Advertisement

Advertisement

Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion

  • Published: 09 November 2022
  • Volume 99 , pages 413–428, ( 2023 )

Cite this article

in plant tissue culture experiments high auxin to cytokinin ratio

  • Sumeera Asghar 1 , 2 ,
  • Nida Ghori 3 ,
  • Faisal Hyat 4 ,
  • Yan Li 1 &
  • Chunli Chen 5  

2206 Accesses

23 Citations

Explore all metrics

Plant growth regulators (PGRs) enhance plants regeneration ability to form various organs and tissues by determining embryonic fate in vivo and boosting regeneration efficiency in vitro. Recent advances in molecular biology have identified that auxin and cytokinin biosynthesis, transportation, and signaling affect cell fate both transcriptionally and non-transcriptionally. Growth regulators have a key role in cell reprogramming. The ratio between auxin and cytokinin application in the plant tissue culture can control the state of cell di- or dedifferentiation. In this study, the different regenerative pathways of these PGRs are systematically overviewed for the first time, with the objective of better understanding somatic embryogenesis. Secondly, the different biosynthetic and signaling pathways of auxin and cytokinin interactions are thoroughly discussed. Finally, future research directions are identified for somatic embryogenesis. This review article provides a unique reference for a wide range of plant science communities to narrate the recent developments of auxin and cytokinin-related signaling and developmental pathways for a better understanding of the regeneration phenomena of somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

in plant tissue culture experiments high auxin to cytokinin ratio

Similar content being viewed by others

in plant tissue culture experiments high auxin to cytokinin ratio

The Role of the Auxins During Somatic Embryogenesis

in plant tissue culture experiments high auxin to cytokinin ratio

Internal and External Regulatory Elements Controlling Somatic Embryogenesis in Catharanthus: A Model Medicinal Plant

in plant tissue culture experiments high auxin to cytokinin ratio

Regulation of cell reprogramming by auxin during somatic embryogenesis

Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in scots pine in relation to polar auxin transport and programmed cell death. Plant Cell, Tissue Organ Cult 109(3):391–400. https://doi.org/10.1007/S11240-011-0103-8/FIGURES/6

Article   CAS   Google Scholar  

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the arabidopsis root stem cell niche. Cell 119(1):109–120. https://doi.org/10.1016/J.CELL.2004.09.018

Article   CAS   PubMed   Google Scholar  

Asghar S, Xiong Y, Che M, Fan X, Li H, Wang Y, Xu X, Li W, Han Z (2022) Transcriptome analysis reveals the effects of strigolactone on shoot regeneration of apple. Plant Cell Rep 41(7):1613–1626. https://doi.org/10.1007/S00299-022-02882-X/FIGURES/9

Aslam M, Sugita K, Qin Y, Rahman A (2020) Aux/IAA14 regulates microRNA-mediated cold stress response in arabidopsis roots. Int J Mol Sci 21(22):8441. https://doi.org/10.3390/IJMS21228441

Article   CAS   PubMed   PubMed Central   Google Scholar  

Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57(4):626–644. https://doi.org/10.1111/J.1365-313X.2008.03715.X

Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, Uc-Chuc MA, Loyola-Vargas VM (2022) Auxin-cytokinin cross talk in somatic embryogenesis of Coffea canephora. Plants 11(15):2013. https://doi.org/10.3390/PLANTS11152013

Ayil-Gutiérrez B, Galaz-Ávalos RM, Peña-Cabrera E, Loyola-Vargas VM (2013) Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora. Plant Signal Behav. https://doi.org/10.4161/PSB.26998/SUPPL_FILE/KPSB_A_10926998_SM0001.ZIP

Article   PubMed   PubMed Central   Google Scholar  

Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6(4):1247–1260. https://doi.org/10.1093/MP/SSS154

Behera PP, Sivasankarreddy K, Prasanna VSSV (2022) Somatic embryogenesis and plant regeneration in horticultural crops. Commer Scale Tissue Cult Hortic Plant Crop. https://doi.org/10.1007/978-981-19-0055-6_9

Article   Google Scholar  

Berckmans B, Vassileva V, Schmid SPC, Maes S, Parizot B, Naramoto S, Magyar Z, Kamei LAC, Koncz C, Bögre L, Persiau G, de Jaeger G, Friml J, Simon R, Beeckman T, de Veyldera L (2011) Auxin-dependent cell cycle reactivation through transcriptional regulation of arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23(10):3671–3683. https://doi.org/10.1105/TPC.111.088377

Boya P, Codogno P, Rodriguez-Muela N (2018) Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development (cambridge). https://doi.org/10.1242/DEV.149344/48589

Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P (2019) Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava. Front Plant Sci 10:673. https://doi.org/10.3389/FPLS.2019.00673/BIBTEX

Chateau S, Sangwan RS, Sangwan-Norreel BS (2000) Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J Exp Bot 51(353):1961–1968. https://doi.org/10.1093/JEXBOT/51.353.1961

Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141(2):620–637. https://doi.org/10.1104/PP.106.081240

Chen Q, Yang G (2020) Signal function studies of ROS, especially RBOH-dependent ROS, in plant growth, development and environmental stress. J Plant Growth Regul 39(1):157–171. https://doi.org/10.1007/S00344-019-09971-4/FIGURES/3

Correia SI, Alves AC, Veríssimo P, Canhoto JM (2016) Somatic embryogenesis in broad-leaf woody plants: what we can learn from proteomics. Methods Mol Biol 1359:117–129. https://doi.org/10.1007/978-1-4939-3061-6_6/FIGURES/1

De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, Nijsse B, Boekschoten MV, Hooiveld G, Beeckman T, Wagner D, Ljung K, Fleck C, Weijers D (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science. https://doi.org/10.1126/SCIENCE.1255215/SUPPL_FILE/DERYBEL.SM.PDF

Article   PubMed   Google Scholar  

De Smet I, Lau S, Voß U, Vanneste S, Benjamins R, Rademacher EH, Schlereth A, De Rybel B, Vassileva V, Grunewald W, Naudts M, Levesque MP, Ehrismann JS, Inzé D, Luschnig C, Benfey PN, Weijers D, Van Montagu MCE, Bennett MJ, Beeckman T (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proc Natl Acad Sci USA 107(6):2705–2710. https://doi.org/10.1073/PNAS.0915001107/SUPPL_FILE/PNAS.200915001SI.PDF

Dubas E, Moravčíková J, Libantová J, Matušíková I, Benková E, Zur I, Krzewska M (2014) The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma 251(5):1077–1087. https://doi.org/10.1007/S00709-014-0616-1/FIGURES/5

Dudits D, Bogre L, Gyorgyey J (1991) REVIEW: molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99(3):473–482. https://doi.org/10.1242/JCS.99.3.473

Elhiti M, Stasolla C (2016) Somatic embryogenesis: the molecular network regulating embryo formation. Somat Embryog Ornam Appl. https://doi.org/10.1007/978-81-322-2683-3_14

Fehér A (2015) Somatic embryogenesis stress-induced remodeling of plant cell fate. Biochim Biophys Acta (BBA) Gene Regul Mech 4:385–402. https://doi.org/10.1016/J.BBAGRM.2014.07.005

Fujimura T (2014) Carrot somatic embryogenesis. A dream come true? Plant Biotechnol Rep 8(1):23–28. https://doi.org/10.1007/S11816-013-0295-Y/FIGURES/1

Gallois, J., Nora, F., Y. M.-G. &, & 2004, undefined. (n.d.). WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genesdev.Cshlp.Org . Retrieved May 5, 2022, from http://genesdev.cshlp.org/content/18/4/375.short

Ge L, Yong JWH, Tan SN, Ong ES (2006) Determination of cytokinins in coconut (Cocos nucifera L.) water using capillary zone electrophoresis-tandem mass spectrometry. Electrophoresis 27(11):2171–2181. https://doi.org/10.1002/ELPS.200500465

Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE 8(7):e69261. https://doi.org/10.1371/JOURNAL.PONE.0069261

Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development (cambridge, England) 134(19):3539–3548. https://doi.org/10.1242/DEV.010298

Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013. https://doi.org/10.1038/nature06215

Guiderdoni E, Mérot B, Eksomtramage T, Paulet F, Feldmann P, Glaszmann JC (1995) Somatic embryogenesis in sugarcane (Species). In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed. Springer, Berlin

Google Scholar  

Gulzar B, Mujib A, Malik MQ, Sayeed R, Mamgain J, Ejaz B (2020) Genes, proteins and other networks regulating somatic embryogenesis in plants. J Genet Eng Biotechnol 18(1):1–15. https://doi.org/10.1186/S43141-020-00047-5/TABLES/3

Horstman A, Willemsen V, Boutilier K, Heidstra R (2014) AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends Plant Sci 19(3):146–157. https://doi.org/10.1016/J.TPLANTS.2013.10.010

Horstman A, Bemer M, Boutilier K (2017) A transcriptional view on somatic embryogenesis. Regeneration 4(4):201–216. https://doi.org/10.1002/REG2.91

Hwang I, Sakakibara H (2006) Cytokinin biosynthesis and perception. Physiol Plant 126(4):528–538. https://doi.org/10.1111/J.1399-3054.2006.00665.X

Ikeuchi M, Sugimoto K, Iwase A (2013) Plant Callus: mechanisms of induction and repression. Plant Cell 25(9):3159–3173. https://doi.org/10.1105/TPC.113.116053

Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K (2019) Molecular Mechanisms of Plant Regeneration. Ann Rev Plant Biol 70:377–406

Ikeuchi M, Rymen B, Sugimoto K (2020) How do plants transduce wound signals to induce tissue repair and organ regeneration? Curr Opin Plant Biol 57:72–77. https://doi.org/10.1016/J.PBI.2020.06.007

Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet. https://doi.org/10.1146/annurev.genet.40.110405.090431

Ivanova A, Velcheva M, Denchev P, Atanassov A, Van Onckelen HA (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92(1):85–89. https://doi.org/10.1111/J.1399-3054.1994.TB06658.X

Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M (2011) The AP2/ERF transcription factor WIND1 Controls cell dedifferentiation in Arabidopsis. Curr Biol 21(6):508–514. https://doi.org/10.1016/J.CUB.2011.02.020

Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47(2):91–110. https://doi.org/10.1007/S10725-005-3478-X

Jiménez VM, Bangerth F (2001a) Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tissue Organ Cult 67(1):37–46. https://doi.org/10.1023/A:1011671310451

Jiménez VM, Bangerth F (2001b) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci 160(2):247–257. https://doi.org/10.1016/S0168-9452(00)00382-4

Jiménez VM, Bangerth F (2001c) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111(3):389–395. https://doi.org/10.1034/J.1399-3054.2001.1110317.X

Kamińska M (2021) Role and activity of jasmonates in plants under in vitro conditions, plant cell. Tissue Organ Cult (PCTOC) 146(3):425–447. https://doi.org/10.1007/S11240-021-02091-6

Kang J, Lee Y, Sakakibara H, Martinoia E (2017) Cytokinin transporters: GO and STOP in signaling. Trends Plant Sci 22(6):455–461. https://doi.org/10.1016/J.TPLANTS.2017.03.003

Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, Trivedi ZB, Abhayadev PV, Pinon V, Meyerowitz EM, Scheres B, Prasad K (2015) PLETHORA genes control regeneration by a two-step mechanism. Curr Biol 25(8):1017–1030. https://doi.org/10.1016/J.CUB.2015.02.022

Karim R, Tan YS, Singh P, Khalid N, Harikrishna JA (2018) Expression and DNA methylation of SERK, BBM, LEC2 and WUS genes in in vitro cultures of Boesenbergia rotunda (L.) Mansf. Physiol Mol Biol Plants 24(5):741–751. https://doi.org/10.1007/S12298-018-0566-8/FIGURES/3

Kasahara H (2016) Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80(1):34–42. https://doi.org/10.1080/09168451.2015.1086259

Kwiatkowska D (2008) Flowering and apical meristem growth dynamics. J Exp Bot 59(2):187–201. https://doi.org/10.1093/JXB/ERM290

Landrein B, Kiss A, Sassi M, Chauvet A, Das P, Cortizo M, Laufs P, Takeda S, Aida M, Traas J, Vernoux T, Boudaoud A, Hamant O (2015) Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. Elife. https://doi.org/10.7554/ELIFE.07811.001

Lee DK, Geisler M, Springer PS (2009) LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2function in lateral organ separation and axillary meristem formation in Arabidopsis. Development 136(14):2423–2432. https://doi.org/10.1242/DEV.031971

Li W, Liu H, Cheng ZJ, Su YH, Han HN, Zhang Y, Zhang XS (2011) DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling. PLoS Genet 7(8):e1002243. https://doi.org/10.1371/JOURNAL.PGEN.1002243

Liang H, Xiong Y, Guo B, Yan H, Jian S, Ren H, Zhang X, Li Y, Zeng S, Wu K, Zheng F, Teixeira da Silva JA, Xiong Y, Ma G (2020) Shoot organogenesis and somatic embryogenesis from leaf and root explants of Scaevola sericea. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-68084-1

Liu J, Hu X, Qin P, Prasad K, Hu Y, Xu L (2018) The WOX11–LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol 59(4):739–748. https://doi.org/10.1093/PCP/PCY010

Liu Z, Ge XX, Wu XM, Xu Q, Atkinson RG, Guo WW (2020) Genome-wide analysis of the citrus B3 superfamily and their association with somatic embryogenesis. BMC Genomics 21(1):1–15. https://doi.org/10.1186/S12864-020-6715-9/FIGURES/6

Mantiri FR, Kurdyukov S, Chen SK, Rose RJ (2008) The transcription factor MtSERF1 may function as a nexus between stress and development in somatic embryogenesis in Medicago truncatula. Plant Signal Behav 3(7):498–500. https://doi.org/10.4161/PSB.3.7.6049

Masuda H, Oohashi SI, Tokuji Y, Mizue Y (1995) Direct embryo formation from epidermal cells of carrot hypocotyls. J Plant Physiol 145(4):531–534. https://doi.org/10.1016/S0176-1617(11)81783-9

Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998a) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815. https://doi.org/10.1016/S0092-8674(00)81703-1

Mayer, K., Schoof, H., Haecker, A., Cell, M. L.-, & 1998b, undefined. (n.d.). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Elsevier . https://www.sciencedirect.com/science/article/pii/S0092867400817031 . 5 May 2022

Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang ZW, Tang YY, Zhang XS (2017) Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29(6):1357–1372. https://doi.org/10.1105/TPC.16.00640

Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic Aspects of Somatic Embryogenesis. Springer Netherlands, Dordrecht, pp 155–203

Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31(4):1097–1103. https://doi.org/10.1016/0031-9422(92)80241-6

Nic-Can GI, Loyola-Vargas VM (2016) The role of the auxins during somatic embryogenesis. Somat Embryog Fundam Asp Appl. https://doi.org/10.1007/978-3-319-33705-0_10/COVER

Nieminen K, Blomster T, Helariutta Y, Mähönen AP (2015) Vascular cambium development. Am Soc Plant Biol 13:e0177. https://doi.org/10.1199/TAB.0177

Nonhebel HM (2015) Tryptophan-independent indole-3-acetic acid synthesis: critical evaluation of the evidence. Plant Physiol 169(2):1001–1005. https://doi.org/10.1104/PP.15.01091

Orłowska A, Igielski R, Łagowska K, Kępczyńska E (2017) Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell, Tissue Organ Cult 129(1):119–132. https://doi.org/10.1007/S11240-016-1161-8/FIGURES/7

Pacheco G, Gagliardi RF, Carneiro LA, Callado CH, Valls JFM, Mansur E (2007) The role of BAP in somatic embryogenesis induction from seed explants of Arachis species from sections erectoides and procumbentes. Plant Cell, Tissue Organ Cult 88(2):121–126. https://doi.org/10.1007/S11240-006-9169-0/TABLES/3

Pařízková B, Žukauskaitė A, Vain T, Grones P, Raggi S, Kubeš MF, Kieffer M, Doyle SM, Strnad M, Kepinski S, Napier R, Doležal K, Robert S, Novák O (2021) New fluorescent auxin probes visualize tissue-specific and subcellular distributions of auxin in Arabidopsis. New Phytol 230(2):535–549. https://doi.org/10.1111/NPH.17183

Pescador R, Kerbauy GB, de Ferreira WM, Purgatto E, Suzuki RM, Guerra MP (2012) A hormonal misunderstanding in Acca sellowiana embryogenesis: levels of zygotic embryogenesis do not match those of somatic embryogenesis. Plant Growth Regul 68(1):67–76. https://doi.org/10.1007/S10725-012-9694-2/FIGURES/15

Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development (cambridge, England) 136(16):2675–2688. https://doi.org/10.1242/DEV.030353

Piyatrakul P, Putranto RA, Martin F, Rio M, Dessailly F, Leclercq J, Dufayard JF, Lardet L, Montoro P (2012) Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol 12(1):1–20. https://doi.org/10.1186/1471-2229-12-244/TABLES/3

Prem D, Solís MT, Bárány I, Rodríguez-Sanz H, Risueño MC, Testillano PS (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol. https://doi.org/10.1186/1471-2229-12-127

Radhakrishnan D, Kareem A, Durgaprasad K, Sreeraj E, Sugimoto K, Prasad K (2018) Shoot regeneration: a journey from acquisition of competence to completion. Curr Opin Plant Biol 41:23–31. https://doi.org/10.1016/J.PBI.2017.08.001

Raghavan V (2004) Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot 91(11):1743–1756. https://doi.org/10.3732/AJB.91.11.1743

Ranade SS, Egertsdotter U (2021) In silico characterization of putative gene homologues involved in somatic embryogenesis suggests that some conifer species may lack LEC2, one of the key regulators of initiation of the process. BMC Genomics 22(1):1–16. https://doi.org/10.1186/S12864-021-07718-8

Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260. https://doi.org/10.1038/nature02081

Rodríguez-Sanz H, Manzanera JA, Solís MT, Gómez-Garay A, Pintos B, Risueño MC, Testillano PS (2014) Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak. Quercus Suber l BMC Plant Biol 14(1):1–18. https://doi.org/10.1186/S12870-014-0224-4/TABLES/1

Rodríguez-Sanz H, Solís MT, Lopez MF, Gómez-Cadenas A, Risueño MC, Testillano PS (2015) Auxin biosynthesis, accumulation, action and transport are involved in stress-induced microspore embryogenesis initiation and progression in Brassica napus. Plant Cell Physiol 56(7):1401–1417. https://doi.org/10.1093/PCP/PCV058

Rosspopoff O, Chelysheva L, Saffar J, Lecorgne L, Gey D, Caillieux E, Colot V, Roudier F, Hilson P, Berthomé R, Da Costa M, Rech P (2017) Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development. Development (cambridge, England) 144(7):1187–1200. https://doi.org/10.1242/DEV.142570

Ruduś I, Kȩpczyńki J, Kȩpczyńska E (2001) The influence of the jasmonates and abscisic acid on callus growth and somatic embryogenesis in Medicago sativa L. tissue culture. Acta Physiol Plant 23(1):103–107. https://doi.org/10.1007/S11738-001-0029-6

Rymen B, Kawamura A, Lambolez A, Inagaki S, Takebayashi A, Iwase A, Sakamoto Y, Sako K, Favero DS, Ikeuchi M, Suzuki T, Seki M, Kakutani T, Roudier F, Sugimoto K (2019) Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun Biol 2(1):1–15. https://doi.org/10.1038/s42003-019-0646-5

Sanford L, Palmer A (2017) Recent advances in development of genetically encoded fluorescent sensors. Methods Enzymol 589:1–49. https://doi.org/10.1016/BS.MIE.2017.01.019

Sato A, Yamamoto KT (2008) What’s the physiological role of domain II-less Aux/IAA proteins? Plant Signal Behav 3(7):496–497. https://doi.org/10.4161/PSB.3.7.5994

Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64(9):2565–2577. https://doi.org/10.1093/JXB/ERT139

Seo PJ (2021) Regenerating from the middle. Nat Plants 7(11):1441–1442. https://doi.org/10.1038/s41477-021-01016-7

Shemer O, Landau U, Candela H, Zemach A, Eshed Williams L (2015) Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. Plant Sci 238:251–261. https://doi.org/10.1016/J.PLANTSCI.2015.06.015

Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, RN, C., & Samynathan, R. (2022) Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biologia Futura 2022:1–19. https://doi.org/10.1007/S42977-022-00126-3

Smit ME, Weijers D (2015) The role of auxin signaling in early embryo pattern formation. Curr Opin Plant Biol 28:99–105. https://doi.org/10.1016/J.PBI.2015.10.001

Spíchal L, Spíchal L (2012) Cytokinins–recent news and views of evolutionally old molecules. Funct Plant Biol 39(4):267–284. https://doi.org/10.1071/FP11276

Stahl Y, Simon R (2010) Plant primary meristems: shared functions and regulatory mechanisms. Curr Opin Plant Biol 13(1):53–58. https://doi.org/10.1016/J.PBI.2009.09.008

Steinitz B, Küsek M, Tabib Y, Paran I, Zelcer A (2003) Pepper (Capsicum annuum L.) regenerants obtained by direct somatic embryogenesis fail to develop a shoot. In Vitro Cell Dev Biol Plant 39(3):296–303. https://doi.org/10.1079/IVP2002405

Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA 105(8):3151–3156. https://doi.org/10.1073/PNAS.0712364105/SUPPL_FILE/12364FIG9.JPG

Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59(3):448–460. https://doi.org/10.1111/J.1365-313X.2009.03880.X

Su YH, Liu YB, Bai B, Zhang XS (2015) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci. https://doi.org/10.3389/FPLS.2014.00792/BIBTEX

Su YH, Tang LP, Zhao XY, Zhang XS (2021) Plant cell totipotency: Insights into cellular reprogramming. J Integr Plant Biol 63(1):228–243. https://doi.org/10.1111/JIPB.12972

Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18(3):463–471. https://doi.org/10.1016/J.DEVCEL.2010.02.004

Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645. https://doi.org/10.1038/nature05731

Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847–859. https://doi.org/10.1038/nrm2020

Thimann KV (1939) Auxins and the inhibition of plant growth. Biol Rev 14(3):314–337. https://doi.org/10.1111/J.1469-185X.1939.TB00937.X

Traas J (2018) Organogenesis at the shoot apical meristem. Plants 8(1):6. https://doi.org/10.3390/PLANTS8010006

Vinoth A, Ravindhran R (2018) In vitro morphogenesis of woody plants using thidiazuron. Thidiazuron: Urea Deriv Plant Growth Regul. https://doi.org/10.1007/978-981-10-8004-3_10/COVER

Visser C, Qureshi JA, Gill R, Saxena PK (1992) Morphoregulatory role of thidiazuron substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol 99(4):1704–1707. https://doi.org/10.1104/PP.99.4.1704

Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue Organ Cult 69(3):233–249. https://doi.org/10.1023/A:1015673200621

Vondráková Z, Eliášová K, Fischerová L, Vágner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6(4):587–596. https://doi.org/10.2478/S11535-011-0035-7/MACHINEREADABLECITATION/RIS

Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K (2011) The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr Biol CB 21(15):1277–1281. https://doi.org/10.1016/J.CUB.2011.07.001

Wang H (2020) Regulation of vascular cambium activity. Plant Sci 291:110322. https://doi.org/10.1016/J.PLANTSCI.2019.110322

Wani KI, Zehra A, Choudhary S, Naeem M, Khan MMA, Castroverde CDM, Aftab T (2020) Mechanistic insights into strigolactone biosynthesis, signaling, and regulation during plant growth and development. J Plant Growth Regul 40(5):1836–1852. https://doi.org/10.1007/S00344-020-10234-W

Wendrich JR, Yang BJ, Vandamme N, Verstaen K, Smet W, de Velde CM, Wybouw B, Mor E, Arents HE, Nolf J, van Duyse J, van Isterdael G, Maere S, Saeys Y, De Rybel B (2020) Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. https://doi.org/10.1126/SCIENCE.AAY4970/SUPPL_FILE/AAY4970_WENDRICH_SM.PDF

Wilson BF (2000) Apical control of branch growth and angle in woody plants. Am J Bot 87(5):601–607. https://doi.org/10.2307/2656846

Wójcikowska B, Gaj MD (2017) Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Rep 36(6):843–858. https://doi.org/10.1007/S00299-017-2114-3/FIGURES/7

Wybouw B, De Rybel B (2019) Cytokinin–a developing story. Trends Plant Sci 24(2):177–185. https://doi.org/10.1016/J.TPLANTS.2018.10.012

Xiao Y, Chen Y, Ding Y, Wu J, Wang P, Yu Y, Wei X, Wang Y, Zhang C, Li F, Ge X (2018) Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration. Plant Sci 270:157–165. https://doi.org/10.1016/J.PLANTSCI.2018.02.018

Yang X, Zhang X (2010) Regulation of Somatic Embryogenesis in Higher Plants. Crit Rev Plant Sci 29(1):36–57. https://doi.org/10.1080/07352680903436291

Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12(1):1–19. https://doi.org/10.1186/1471-2229-12-110/FIGURES/8

Zanin FC, Freitas NC, Pinto RT, Máximo WPF, Diniz LEC, Paiva LV (2022) The SAUR gene family in coffee: genome-wide identification and gene expression analysis during somatic embryogenesis. Mol Biol Rep 49(3):1973–1984. https://doi.org/10.1007/S11033-021-07011-7/FIGURES/5

Zhai N, Xu L (2021) Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat Plants 7(11):1453–1460. https://doi.org/10.1038/s41477-021-01015-8

Zhang TQ, Lian H, Zhou CM, Xu L, Jiao Y, Wang JW (2017) A two-step model for de novo activation of wuschel during plant shoot regeneration. Plant Cell 29(5):1073–1087. https://doi.org/10.1105/TPC.16.00863

Zheng Q, Zheng Y, Ji H, Burnie W, Perry SE (2016) Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis. Plant Physiol 172(4):2374–2387. https://doi.org/10.1104/PP.16.00564

Zhu J, Geisler M (2015) Keeping it all together: auxin–actin cross-talk in plant development. J Exp Bot 66(16):4983–4998. https://doi.org/10.1093/JXB/ERV308

Zwiewka M, Bilanovičová V, Seifu YW, Nodzyński T (2019) The nuts and bolts of pin auxin efflux carriers. Front Plant Sci 10:985. https://doi.org/10.3389/FPLS.2019.00985/BIBTEX

Download references

Author information

Authors and affiliations.

The Key Laboratory of Plant Resources Conservation Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China

Sumeera Asghar & Yan Li

State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, 100193, China

Sumeera Asghar

USADA Central Small Grain Genotyping Lab, Kansas State University, Manhattan, USA

College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China

Faisal Hyat

College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China

Chunli Chen

You can also search for this author in PubMed   Google Scholar

Contributions

S.A conceived and planned the paper; S.A, N.G. wrote and F.H edited the manuscript. Y.L and C.Cprovided insight and suggestions to improve the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yan Li or Chunli Chen .

Ethics declarations

Competing interests.

The authors declare no conflict of interest.

Additional information

Communicated by Ben Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Asghar, S., Ghori, N., Hyat, F. et al. Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion. Plant Growth Regul 99 , 413–428 (2023). https://doi.org/10.1007/s10725-022-00923-9

Download citation

Received : 14 May 2022

Accepted : 18 October 2022

Published : 09 November 2022

Issue Date : April 2023

DOI : https://doi.org/10.1007/s10725-022-00923-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Plant growth regulators
  • Somatic embryogenesis
  • Biosynthetic pathways
  • Morphogenic regulators
  • Signaling mechanisms
  • Plant regeneration
  • Find a journal
  • Publish with us
  • Track your research