

The case method prompts you to consider a scenario from another person’s perspective. To work through the situation and come up with a solution, you must consider their circumstances, limitations, risk tolerance, stakeholders, resources, and potential consequences to assess how to respond.

Taking on new perspectives not only can help you navigate your own challenges but also others’. Putting yourself in someone else’s situation to understand their motivations and needs can go a long way when collaborating with stakeholders.

2. Hone Your Decision-Making Skills

Another skill you can build is the ability to make decisions effectively . The case study method forces you to use limited information to decide how to handle a problem—just like in the real world.

Throughout your career, you’ll need to make difficult decisions with incomplete or imperfect information—and sometimes, you won’t feel qualified to do so. Learning through the case method allows you to practice this skill in a low-stakes environment. When facing a real challenge, you’ll be better prepared to think quickly, collaborate with others, and present and defend your solution.

3. Become More Open-Minded

As you collaborate with peers on responses, it becomes clear that not everyone solves problems the same way. Exposing yourself to various approaches and perspectives can help you become a more open-minded professional.

When you’re part of a diverse group of learners from around the world, your experiences, cultures, and backgrounds contribute to a range of opinions on each case.

On the HBS Online course platform, you’re prompted to view and comment on others’ responses, and discussion is encouraged. This practice of considering others’ perspectives can make you more receptive in your career.

“You’d be surprised at how much you can learn from your peers,” said Ratnaditya Jonnalagadda , a software engineer who took CORe.

In addition to interacting with peers in the course platform, Jonnalagadda was part of the HBS Online Community , where he networked with other professionals and continued discussions sparked by course content.

“You get to understand your peers better, and students share examples of businesses implementing a concept from a module you just learned,” Jonnalagadda said. “It’s a very good way to cement the concepts in one's mind.”

4. Enhance Your Curiosity

One byproduct of taking on different perspectives is that it enables you to picture yourself in various roles, industries, and business functions.

“Each case offers an opportunity for students to see what resonates with them, what excites them, what bores them, which role they could imagine inhabiting in their careers,” says former HBS Dean Nitin Nohria in the Harvard Business Review . “Cases stimulate curiosity about the range of opportunities in the world and the many ways that students can make a difference as leaders.”

Through the case method, you can “try on” roles you may not have considered and feel more prepared to change or advance your career .

5. Build Your Self-Confidence

Finally, learning through the case study method can build your confidence. Each time you assume a business leader’s perspective, aim to solve a new challenge, and express and defend your opinions and decisions to peers, you prepare to do the same in your career.

According to a 2022 City Square Associates survey , 84 percent of HBS Online learners report feeling more confident making business decisions after taking a course.

“Self-confidence is difficult to teach or coach, but the case study method seems to instill it in people,” Nohria says in the Harvard Business Review . “There may well be other ways of learning these meta-skills, such as the repeated experience gained through practice or guidance from a gifted coach. However, under the direction of a masterful teacher, the case method can engage students and help them develop powerful meta-skills like no other form of teaching.”

Your Guide to Online Learning Success | Download Your Free E-Book

How to Experience the Case Study Method

If the case method seems like a good fit for your learning style, experience it for yourself by taking an HBS Online course. Offerings span eight subject areas, including:

  • Business essentials
  • Leadership and management
  • Entrepreneurship and innovation
  • Digital transformation
  • Finance and accounting
  • Business in society

No matter which course or credential program you choose, you’ll examine case studies from real business professionals, work through their challenges alongside peers, and gain valuable insights to apply to your career.

Are you interested in discovering how HBS Online can help advance your career? Explore our course catalog and download our free guide —complete with interactive workbook sections—to determine if online learning is right for you and which course to take.

importance of case study research design

About the Author

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach
and describe frequencies, averages, and correlations about relationships between variables

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.
Type of design Purpose and characteristics
Experimental relationships effect on a
Quasi-experimental )
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Questionnaires Interviews
)

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

importance of case study research design

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity
) )

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved September 2, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Pediatr Investig
  • v.3(4); 2019 Dec

Logo of pedinvest

Clinical research study designs: The essentials

Ambika g. chidambaram.

1 Children's Hospital of Philadelphia, Philadelphia Pennsylvania, USA

Maureen Josephson

In clinical research, our aim is to design a study which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods. The conclusions derived from a research study can either improve health care or result in inadvertent harm to patients. Hence, this requires a well‐designed clinical research study that rests on a strong foundation of a detailed methodology and governed by ethical clinical principles. The purpose of this review is to provide the readers an overview of the basic study designs and its applicability in clinical research.

Introduction

In clinical research, our aim is to design a study, which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods that can be translated to the “real world” setting. 1 Before choosing a study design, one must establish aims and objectives of the study, and choose an appropriate target population that is most representative of the population being studied. The conclusions derived from a research study can either improve health care or result in inadvertent harm to patients. Hence, this requires a well‐designed clinical research study that rests on a strong foundation of a detailed methodology and is governed by ethical principles. 2

From an epidemiological standpoint, there are two major types of clinical study designs, observational and experimental. 3 Observational studies are hypothesis‐generating studies, and they can be further divided into descriptive and analytic. Descriptive observational studies provide a description of the exposure and/or the outcome, and analytic observational studies provide a measurement of the association between the exposure and the outcome. Experimental studies, on the other hand, are hypothesis testing studies. It involves an intervention that tests the association between the exposure and outcome. Each study design is different, and so it would be important to choose a design that would most appropriately answer the question in mind and provide the most valuable information. We will be reviewing each study design in detail (Figure  1 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g001.jpg

Overview of clinical research study designs

Observational study designs

Observational studies ask the following questions: what, who, where and when. There are many study designs that fall under the umbrella of descriptive study designs, and they include, case reports, case series, ecologic study, cross‐sectional study, cohort study and case‐control study (Figure  2 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g002.jpg

Classification of observational study designs

Case reports and case series

Every now and then during clinical practice, we come across a case that is atypical or ‘out of the norm’ type of clinical presentation. This atypical presentation is usually described as case reports which provides a detailed and comprehensive description of the case. 4 It is one of the earliest forms of research and provides an opportunity for the investigator to describe the observations that make a case unique. There are no inferences obtained and therefore cannot be generalized to the population which is a limitation. Most often than not, a series of case reports make a case series which is an atypical presentation found in a group of patients. This in turn poses the question for a new disease entity and further queries the investigator to look into mechanistic investigative opportunities to further explore. However, in a case series, the cases are not compared to subjects without the manifestations and therefore it cannot determine which factors in the description are unique to the new disease entity.

Ecologic study

Ecological studies are observational studies that provide a description of population group characteristics. That is, it describes characteristics to all individuals within a group. For example, Prentice et al 5 measured incidence of breast cancer and per capita intake of dietary fat, and found a correlation that higher per capita intake of dietary fat was associated with an increased incidence of breast cancer. But the study does not conclude specifically which subjects with breast cancer had a higher dietary intake of fat. Thus, one of the limitations with ecologic study designs is that the characteristics are attributed to the whole group and so the individual characteristics are unknown.

Cross‐sectional study

Cross‐sectional studies are study designs used to evaluate an association between an exposure and outcome at the same time. It can be classified under either descriptive or analytic, and therefore depends on the question being answered by the investigator. Since, cross‐sectional studies are designed to collect information at the same point of time, this provides an opportunity to measure prevalence of the exposure or the outcome. For example, a cross‐sectional study design was adopted to estimate the global need for palliative care for children based on representative sample of countries from all regions of the world and all World Bank income groups. 6 The limitation of cross‐sectional study design is that temporal association cannot be established as the information is collected at the same point of time. If a study involves a questionnaire, then the investigator can ask questions to onset of symptoms or risk factors in relation to onset of disease. This would help in obtaining a temporal sequence between the exposure and outcome. 7

Case‐control study

Case‐control studies are study designs that compare two groups, such as the subjects with disease (cases) to the subjects without disease (controls), and to look for differences in risk factors. 8 This study is used to study risk factors or etiologies for a disease, especially if the disease is rare. Thus, case‐control studies can also be hypothesis testing studies and therefore can suggest a causal relationship but cannot prove. It is less expensive and less time‐consuming than cohort studies (described in section “Cohort study”). An example of a case‐control study was performed in Pakistan evaluating the risk factors for neonatal tetanus. They retrospectively reviewed a defined cohort for cases with and without neonatal tetanus. 9 They found a strong association of the application of ghee (clarified butter) as a risk factor for neonatal tetanus. Although this suggests a causal relationship, cause cannot be proven by this methodology (Figure  3 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g003.jpg

Case‐control study design

One of the limitations of case‐control studies is that they cannot estimate prevalence of a disease accurately as a proportion of cases and controls are studied at a time. Case‐control studies are also prone to biases such as recall bias, as the subjects are providing information based on their memory. Hence, the subjects with disease are likely to remember the presence of risk factors compared to the subjects without disease.

One of the aspects that is often overlooked is the selection of cases and controls. It is important to select the cases and controls appropriately to obtain a meaningful and scientifically sound conclusion and this can be achieved by implementing matching. Matching is defined by Gordis et al as ‘the process of selecting the controls so that they are similar to the cases in certain characteristics such as age, race, sex, socioeconomic status and occupation’ 7 This would help identify risk factors or probable etiologies that are not due to differences between the cases and controls.

Cohort study

Cohort studies are study designs that compare two groups, such as the subjects with exposure/risk factor to the subjects without exposure/risk factor, for differences in incidence of outcome/disease. Most often, cohort study designs are used to study outcome(s) from a single exposure/risk factor. Thus, cohort studies can also be hypothesis testing studies and can infer and interpret a causal relationship between an exposure and a proposed outcome, but cannot establish it (Figure  4 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g004.jpg

Cohort study design

Cohort studies can be classified as prospective and retrospective. 7 Prospective cohort studies follow subjects from presence of risk factors/exposure to development of disease/outcome. This could take up to years before development of disease/outcome, and therefore is time consuming and expensive. On the other hand, retrospective cohort studies identify a population with and without the risk factor/exposure based on past records and then assess if they had developed the disease/outcome at the time of study. Thus, the study design for prospective and retrospective cohort studies are similar as we are comparing populations with and without exposure/risk factor to development of outcome/disease.

Cohort studies are typically chosen as a study design when the suspected exposure is known and rare, and the incidence of disease/outcome in the exposure group is suspected to be high. The choice between prospective and retrospective cohort study design would depend on the accuracy and reliability of the past records regarding the exposure/risk factor.

Some of the biases observed with cohort studies include selection bias and information bias. Some individuals who have the exposure may refuse to participate in the study or would be lost to follow‐up, and in those instances, it becomes difficult to interpret the association between an exposure and outcome. Also, if the information is inaccurate when past records are used to evaluate for exposure status, then again, the association between the exposure and outcome becomes difficult to interpret.

Case‐control studies based within a defined cohort

Case‐control studies based within a defined cohort is a form of study design that combines some of the features of a cohort study design and a case‐control study design. When a defined cohort is embedded in a case‐control study design, all the baseline information collected before the onset of disease like interviews, surveys, blood or urine specimens, then the cohort is followed onset of disease. One of the advantages of following the above design is that it eliminates recall bias as the information regarding risk factors is collected before onset of disease. Case‐control studies based within a defined cohort can be further classified into two types: Nested case‐control study and Case‐cohort study.

Nested case‐control study

A nested case‐control study consists of defining a cohort with suspected risk factors and assigning a control within a cohort to the subject who develops the disease. 10 Over a period, cases and controls are identified and followed as per the investigator's protocol. Hence, the case and control are matched on calendar time and length of follow‐up. When this study design is implemented, it is possible for the control that was selected early in the study to develop the disease and become a case in the latter part of the study.

Case‐cohort Study

A case‐cohort study is similar to a nested case‐control study except that there is a defined sub‐cohort which forms the groups of individuals without the disease (control), and the cases are not matched on calendar time or length of follow‐up with the control. 11 With these modifications, it is possible to compare different disease groups with the same sub‐cohort group of controls and eliminates matching between the case and control. However, these differences will need to be accounted during analysis of results.

Experimental study design

The basic concept of experimental study design is to study the effect of an intervention. In this study design, the risk factor/exposure of interest/treatment is controlled by the investigator. Therefore, these are hypothesis testing studies and can provide the most convincing demonstration of evidence for causality. As a result, the design of the study requires meticulous planning and resources to provide an accurate result.

The experimental study design can be classified into 2 groups, that is, controlled (with comparison) and uncontrolled (without comparison). 1 In the group without controls, the outcome is directly attributed to the treatment received in one group. This fails to prove if the outcome was truly due to the intervention implemented or due to chance. This can be avoided if a controlled study design is chosen which includes a group that does not receive the intervention (control group) and a group that receives the intervention (intervention/experiment group), and therefore provide a more accurate and valid conclusion.

Experimental study designs can be divided into 3 broad categories: clinical trial, community trial, field trial. The specifics of each study design are explained below (Figure  5 ).

An external file that holds a picture, illustration, etc.
Object name is PED4-3-245-g005.jpg

Experimental study designs

Clinical trial

Clinical trials are also known as therapeutic trials, which involve subjects with disease and are placed in different treatment groups. It is considered a gold standard approach for epidemiological research. One of the earliest clinical trial studies was performed by James Lind et al in 1747 on sailors with scurvy. 12 Lind divided twelve scorbutic sailors into six groups of two. Each group received the same diet, in addition to a quart of cider (group 1), twenty‐five drops of elixir of vitriol which is sulfuric acid (group 2), two spoonfuls of vinegar (group 3), half a pint of seawater (group 4), two oranges and one lemon (group 5), and a spicy paste plus a drink of barley water (group 6). The group who ate two oranges and one lemon had shown the most sudden and visible clinical effects and were taken back at the end of 6 days as being fit for duty. During Lind's time, this was not accepted but was shown to have similar results when repeated 47 years later in an entire fleet of ships. Based on the above results, in 1795 lemon juice was made a required part of the diet of sailors. Thus, clinical trials can be used to evaluate new therapies, such as new drug or new indication, new drug combination, new surgical procedure or device, new dosing schedule or mode of administration, or a new prevention therapy.

While designing a clinical trial, it is important to select the population that is best representative of the general population. Therefore, the results obtained from the study can be generalized to the population from which the sample population was selected. It is also as important to select appropriate endpoints while designing a trial. Endpoints need to be well‐defined, reproducible, clinically relevant and achievable. The types of endpoints include continuous, ordinal, rates and time‐to‐event, and it is typically classified as primary, secondary or tertiary. 2 An ideal endpoint is a purely clinical outcome, for example, cure/survival, and thus, the clinical trials will become very long and expensive trials. Therefore, surrogate endpoints are used that are biologically related to the ideal endpoint. Surrogate endpoints need to be reproducible, easily measured, related to the clinical outcome, affected by treatment and occurring earlier than clinical outcome. 2

Clinical trials are further divided into randomized clinical trial, non‐randomized clinical trial, cross‐over clinical trial and factorial clinical trial.

Randomized clinical trial

A randomized clinical trial is also known as parallel group randomized trials or randomized controlled trials. Randomized clinical trials involve randomizing subjects with similar characteristics to two groups (or multiple groups): the group that receives the intervention/experimental therapy and the other group that received the placebo (or standard of care). 13 This is typically performed by using a computer software, manually or by other methods. Hence, we can measure the outcomes and efficacy of the intervention/experimental therapy being studied without bias as subjects have been randomized to their respective groups with similar baseline characteristics. This type of study design is considered gold standard for epidemiological research. However, this study design is generally not applicable to rare and serious disease process as it would unethical to treat that group with a placebo. Please see section “Randomization” for detailed explanation regarding randomization and placebo.

Non‐randomized clinical trial

A non‐randomized clinical trial involves an approach to selecting controls without randomization. With this type of study design a pattern is usually adopted, such as, selection of subjects and controls on certain days of the week. Depending on the approach adopted, the selection of subjects becomes predictable and therefore, there is bias with regards to selection of subjects and controls that would question the validity of the results obtained.

Historically controlled studies can be considered as a subtype of non‐randomized clinical trial. In this study design subtype, the source of controls is usually adopted from the past, such as from medical records and published literature. 1 The advantages of this study design include being cost‐effective, time saving and easily accessible. However, since this design depends on already collected data from different sources, the information obtained may not be accurate, reliable, lack uniformity and/or completeness as well. Though historically controlled studies maybe easier to conduct, the disadvantages will need to be taken into account while designing a study.

Cross‐over clinical trial

In cross‐over clinical trial study design, there are two groups who undergoes the same intervention/experiment at different time periods of the study. That is, each group serves as a control while the other group is undergoing the intervention/experiment. 14 Depending on the intervention/experiment, a ‘washout’ period is recommended. This would help eliminate residuals effects of the intervention/experiment when the experiment group transitions to be the control group. Hence, the outcomes of the intervention/experiment will need to be reversible as this type of study design would not be possible if the subject is undergoing a surgical procedure.

Factorial trial

A factorial trial study design is adopted when the researcher wishes to test two different drugs with independent effects on the same population. Typically, the population is divided into 4 groups, the first with drug A, the second with drug B, the third with drug A and B, and the fourth with neither drug A nor drug B. The outcomes for drug A are compared to those on drug A, drug A and B and to those who were on drug B and neither drug A nor drug B. 15 The advantages of this study design that it saves time and helps to study two different drugs on the same study population at the same time. However, this study design would not be applicable if either of the drugs or interventions overlaps with each other on modes of action or effects, as the results obtained would not attribute to a particular drug or intervention.

Community trial

Community trials are also known as cluster‐randomized trials, involve groups of individuals with and without disease who are assigned to different intervention/experiment groups. Hence, groups of individuals from a certain area, such as a town or city, or a certain group such as school or college, will undergo the same intervention/experiment. 16 Hence, the results will be obtained at a larger scale; however, will not be able to account for inter‐individual and intra‐individual variability.

Field trial

Field trials are also known as preventive or prophylactic trials, and the subjects without the disease are placed in different preventive intervention groups. 16 One of the hypothetical examples for a field trial would be to randomly assign to groups of a healthy population and to provide an intervention to a group such as a vitamin and following through to measure certain outcomes. Hence, the subjects are monitored over a period of time for occurrence of a particular disease process.

Overview of methodologies used within a study design

Randomization.

Randomization is a well‐established methodology adopted in research to prevent bias due to subject selection, which may impact the result of the intervention/experiment being studied. It is one of the fundamental principles of an experimental study designs and ensures scientific validity. It provides a way to avoid predicting which subjects are assigned to a certain group and therefore, prevent bias on the final results due to subject selection. This also ensures comparability between groups as most baseline characteristics are similar prior to randomization and therefore helps to interpret the results regarding the intervention/experiment group without bias.

There are various ways to randomize and it can be as simple as a ‘flip of a coin’ to use computer software and statistical methods. To better describe randomization, there are three types of randomization: simple randomization, block randomization and stratified randomization.

Simple randomization

In simple randomization, the subjects are randomly allocated to experiment/intervention groups based on a constant probability. That is, if there are two groups A and B, the subject has a 0.5 probability of being allocated to either group. This can be performed in multiple ways, and one of which being as simple as a ‘flip of a coin’ to using random tables or numbers. 17 The advantage of using this methodology is that it eliminates selection bias. However, the disadvantage with this methodology is that an imbalance in the number allocated to each group as well as the prognostic factors between groups. Hence, it is more challenging in studies with a small sample size.

Block randomization

In block randomization, the subjects of similar characteristics are classified into blocks. The aim of block randomization is to balance the number of subjects allocated to each experiment/intervention group. For example, let's assume that there are four subjects in each block, and two of the four subjects in each block will be randomly allotted to each group. Therefore, there will be two subjects in one group and two subjects in the other group. 17 The disadvantage with this methodology is that there is still a component of predictability in the selection of subjects and the randomization of prognostic factors is not performed. However, it helps to control the balance between the experiment/intervention groups.

Stratified randomization

In stratified randomization, the subjects are defined based on certain strata, which are covariates. 18 For example, prognostic factors like age can be considered as a covariate, and then the specified population can be randomized within each age group related to an experiment/intervention group. The advantage with this methodology is that it enables comparability between experiment/intervention groups and thus makes result analysis more efficient. But, with this methodology the covariates will need to be measured and determined before the randomization process. The sample size will help determine the number of strata that would need to be chosen for a study.

Blinding is a methodology adopted in a study design to intentionally not provide information related to the allocation of the groups to the subject participants, investigators and/or data analysts. 19 The purpose of blinding is to decrease influence associated with the knowledge of being in a particular group on the study result. There are 3 forms of blinding: single‐blinded, double‐blinded and triple‐blinded. 1 In single‐blinded studies, otherwise called as open‐label studies, the subject participants are not revealed which group that they have been allocated to. However, the investigator and data analyst will be aware of the allocation of the groups. In double‐blinded studies, both the study participants and the investigator will be unaware of the group to which they were allocated to. Double‐blinded studies are typically used in clinical trials to test the safety and efficacy of the drugs. In triple‐blinded studies, the subject participants, investigators and data analysts will not be aware of the group allocation. Thus, triple‐blinded studies are more difficult and expensive to design but the results obtained will exclude confounding effects from knowledge of group allocation.

Blinding is especially important in studies where subjective response are considered as outcomes. This is because certain responses can be modified based on the knowledge of the experiment group that they are in. For example, a group allocated in the non‐intervention group may not feel better as they are not getting the treatment, or an investigator may pay more attention to the group receiving treatment, and thereby potentially affecting the final results. However, certain treatments cannot be blinded such as surgeries or if the treatment group requires an assessment of the effect of intervention such as quitting smoking.

Placebo is defined in the Merriam‐Webster dictionary as ‘an inert or innocuous substance used especially in controlled experiments testing the efficacy of another substance (such as drug)’. 20 A placebo is typically used in a clinical research study to evaluate the safety and efficacy of a drug/intervention. This is especially useful if the outcome measured is subjective. In clinical drug trials, a placebo is typically a drug that resembles the drug to be tested in certain characteristics such as color, size, shape and taste, but without the active substance. This helps to measure effects of just taking the drug, such as pain relief, compared to the drug with the active substance. If the effect is positive, for example, improvement in mood/pain, then it is called placebo effect. If the effect is negative, for example, worsening of mood/pain, then it is called nocebo effect. 21

The ethics of placebo‐controlled studies is complex and remains a debate in the medical research community. According to the Declaration of Helsinki on the use of placebo released in October 2013, “The benefits, risks, burdens and effectiveness of a new intervention must be tested against those of the best proven intervention(s), except in the following circumstances:

Where no proven intervention exists, the use of placebo, or no intervention, is acceptable; or

Where for compelling and scientifically sound methodological reasons the use of any intervention less effective than the best proven one, the use of placebo, or no intervention is necessary to determine the efficacy or safety of an intervention and the patients who receive any intervention less effective than the best proven one, placebo, or no intervention will not be subject to additional risks of serious or irreversible harm as a result of not receiving the best proven intervention.

Extreme care must be taken to avoid abuse of this option”. 22

Hence, while designing a research study, both the scientific validity and ethical aspects of the study will need to be thoroughly evaluated.

Bias has been defined as “any systematic error in the design, conduct or analysis of a study that results in a mistaken estimate of an exposure's effect on the risk of disease”. 23 There are multiple types of biases and so, in this review we will focus on the following types: selection bias, information bias and observer bias. Selection bias is when a systematic error is committed while selecting subjects for the study. Selection bias will affect the external validity of the study if the study subjects are not representative of the population being studied and therefore, the results of the study will not be generalizable. Selection bias will affect the internal validity of the study if the selection of study subjects in each group is influenced by certain factors, such as, based on the treatment of the group assigned. One of the ways to decrease selection bias is to select the study population that would representative of the population being studied, or to randomize (discussed in section “Randomization”).

Information bias is when a systematic error is committed while obtaining data from the study subjects. This can be in the form of recall bias when subject is required to remember certain events from the past. Typically, subjects with the disease tend to remember certain events compared to subjects without the disease. Observer bias is a systematic error when the study investigator is influenced by the certain characteristics of the group, that is, an investigator may pay closer attention to the group receiving the treatment versus the group not receiving the treatment. This may influence the results of the study. One of the ways to decrease observer bias is to use blinding (discussed in section “Blinding”).

Thus, while designing a study it is important to take measure to limit bias as much as possible so that the scientific validity of the study results is preserved to its maximum.

Overview of drug development in the United States of America

Now that we have reviewed the various clinical designs, clinical trials form a major part in development of a drug. In the United States, the Food and Drug Administration (FDA) plays an important role in getting a drug approved for clinical use. It includes a robust process that involves four different phases before a drug can be made available to the public. Phase I is conducted to determine a safe dose. The study subjects consist of normal volunteers and/or subjects with disease of interest, and the sample size is typically small and not more than 30 subjects. The primary endpoint consists of toxicity and adverse events. Phase II is conducted to evaluate of safety of dose selected in Phase I, to collect preliminary information on efficacy and to determine factors to plan a randomized controlled trial. The study subjects consist of subjects with disease of interest and the sample size is also small but more that Phase I (40–100 subjects). The primary endpoint is the measure of response. Phase III is conducted as a definitive trial to prove efficacy and establish safety of a drug. Phase III studies are randomized controlled trials and depending on the drug being studied, it can be placebo‐controlled, equivalence, superiority or non‐inferiority trials. The study subjects consist of subjects with disease of interest, and the sample size is typically large but no larger than 300 to 3000. Phase IV is performed after a drug is approved by the FDA and it is also called the post‐marketing clinical trial. This phase is conducted to evaluate new indications, to determine safety and efficacy in long‐term follow‐up and new dosing regimens. This phase helps to detect rare adverse events that would not be picked up during phase III studies and decrease in the delay in the release of the drug in the market. Hence, this phase depends heavily on voluntary reporting of side effects and/or adverse events by physicians, non‐physicians or drug companies. 2

We have discussed various clinical research study designs in this comprehensive review. Though there are various designs available, one must consider various ethical aspects of the study. Hence, each study will require thorough review of the protocol by the institutional review board before approval and implementation.

CONFLICT OF INTEREST

Chidambaram AG, Josephson M. Clinical research study designs: The essentials . Pediatr Invest . 2019; 3 :245‐252. 10.1002/ped4.12166 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

importance of case study research design

The Ultimate Guide to Qualitative Research - Part 1: The Basics

importance of case study research design

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

importance of case study research design

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

importance of case study research design

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

importance of case study research design

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

importance of case study research design

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

importance of case study research design

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

importance of case study research design

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

importance of case study research design

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

Case study research: opening up research opportunities

RAUSP Management Journal

ISSN : 2531-0488

Article publication date: 30 December 2019

Issue publication date: 3 March 2020

The case study approach has been widely used in management studies and the social sciences more generally. However, there are still doubts about when and how case studies should be used. This paper aims to discuss this approach, its various uses and applications, in light of epistemological principles, as well as the criteria for rigor and validity.

Design/methodology/approach

This paper discusses the various concepts of case and case studies in the methods literature and addresses the different uses of cases in relation to epistemological principles and criteria for rigor and validity.

The use of this research approach can be based on several epistemologies, provided the researcher attends to the internal coherence between method and epistemology, or what the authors call “alignment.”

Originality/value

This study offers a number of implications for the practice of management research, as it shows how the case study approach does not commit the researcher to particular data collection or interpretation methods. Furthermore, the use of cases can be justified according to multiple epistemological orientations.

  • Epistemology

Takahashi, A.R.W. and Araujo, L. (2020), "Case study research: opening up research opportunities", RAUSP Management Journal , Vol. 55 No. 1, pp. 100-111. https://doi.org/10.1108/RAUSP-05-2019-0109

Emerald Publishing Limited

Copyright © 2019, Adriana Roseli Wünsch Takahashi and Luis Araujo.

Published in RAUSP Management Journal . Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

1. Introduction

The case study as a research method or strategy brings us to question the very term “case”: after all, what is a case? A case-based approach places accords the case a central role in the research process ( Ragin, 1992 ). However, doubts still remain about the status of cases according to different epistemologies and types of research designs.

Despite these doubts, the case study is ever present in the management literature and represents the main method of management research in Brazil ( Coraiola, Sander, Maccali, & Bulgacov, 2013 ). Between 2001 and 2010, 2,407 articles (83.14 per cent of qualitative research) were published in conferences and management journals as case studies (Takahashi & Semprebom, 2013 ). A search on Spell.org.br for the term “case study” under title, abstract or keywords, for the period ranging from January 2010 to July 2019, yielded 3,040 articles published in the management field. Doing research using case studies, allows the researcher to immerse him/herself in the context and gain intensive knowledge of a phenomenon, which in turn demands suitable methodological principles ( Freitas et al. , 2017 ).

Our objective in this paper is to discuss notions of what constitutes a case and its various applications, considering epistemological positions as well as criteria for rigor and validity. The alignment between these dimensions is put forward as a principle advocating coherence among all phases of the research process.

This article makes two contributions. First, we suggest that there are several epistemological justifications for using case studies. Second, we show that the quality and rigor of academic research with case studies are directly related to the alignment between epistemology and research design rather than to choices of specific forms of data collection or analysis. The article is structured as follows: the following four sections discuss concepts of what is a case, its uses, epistemological grounding as well as rigor and quality criteria. The brief conclusions summarize the debate and invite the reader to delve into the literature on the case study method as a way of furthering our understanding of contemporary management phenomena.

2. What is a case study?

The debate over what constitutes a case in social science is a long-standing one. In 1988, Howard Becker and Charles Ragin organized a workshop to discuss the status of the case as a social science method. As the discussion was inconclusive, they posed the question “What is a case?” to a select group of eight social scientists in 1989, and later to participants in a symposium on the subject. Participants were unable to come up with a consensual answer. Since then, we have witnessed that further debates and different answers have emerged. The original question led to an even broader issue: “How do we, as social scientists, produce results and seem to know what we know?” ( Ragin, 1992 , p. 16).

An important step that may help us start a reflection on what is a case is to consider the phenomena we are looking at. To do that, we must know something about what we want to understand and how we might study it. The answer may be a causal explanation, a description of what was observed or a narrative of what has been experienced. In any case, there will always be a story to be told, as the choice of the case study method demands an answer to what the case is about.

A case may be defined ex ante , prior to the start of the research process, as in Yin’s (2015) classical definition. But, there is no compelling reason as to why cases must be defined ex ante . Ragin (1992 , p. 217) proposed the notion of “casing,” to indicate that what the case is emerges from the research process:

Rather than attempt to delineate the many different meanings of the term “case” in a formal taxonomy, in this essay I offer instead a view of cases that follows from the idea implicit in many of the contributions – that concocting cases is a varied but routine social scientific activity. […] The approach of this essay is that this activity, which I call “casing”, should be viewed in practical terms as a research tactic. It is selectively invoked at many different junctures in the research process, usually to resolve difficult issues in linking ideas and evidence.

In other words, “casing” is tied to the researcher’s practice, to the way he/she delimits or declares a case as a significant outcome of a process. In 2013, Ragin revisited the 1992 concept of “casing” and explored its multiple possibilities of use, paying particular attention to “negative cases.”

According to Ragin (1992) , a case can be centered on a phenomenon or a population. In the first scenario, cases are representative of a phenomenon, and are selected based on what can be empirically observed. The process highlights different aspects of cases and obscures others according to the research design, and allows for the complexity, specificity and context of the phenomenon to be explored. In the alternative, population-focused scenario, the selection of cases precedes the research. Both positive and negative cases are considered in exploring a phenomenon, with the definition of the set of cases dependent on theory and the central objective to build generalizations. As a passing note, it is worth mentioning here that a study of multiple cases requires a definition of the unit of analysis a priori . Otherwise, it will not be possible to make cross-case comparisons.

These two approaches entail differences that go beyond the mere opposition of quantitative and qualitative data, as a case often includes both types of data. Thus, the confusion about how to conceive cases is associated with Ragin’s (1992) notion of “small vs large N,” or McKeown’s (1999) “statistical worldview” – the notion that relevant findings are only those that can be made about a population based on the analysis of representative samples. In the same vein, Byrne (2013) argues that we cannot generate nomothetic laws that apply in all circumstances, periods and locations, and that no social science method can claim to generate invariant laws. According to the same author, case studies can help us understand that there is more than one ideographic variety and help make social science useful. Generalizations still matter, but they should be understood as part of defining the research scope, and that scope points to the limitations of knowledge produced and consumed in concrete time and space.

Thus, what defines the orientation and the use of cases is not the mere choice of type of data, whether quantitative or qualitative, but the orientation of the study. A statistical worldview sees cases as data units ( Byrne, 2013 ). Put differently, there is a clear distinction between statistical and qualitative worldviews; the use of quantitative data does not by itself means that the research is (quasi) statistical, or uses a deductive logic:

Case-based methods are useful, and represent, among other things, a way of moving beyond a useless and destructive tradition in the social sciences that have set quantitative and qualitative modes of exploration, interpretation, and explanation against each other ( Byrne, 2013 , p. 9).

Other authors advocate different understandings of what a case study is. To some, it is a research method, to others it is a research strategy ( Creswell, 1998 ). Sharan Merrian and Robert Yin, among others, began to write about case study research as a methodology in the 1980s (Merrian, 2009), while authors such as Eisenhardt (1989) called it a research strategy. Stake (2003) sees the case study not as a method, but as a choice of what to be studied, the unit of study. Regardless of their differences, these authors agree that case studies should be restricted to a particular context as they aim to provide an in-depth knowledge of a given phenomenon: “A case study is an in-depth description and analysis of a bounded system” (Merrian, 2009, p. 40). According to Merrian, a qualitative case study can be defined by the process through which the research is carried out, by the unit of analysis or the final product, as the choice ultimately depends on what the researcher wants to know. As a product of research, it involves the analysis of a given entity, phenomenon or social unit.

Thus, whether it is an organization, an individual, a context or a phenomenon, single or multiple, one must delimit it, and also choose between possible types and configurations (Merrian, 2009; Yin, 2015 ). A case study may be descriptive, exploratory, explanatory, single or multiple ( Yin, 2015 ); intrinsic, instrumental or collective ( Stake, 2003 ); and confirm or build theory ( Eisenhardt, 1989 ).

both went through the same process of implementing computer labs intended for the use of information and communication technologies in 2007;

both took part in the same regional program (Paraná Digital); and

they shared similar characteristics regarding location (operation in the same neighborhood of a city), number of students, number of teachers and technicians and laboratory sizes.

However, the two institutions differed in the number of hours of program use, with one of them displaying a significant number of hours/use while the other showed a modest number, according to secondary data for the period 2007-2013. Despite the context being similar and the procedures for implementing the technology being the same, the mechanisms of social integration – an idiosyncratic factor of each institution – were different in each case. This explained differences in their use of resource, processes of organizational learning and capacity to absorb new knowledge.

On the other hand, multiple case studies seek evidence in different contexts and do not necessarily require direct comparisons ( Stake, 2003 ). Rather, there is a search for patterns of convergence and divergence that permeate all the cases, as the same issues are explored in every case. Cases can be added progressively until theoretical saturation is achieved. An example is of a study that investigated how entrepreneurial opportunity and management skills were developed through entrepreneurial learning ( Zampier & Takahashi, 2014 ). The authors conducted nine case studies, based on primary and secondary data, with each one analyzed separately, so a search for patterns could be undertaken. The convergence aspects found were: the predominant way of transforming experience into knowledge was exploitation; managerial skills were developed through by taking advantages of opportunities; and career orientation encompassed more than one style. As for divergence patterns: the experience of success and failure influenced entrepreneurs differently; the prevailing rationality logic of influence was different; and the combination of styles in career orientation was diverse.

A full discussion of choice of case study design is outside the scope of this article. For the sake of illustration, we make a brief mention to other selection criteria such as the purpose of the research, the state of the art of the research theme, the time and resources involved and the preferred epistemological position of the researcher. In the next section, we look at the possibilities of carrying out case studies in line with various epistemological traditions, as the answers to the “what is a case?” question reveal varied methodological commitments as well as diverse epistemological and ontological positions ( Ragin, 2013 ).

3. Epistemological positioning of case study research

Ontology and epistemology are like skin, not a garment to be occasionally worn ( Marsh & Furlong, 2002 ). According to these authors, ontology and epistemology guide the choice of theory and method because they cannot or should not be worn as a garment. Hence, one must practice philosophical “self-knowledge” to recognize one’s vision of what the world is and of how knowledge of that world is accessed and validated. Ontological and epistemological positions are relevant in that they involve the positioning of the researcher in social science and the phenomena he or she chooses to study. These positions do not tend to vary from one project to another although they can certainly change over time for a single researcher.

Ontology is the starting point from which the epistemological and methodological positions of the research arise ( Grix, 2002 ). Ontology expresses a view of the world, what constitutes reality, nature and the image one has of social reality; it is a theory of being ( Marsh & Furlong, 2002 ). The central question is the nature of the world out there regardless of our ability to access it. An essentialist or foundationalist ontology acknowledges that there are differences that persist over time and these differences are what underpin the construction of social life. An opposing, anti-foundationalist position presumes that the differences found are socially constructed and may vary – i.e. they are not essential but specific to a given culture at a given time ( Marsh & Furlong, 2002 ).

Epistemology is centered around a theory of knowledge, focusing on the process of acquiring and validating knowledge ( Grix, 2002 ). Positivists look at social phenomena as a world of causal relations where there is a single truth to be accessed and confirmed. In this tradition, case studies test hypotheses and rely on deductive approaches and quantitative data collection and analysis techniques. Scholars in the field of anthropology and observation-based qualitative studies proposed alternative epistemologies based on notions of the social world as a set of manifold and ever-changing processes. In management studies since the 1970s, the gradual acceptance of qualitative research has generated a diverse range of research methods and conceptions of the individual and society ( Godoy, 1995 ).

The interpretative tradition, in direct opposition to positivism, argues that there is no single objective truth to be discovered about the social world. The social world and our knowledge of it are the product of social constructions. Thus, the social world is constituted by interactions, and our knowledge is hermeneutic as the world does not exist independent of our knowledge ( Marsh & Furlong, 2002 ). The implication is that it is not possible to access social phenomena through objective, detached methods. Instead, the interaction mechanisms and relationships that make up social constructions have to be studied. Deductive approaches, hypothesis testing and quantitative methods are not relevant here. Hermeneutics, on the other hand, is highly relevant as it allows the analysis of the individual’s interpretation, of sayings, texts and actions, even though interpretation is always the “truth” of a subject. Methods such as ethnographic case studies, interviews and observations as data collection techniques should feed research designs according to interpretivism. It is worth pointing out that we are to a large extent, caricaturing polar opposites rather characterizing a range of epistemological alternatives, such as realism, conventionalism and symbolic interactionism.

If diverse ontologies and epistemologies serve as a guide to research approaches, including data collection and analysis methods, and if they should be regarded as skin rather than clothing, how does one make choices regarding case studies? What are case studies, what type of knowledge they provide and so on? The views of case study authors are not always explicit on this point, so we must delve into their texts to glean what their positions might be.

Two of the cited authors in case study research are Robert Yin and Kathleen Eisenhardt. Eisenhardt (1989) argues that a case study can serve to provide a description, test or generate a theory, the latter being the most relevant in contributing to the advancement of knowledge in a given area. She uses terms such as populations and samples, control variables, hypotheses and generalization of findings and even suggests an ideal number of case studies to allow for theory construction through replication. Although Eisenhardt includes observation and interview among her recommended data collection techniques, the approach is firmly anchored in a positivist epistemology:

Third, particularly in comparison with Strauss (1987) and Van Maanen (1988), the process described here adopts a positivist view of research. That is, the process is directed toward the development of testable hypotheses and theory which are generalizable across settings. In contrast, authors like Strauss and Van Maanen are more concerned that a rich, complex description of the specific cases under study evolve and they appear less concerned with development of generalizable theory ( Eisenhardt, 1989 , p. 546).

This position attracted a fair amount of criticism. Dyer & Wilkins (1991) in a critique of Eisenhardt’s (1989) article focused on the following aspects: there is no relevant justification for the number of cases recommended; it is the depth and not the number of cases that provides an actual contribution to theory; and the researcher’s purpose should be to get closer to the setting and interpret it. According to the same authors, discrepancies from prior expectations are also important as they lead researchers to reflect on existing theories. Eisenhardt & Graebner (2007 , p. 25) revisit the argument for the construction of a theory from multiple cases:

A major reason for the popularity and relevance of theory building from case studies is that it is one of the best (if not the best) of the bridges from rich qualitative evidence to mainstream deductive research.

Although they recognize the importance of single-case research to explore phenomena under unique or rare circumstances, they reaffirm the strength of multiple case designs as it is through them that better accuracy and generalization can be reached.

Likewise, Robert Yin emphasizes the importance of variables, triangulation in the search for “truth” and generalizable theoretical propositions. Yin (2015 , p. 18) suggests that the case study method may be appropriate for different epistemological orientations, although much of his work seems to invoke a realist epistemology. Authors such as Merrian (2009) and Stake (2003) suggest an interpretative version of case studies. Stake (2003) looks at cases as a qualitative option, where the most relevant criterion of case selection should be the opportunity to learn and understand a phenomenon. A case is not just a research method or strategy; it is a researcher’s choice about what will be studied:

Even if my definition of case study was agreed upon, and it is not, the term case and study defy full specification (Kemmis, 1980). A case study is both a process of inquiry about the case and the product of that inquiry ( Stake, 2003 , p. 136).

Later, Stake (2003 , p. 156) argues that:

[…] the purpose of a case report is not to represent the world, but to represent the case. […] The utility of case research to practitioners and policy makers is in its extension of experience.

Still according to Stake (2003 , pp. 140-141), to do justice to complex views of social phenomena, it is necessary to analyze the context and relate it to the case, to look for what is peculiar rather than common in cases to delimit their boundaries, to plan the data collection looking for what is common and unusual about facts, what could be valuable whether it is unique or common:

Reflecting upon the pertinent literature, I find case study methodology written largely by people who presume that the research should contribute to scientific generalization. The bulk of case study work, however, is done by individuals who have intrinsic interest in the case and little interest in the advance of science. Their designs aim the inquiry toward understanding of what is important about that case within its own world, which is seldom the same as the worlds of researchers and theorists. Those designs develop what is perceived to be the case’s own issues, contexts, and interpretations, its thick descriptions . In contrast, the methods of instrumental case study draw the researcher toward illustrating how the concerns of researchers and theorists are manifest in the case. Because the critical issues are more likely to be know in advance and following disciplinary expectations, such a design can take greater advantage of already developed instruments and preconceived coding schemes.

The aforementioned authors were listed to illustrate differences and sometimes opposing positions on case research. These differences are not restricted to a choice between positivism and interpretivism. It is worth noting that Ragin’s (2013 , p. 523) approach to “casing” is compatible with the realistic research perspective:

In essence, to posit cases is to engage in ontological speculation regarding what is obdurately real but only partially and indirectly accessible through social science. Bringing a realist perspective to the case question deepens and enriches the dialogue, clarifying some key issues while sweeping others aside.

cases are actual entities, reflecting their operations of real causal mechanism and process patterns;

case studies are interactive processes and are open to revisions and refinements; and

social phenomena are complex, contingent and context-specific.

Ragin (2013 , p. 532) concludes:

Lurking behind my discussion of negative case, populations, and possibility analysis is the implication that treating cases as members of given (and fixed) populations and seeking to infer the properties of populations may be a largely illusory exercise. While demographers have made good use of the concept of population, and continue to do so, it is not clear how much the utility of the concept extends beyond their domain. In case-oriented work, the notion of fixed populations of cases (observations) has much less analytic utility than simply “the set of relevant cases,” a grouping that must be specified or constructed by the researcher. The demarcation of this set, as the work of case-oriented researchers illustrates, is always tentative, fluid, and open to debate. It is only by casing social phenomena that social scientists perceive the homogeneity that allows analysis to proceed.

In summary, case studies are relevant and potentially compatible with a range of different epistemologies. Researchers’ ontological and epistemological positions will guide their choice of theory, methodologies and research techniques, as well as their research practices. The same applies to the choice of authors describing the research method and this choice should be coherent. We call this research alignment , an attribute that must be judged on the internal coherence of the author of a study, and not necessarily its evaluator. The following figure illustrates the interrelationship between the elements of a study necessary for an alignment ( Figure 1 ).

In addition to this broader aspect of the research as a whole, other factors should be part of the researcher’s concern, such as the rigor and quality of case studies. We will look into these in the next section taking into account their relevance to the different epistemologies.

4. Rigor and quality in case studies

Traditionally, at least in positivist studies, validity and reliability are the relevant quality criteria to judge research. Validity can be understood as external, internal and construct. External validity means identifying whether the findings of a study are generalizable to other studies using the logic of replication in multiple case studies. Internal validity may be established through the theoretical underpinning of existing relationships and it involves the use of protocols for the development and execution of case studies. Construct validity implies defining the operational measurement criteria to establish a chain of evidence, such as the use of multiple sources of evidence ( Eisenhardt, 1989 ; Yin, 2015 ). Reliability implies conducting other case studies, instead of just replicating results, to minimize the errors and bias of a study through case study protocols and the development of a case database ( Yin, 2015 ).

Several criticisms have been directed toward case studies, such as lack of rigor, lack of generalization potential, external validity and researcher bias. Case studies are often deemed to be unreliable because of a lack of rigor ( Seuring, 2008 ). Flyvbjerg (2006 , p. 219) addresses five misunderstandings about case-study research, and concludes that:

[…] a scientific discipline without a large number of thoroughly executed case studies is a discipline without systematic production of exemplars, and a discipline without exemplars is an ineffective one.

theoretical knowledge is more valuable than concrete, practical knowledge;

the case study cannot contribute to scientific development because it is not possible to generalize on the basis of an individual case;

the case study is more useful for generating rather than testing hypotheses;

the case study contains a tendency to confirm the researcher’s preconceived notions; and

it is difficult to summarize and develop general propositions and theories based on case studies.

These criticisms question the validity of the case study as a scientific method and should be corrected.

The critique of case studies is often framed from the standpoint of what Ragin (2000) labeled large-N research. The logic of small-N research, to which case studies belong, is different. Cases benefit from depth rather than breadth as they: provide theoretical and empirical knowledge; contribute to theory through propositions; serve not only to confirm knowledge, but also to challenge and overturn preconceived notions; and the difficulty in summarizing their conclusions is because of the complexity of the phenomena studies and not an intrinsic limitation of the method.

Thus, case studies do not seek large-scale generalizations as that is not their purpose. And yet, this is a limitation from a positivist perspective as there is an external reality to be “apprehended” and valid conclusions to be extracted for an entire population. If positivism is the epistemology of choice, the rigor of a case study can be demonstrated by detailing the criteria used for internal and external validity, construct validity and reliability ( Gibbert & Ruigrok, 2010 ; Gibbert, Ruigrok, & Wicki, 2008 ). An example can be seen in case studies in the area of information systems, where there is a predominant orientation of positivist approaches to this method ( Pozzebon & Freitas, 1998 ). In this area, rigor also involves the definition of a unit of analysis, type of research, number of cases, selection of sites, definition of data collection and analysis procedures, definition of the research protocol and writing a final report. Creswell (1998) presents a checklist for researchers to assess whether the study was well written, if it has reliability and validity and if it followed methodological protocols.

In case studies with a non-positivist orientation, rigor can be achieved through careful alignment (coherence among ontology, epistemology, theory and method). Moreover, the concepts of validity can be understood as concern and care in formulating research, research development and research results ( Ollaik & Ziller, 2012 ), and to achieve internal coherence ( Gibbert et al. , 2008 ). The consistency between data collection and interpretation, and the observed reality also help these studies meet coherence and rigor criteria. Siggelkow (2007) argues that a case study should be persuasive and that even a single case study may be a powerful example to contest a widely held view. To him, the value of a single case study or studies with few cases can be attained by their potential to provide conceptual insights and coherence to the internal logic of conceptual arguments: “[…] a paper should allow a reader to see the world, and not just the literature, in a new way” ( Siggelkow, 2007 , p. 23).

Interpretative studies should not be justified by criteria derived from positivism as they are based on a different ontology and epistemology ( Sandberg, 2005 ). The rejection of an interpretive epistemology leads to the rejection of an objective reality: “As Bengtsson points out, the life-world is the subjects’ experience of reality, at the same time as it is objective in the sense that it is an intersubjective world” ( Sandberg, 2005 , p. 47). In this event, how can one demonstrate what positivists call validity and reliability? What would be the criteria to justify knowledge as truth, produced by research in this epistemology? Sandberg (2005 , p. 62) suggests an answer based on phenomenology:

This was demonstrated first by explicating life-world and intentionality as the basic assumptions underlying the interpretative research tradition. Second, based on those assumptions, truth as intentional fulfillment, consisting of perceived fulfillment, fulfillment in practice, and indeterminate fulfillment, was proposed. Third, based on the proposed truth constellation, communicative, pragmatic, and transgressive validity and reliability as interpretative awareness were presented as the most appropriate criteria for justifying knowledge produced within interpretative approach. Finally, the phenomenological epoché was suggested as a strategy for achieving these criteria.

From this standpoint, the research site must be chosen according to its uniqueness so that one can obtain relevant insights that no other site could provide ( Siggelkow, 2007 ). Furthermore, the view of what is being studied is at the center of the researcher’s attention to understand its “truth,” inserted in a given context.

The case researcher is someone who can reduce the probability of misinterpretations by analyzing multiple perceptions, searches for data triangulation to check for the reliability of interpretations ( Stake, 2003 ). It is worth pointing out that this is not an option for studies that specifically seek the individual’s experience in relation to organizational phenomena.

In short, there are different ways of seeking rigor and quality in case studies, depending on the researcher’s worldview. These different forms pervade everything from the research design, the choice of research questions, the theory or theories to look at a phenomenon, research methods, the data collection and analysis techniques, to the type and style of research report produced. Validity can also take on different forms. While positivism is concerned with validity of the research question and results, interpretivism emphasizes research processes without neglecting the importance of the articulation of pertinent research questions and the sound interpretation of results ( Ollaik & Ziller, 2012 ). The means to achieve this can be diverse, such as triangulation (of multiple theories, multiple methods, multiple data sources or multiple investigators), pre-tests of data collection instrument, pilot case, study protocol, detailed description of procedures such as field diary in observations, researcher positioning (reflexivity), theoretical-empirical consistency, thick description and transferability.

5. Conclusions

The central objective of this article was to discuss concepts of case study research, their potential and various uses, taking into account different epistemologies as well as criteria of rigor and validity. Although the literature on methodology in general and on case studies in particular, is voluminous, it is not easy to relate this approach to epistemology. In addition, method manuals often focus on the details of various case study approaches which confuse things further.

Faced with this scenario, we have tried to address some central points in this debate and present various ways of using case studies according to the preferred epistemology of the researcher. We emphasize that this understanding depends on how a case is defined and the particular epistemological orientation that underpins that conceptualization. We have argued that whatever the epistemological orientation is, it is possible to meet appropriate criteria of research rigor and quality provided there is an alignment among the different elements of the research process. Furthermore, multiple data collection techniques can be used in in single or multiple case study designs. Data collection techniques or the type of data collected do not define the method or whether cases should be used for theory-building or theory-testing.

Finally, we encourage researchers to consider case study research as one way to foster immersion in phenomena and their contexts, stressing that the approach does not imply a commitment to a particular epistemology or type of research, such as qualitative or quantitative. Case study research allows for numerous possibilities, and should be celebrated for that diversity rather than pigeon-holed as a monolithic research method.

The interrelationship between the building blocks of research

Byrne , D. ( 2013 ). Case-based methods: Why We need them; what they are; how to do them . Byrne D. In D Byrne. and C.C Ragin (Eds.), The SAGE handbooks of Case-Based methods , pp. 1 – 10 . London : SAGE Publications Inc .

Creswell , J. W. ( 1998 ). Qualitative inquiry and research design: choosing among five traditions , London : Sage Publications .

Coraiola , D. M. , Sander , J. A. , Maccali , N. & Bulgacov , S. ( 2013 ). Estudo de caso . In A. R. W. Takahashi , (Ed.), Pesquisa qualitativa em administração: Fundamentos, métodos e usos no Brasil , pp. 307 – 341 . São Paulo : Atlas .

Dyer , W. G. , & Wilkins , A. L. ( 1991 ). Better stories, not better constructs, to generate better theory: a rejoinder to Eisenhardt . The Academy of Management Review , 16 , 613 – 627 .

Eisenhardt , K. ( 1989 ). Building theory from case study research . Academy of Management Review , 14 , 532 – 550 .

Eisenhardt , K. M. , & Graebner , M. E. ( 2007 ). Theory building from cases: Opportunities and challenges . Academy of Management Journal , 50 , 25 – 32 .

Flyvbjerg , B. ( 2006 ). Five misunderstandings about case-study research . Qualitative Inquiry , 12 , 219 – 245 .

Freitas , J. S. , Ferreira , J. C. A. , Campos , A. A. R. , Melo , J. C. F. , Cheng , L. C. , & Gonçalves , C. A. ( 2017 ). Methodological roadmapping: a study of centering resonance analysis . RAUSP Management Journal , 53 , 459 – 475 .

Gibbert , M. , Ruigrok , W. , & Wicki , B. ( 2008 ). What passes as a rigorous case study? . Strategic Management Journal , 29 , 1465 – 1474 .

Gibbert , M. , & Ruigrok , W. ( 2010 ). The “what” and “how” of case study rigor: Three strategies based on published work . Organizational Research Methods , 13 , 710 – 737 .

Godoy , A. S. ( 1995 ). Introdução à pesquisa qualitativa e suas possibilidades . Revista de Administração de Empresas , 35 , 57 – 63 .

Grix , J. ( 2002 ). Introducing students to the generic terminology of social research . Politics , 22 , 175 – 186 .

Marsh , D. , & Furlong , P. ( 2002 ). A skin, not a sweater: ontology and epistemology in political science . In D Marsh. , & G Stoker , (Eds.), Theory and Methods in Political Science , New York, NY : Palgrave McMillan , pp. 17 – 41 .

McKeown , T. J. ( 1999 ). Case studies and the statistical worldview: Review of King, Keohane, and Verba’s designing social inquiry: Scientific inference in qualitative research . International Organization , 53 , 161 – 190 .

Merriam , S. B. ( 2009 ). Qualitative research: a guide to design and implementation .

Ollaik , L. G. , & Ziller , H. ( 2012 ). Distintas concepções de validade em pesquisas qualitativas . Educação e Pesquisa , 38 , 229 – 241 .

Picoli , F. R. , & Takahashi , A. R. W. ( 2016 ). Capacidade de absorção, aprendizagem organizacional e mecanismos de integração social . Revista de Administração Contemporânea , 20 , 1 – 20 .

Pozzebon , M. , & Freitas , H. M. R. ( 1998 ). Pela aplicabilidade: com um maior rigor científico – dos estudos de caso em sistemas de informação . Revista de Administração Contemporânea , 2 , 143 – 170 .

Sandberg , J. ( 2005 ). How do we justify knowledge produced within interpretive approaches? . Organizational Research Methods , 8 , 41 – 68 .

Seuring , S. A. ( 2008 ). Assessing the rigor of case study research in supply chain management. Supply chain management . Supply Chain Management: An International Journal , 13 , 128 – 137 .

Siggelkow , N. ( 2007 ). Persuasion with case studies . Academy of Management Journal , 50 , 20 – 24 .

Stake , R. E. ( 2003 ). Case studies . In N. K. , Denzin , & Y. S. , Lincoln (Eds.). Strategies of Qualitative Inquiry , London : Sage Publications . pp. 134 – 164 .

Takahashi , A. R. W. , & Semprebom , E. ( 2013 ). Resultados gerais e desafios . In A. R. W. , Takahashi (Ed.), Pesquisa qualitativa em administração: Fundamentos, métodos e usos no brasil , pp. 343 – 354 . São Paulo : Atlas .

Ragin , C. C. ( 1992 ). Introduction: Cases of “what is a case? . In H. S. , Becker , & C. C. Ragin and (Eds). What is a case? Exploring the foundations of social inquiry , pp. 1 – 18 .

Ragin , C. C. ( 2013 ). Reflections on casing and Case-Oriented research . In D , Byrne. , & C. C. Ragin (Eds.), The SAGE handbooks of Case-Based methods , London : SAGE Publications , pp. 522 – 534 .

Yin , R. K. ( 2015 ). Estudo de caso: planejamento e métodos , Porto Alegre : Bookman .

Zampier , M. A. , & Takahashi , A. R. W. ( 2014 ). Aprendizagem e competências empreendedoras: Estudo de casos de micro e pequenas empresas do setor educacional . RGO Revista Gestão Organizacional , 6 , 1 – 18 .

Acknowledgements

Author contributions: Both authors contributed equally.

Corresponding author

Related articles, all feedback is valuable.

Please share your general feedback

Report an issue or find answers to frequently asked questions

Contact Customer Support

IMAGES

  1. why use case study research design

    importance of case study research design

  2. Three most important advantages of multiple case study and survey

    importance of case study research design

  3. why use case study research design

    importance of case study research design

  4. Case Study Research Design

    importance of case study research design

  5. Case study research design

    importance of case study research design

  6. PPT

    importance of case study research design

VIDEO

  1. Implications of sample Design

  2. Who Owns Antarctica Continent ? #shorts #why #who

  3. (2/75) Why is the literacy rate in Kerala so high #shorts #kerala #literacy

  4. Most hated Tree in india. #shorts #facts #plants

  5. Case Study Research

  6. Research Design

COMMENTS

  1. The tales of two cities: use of evidence for introducing 20 miles per

    In 2016, large-scale 20 miles per hour speed limits were introduced in the United Kingdom cities of Edinburgh and Belfast. This paper investigates the role that scientific evidence played in the policy decisions to implement lower speed limits in the two cities. Using a qualitative case study design, we undertook content analysis of a range of documents to explore and describe the evolution of ...

  2. Buildings

    In response to increasing global temperatures and energy demands, optimizing buildings' energy efficiency, particularly in hot climates, is an urgent challenge. While current research often relies on conventional energy estimation methods, there has been a decrease in the efforts dedicated to leveraging AI-based methodologies as technology advances. This implies a dearth of multiparameter ...

  3. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  4. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  5. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  6. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  7. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  8. Case Study Research: In-Depth Understanding in Context

    After first noting various contexts in which case studies are commonly used, the chapter focuses on case study research directly Strengths and potential problematic issues are outlined and then key phases of the process. The chapter emphasizes how important it is to design the case, to collect and interpret data in ways that highlight the ...

  9. Planning Qualitative Research: Design and Decision Making for New

    A case study can be a complete research project in itself, such as in the study of a particular organization, community, or program. Case studies are also often used for evaluation purposes, for example, in an external review. ... It is important to make notes of any mini-story or plot located in the transcript. The final step to conducting ...

  10. Case Study Research

    The term "case study" refers to both a specific research design or methodology, and a method of analysis for examining a problem. Mills et al. ( 2010) note that case study, both as a methodology and as a method—unlike many qualitative methodologies—is frequently used to generalize across populations.

  11. Case Study

    A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case. ... It became an important case study for understanding previously neglected causes of heart disease. However ...

  12. Qualitative Case Study Methodology: Study Design and Implementation for

    Doing case study research: A practical guide for beginning researchers ... claim that truth is relative and that it is dependent on one's perspective. This paradigm "recognizes the importance of the subjective human ... According to Yin (2003) a case study design should be considered when: (a) the focus of the study is to answer "how ...

  13. Toward Developing a Framework for Conducting Case Study Research

    Gummesson (1988) argues that an important advantage of case study research is the opportunity for a holistic view of the process: "The detailed observations entailed in the case study method enable us to study many different aspects, examine them in relation to each other, view the process within its total environment and also use the ...

  14. (PDF) Case Study Research Defined [White Paper]

    A case study is a methodological. research approach used to generate. an in-depth understanding of a. contemporary issue or phenomenon in a. bounded system. Case study research. requires in-depth ...

  15. 5 Benefits of the Case Study Method

    5. Build Your Self-Confidence. Finally, learning through the case study method can build your confidence. Each time you assume a business leader's perspective, aim to solve a new challenge, and express and defend your opinions and decisions to peers, you prepare to do the same in your career. According to a 2022 City Square Associates survey ...

  16. Case Study Methods and Examples

    The purpose of case study research is twofold: (1) to provide descriptive information and (2) to suggest theoretical relevance. Rich description enables an in-depth or sharpened understanding of the case. It is unique given one characteristic: case studies draw from more than one data source. Case studies are inherently multimodal or mixed ...

  17. (PDF) Qualitative Case Study Methodology: Study Design and

    McMaster University, West Hamilton, Ontario, Canada. Qualitative case study methodology prov ides tools for researchers to study. complex phenomena within their contexts. When the approach is ...

  18. Continuing to enhance the quality of case study methodology in health

    Introduction. The popularity of case study research methodology in Health Services Research (HSR) has grown over the past 40 years. 1 This may be attributed to a shift towards the use of implementation research and a newfound appreciation of contextual factors affecting the uptake of evidence-based interventions within diverse settings. 2 Incorporating context-specific information on the ...

  19. (PDF) Case Study Research

    The case study method is a research strategy that aims to gain an in-depth understanding of a specific phenomenon by collecting and analyzing specific data within its true context (Rebolj, 2013 ...

  20. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5), the ...

  21. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  22. Clinical research study designs: The essentials

    Introduction. In clinical research, our aim is to design a study, which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods that can be translated to the "real world" setting. 1 Before choosing a study design, one must establish aims and objectives of the study, and choose an appropriate target population that is most representative of ...

  23. What is a Case Study?

    Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data. Analysis of qualitative data from case study research can contribute to knowledge development.

  24. Case study research: opening up research opportunities

    Purpose. The case study approach has been widely used in management studies and the social sciences more generally. However, there are still doubts about when and how case studies should be used. This paper aims to discuss this approach, its various uses and applications, in light of epistemological principles, as well as the criteria for rigor ...

  25. Case study research in the social sciences

    Finally, when discussing the epistemic functions of case study research, it is important to recognize the difference between the aims of a study and the uses to which it may later be put. An author's original intentions may be quite different from the purposes the study ends up serving. ... Case study research. Design and methods (4 th ed ...