- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
Overview of the Problem-Solving Mental Process
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.
- Identify the Problem
- Define the Problem
- Form a Strategy
- Organize Information
- Allocate Resources
- Monitor Progress
- Evaluate the Results
Frequently Asked Questions
Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.
The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.
It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.
In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.
The following steps include developing strategies and organizing knowledge.
1. Identifying the Problem
While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.
Some strategies that you might use to figure out the source of a problem include :
- Asking questions about the problem
- Breaking the problem down into smaller pieces
- Looking at the problem from different perspectives
- Conducting research to figure out what relationships exist between different variables
2. Defining the Problem
After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address
At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.
3. Forming a Strategy
After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.
The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.
- Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
- Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.
Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.
4. Organizing Information
Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.
When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.
5. Allocating Resources
Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.
If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.
At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.
6. Monitoring Progress
After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.
It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.
Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .
7. Evaluating the Results
After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.
Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.
A Word From Verywell
It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.
Get Advice From The Verywell Mind Podcast
Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.
Follow Now : Apple Podcasts / Spotify / Google Podcasts
You can become a better problem solving by:
- Practicing brainstorming and coming up with multiple potential solutions to problems
- Being open-minded and considering all possible options before making a decision
- Breaking down problems into smaller, more manageable pieces
- Asking for help when needed
- Researching different problem-solving techniques and trying out new ones
- Learning from mistakes and using them as opportunities to grow
It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.
Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.
If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.
Davidson JE, Sternberg RJ, editors. The Psychology of Problem Solving . Cambridge University Press; 2003. doi:10.1017/CBO9780511615771
Sarathy V. Real world problem-solving . Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
- Skip to main content
- Skip to primary sidebar
- Skip to footer
Additional menu
The 5 steps of the solving problem process
August 17, 2023 by MindManager Blog
Whether you run a business, manage a team, or work in an industry where change is the norm, it may feel like something is always going wrong. Thankfully, becoming proficient in the problem solving process can alleviate a great deal of the stress that business issues can create.
Understanding the right way to solve problems not only takes the guesswork out of how to deal with difficult, unexpected, or complex situations, it can lead to more effective long-term solutions.
In this article, we’ll walk you through the 5 steps of problem solving, and help you explore a few examples of problem solving scenarios where you can see the problem solving process in action before putting it to work.
Understanding the problem solving process
When something isn’t working, it’s important to understand what’s at the root of the problem so you can fix it and prevent it from happening again. That’s why resolving difficult or complex issues works best when you apply proven business problem solving tools and techniques – from soft skills, to software.
The problem solving process typically includes:
- Pinpointing what’s broken by gathering data and consulting with team members.
- Figuring out why it’s not working by mapping out and troubleshooting the problem.
- Deciding on the most effective way to fix it by brainstorming and then implementing a solution.
While skills like active listening, collaboration, and leadership play an important role in problem solving, tools like visual mapping software make it easier to define and share problem solving objectives, play out various solutions, and even put the best fit to work.
Before you can take your first step toward solving a problem, you need to have a clear idea of what the issue is and the outcome you want to achieve by resolving it.
For example, if your company currently manufactures 50 widgets a day, but you’ve started processing orders for 75 widgets a day, you could simply say you have a production deficit.
However, the problem solving process will prove far more valuable if you define the start and end point by clarifying that production is running short by 25 widgets a day, and you need to increase daily production by 50%.
Once you know where you’re at and where you need to end up, these five steps will take you from Point A to Point B:
- Figure out what’s causing the problem . You may need to gather knowledge and evaluate input from different documents, departments, and personnel to isolate the factors that are contributing to your problem. Knowledge visualization software like MindManager can help.
- Come up with a few viable solutions . Since hitting on exactly the right solution – right away – can be tough, brainstorming with your team and mapping out various scenarios is the best way to move forward. If your first strategy doesn’t pan out, you’ll have others on tap you can turn to.
- Choose the best option . Decision-making skills, and software that lets you lay out process relationships, priorities, and criteria, are invaluable for selecting the most promising solution. Whether it’s you or someone higher up making that choice, it should include weighing costs, time commitments, and any implementation hurdles.
- Put your chosen solution to work . Before implementing your fix of choice, you should make key personnel aware of changes that might affect their daily workflow, and set up benchmarks that will make it easy to see if your solution is working.
- Evaluate your outcome . Now comes the moment of truth: did the solution you implemented solve your problem? Do your benchmarks show you achieved the outcome you wanted? If so, congratulations! If not, you’ll need to tweak your solution to meet your problem solving goal.
In practice, you might not hit a home-run with every solution you execute. But the beauty of a repeatable process like problem solving is that you can carry out steps 4 and 5 again by drawing from the brainstorm options you documented during step 2.
Examples of problem solving scenarios
The best way to get a sense of how the problem solving process works before you try it for yourself is to work through some simple scenarios.
Here are three examples of how you can apply business problem solving techniques to common workplace challenges.
Scenario #1: Manufacturing
Building on our original manufacturing example, you determine that your company is consistently short producing 25 widgets a day and needs to increase daily production by 50%.
Since you’d like to gather data and input from both your manufacturing and sales order departments, you schedule a brainstorming session to discover the root cause of the shortage.
After examining four key production areas – machines, materials, methods, and management – you determine the cause of the problem: the material used to manufacture your widgets can only be fed into your equipment once the machinery warms up to a specific temperature for the day.
Your team comes up with three possible solutions.
- Leave your machinery running 24 hours so it’s always at temperature.
- Invest in equipment that heats up faster.
- Find an alternate material for your widgets.
After weighing the expense of the first two solutions, and conducting some online research, you decide that switching to a comparable but less expensive material that can be worked at a lower temperature is your best option.
You implement your plan, monitor your widget quality and output over the following week, and declare your solution a success when daily production increases by 100%.
Scenario #2: Service Delivery
Business training is booming and you’ve had to onboard new staff over the past month. Now you learn that several clients have expressed concern about the quality of your recent training sessions.
After speaking with both clients and staff, you discover there are actually two distinct factors contributing to your quality problem:
- The additional conference room you’ve leased to accommodate your expanding training sessions has terrible acoustics
- The AV equipment you’ve purchased to accommodate your expanding workforce is on back-order – and your new hires have been making do without
You could look for a new conference room or re-schedule upcoming training sessions until after your new equipment arrives. But your team collaboratively determines that the best way to mitigate both issues at once is by temporarily renting the high-quality sound and visual system they need.
Using benchmarks that include several weeks of feedback from session attendees, and random session spot-checks you conduct personally, you conclude the solution has worked.
Scenario #3: Marketing
You’ve invested heavily in product marketing, but still can’t meet your sales goals. Specifically, you missed your revenue target by 30% last year and would like to meet that same target this year.
After collecting and examining reams of information from your sales and accounting departments, you sit down with your marketing team to figure out what’s hindering your success in the marketplace.
Determining that your product isn’t competitively priced, you map out two viable solutions.
- Hire a third-party specialist to conduct a detailed market analysis.
- Drop the price of your product to undercut competitors.
Since you’re in a hurry for results, you decide to immediately reduce the price of your product and market it accordingly.
When revenue figures for the following quarter show sales have declined even further – and marketing surveys show potential customers are doubting the quality of your product – you revert back to your original pricing, revisit your problem solving process, and implement the market analysis solution instead.
With the valuable information you gain, you finally arrive at just the right product price for your target market and sales begin to pick up. Although you miss your revenue target again this year, you meet it by the second quarter of the following year.
Kickstart your collaborative brainstorming sessions and try MindManager for free today !
Ready to take the next step?
MindManager helps boost collaboration and productivity among remote and hybrid teams to achieve better results, faster.
Why choose MindManager?
MindManager® helps individuals, teams, and enterprises bring greater clarity and structure to plans, projects, and processes. It provides visual productivity tools and mind mapping software to help take you and your organization to where you want to be.
Explore MindManager
What is Problem Solving? (Steps, Techniques, Examples)
By Status.net Editorial Team on May 7, 2023 — 5 minutes to read
What Is Problem Solving?
Definition and importance.
Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.
Problem-Solving Steps
The problem-solving process typically includes the following steps:
- Identify the issue : Recognize the problem that needs to be solved.
- Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
- Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
- Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
- Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
- Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
- Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.
Defining the Problem
To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:
- Brainstorming with others
- Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
- Analyzing cause and effect
- Creating a problem statement
Generating Solutions
Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:
- Creating a list of potential ideas to solve the problem
- Grouping and categorizing similar solutions
- Prioritizing potential solutions based on feasibility, cost, and resources required
- Involving others to share diverse opinions and inputs
Evaluating and Selecting Solutions
Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:
- SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
- Decision-making matrices
- Pros and cons lists
- Risk assessments
After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.
Implementing and Monitoring the Solution
Implement the chosen solution and monitor its progress. Key actions include:
- Communicating the solution to relevant parties
- Setting timelines and milestones
- Assigning tasks and responsibilities
- Monitoring the solution and making adjustments as necessary
- Evaluating the effectiveness of the solution after implementation
Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.
Problem-Solving Techniques
During each step, you may find it helpful to utilize various problem-solving techniques, such as:
- Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
- Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
- SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
- Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.
Brainstorming
When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:
- Generate a diverse range of solutions
- Encourage all team members to participate
- Foster creative thinking
When brainstorming, remember to:
- Reserve judgment until the session is over
- Encourage wild ideas
- Combine and improve upon ideas
Root Cause Analysis
For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:
- 5 Whys : Ask “why” five times to get to the underlying cause.
- Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
- Pareto Analysis : Determine the few most significant causes underlying the majority of problems.
SWOT Analysis
SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:
- List your problem’s strengths, such as relevant resources or strong partnerships.
- Identify its weaknesses, such as knowledge gaps or limited resources.
- Explore opportunities, like trends or new technologies, that could help solve the problem.
- Recognize potential threats, like competition or regulatory barriers.
SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.
Mind Mapping
A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:
- Write the problem in the center of a blank page.
- Draw branches from the central problem to related sub-problems or contributing factors.
- Add more branches to represent potential solutions or further ideas.
Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.
Examples of Problem Solving in Various Contexts
In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:
- Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
- Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
- Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources
In educational contexts, problem-solving can be seen in various aspects, such as:
- Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
- Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
- Seeking resources and support to provide equal opportunities for learners with special needs or disabilities
Everyday life is full of challenges that require problem-solving skills. Some examples include:
- Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
- Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
- Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
- 8 Examples: Top Problem Solving Skills
- Problem Solving Skills: 25 Performance Review Phrases Examples
- How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
- 30 Examples: Self Evaluation Comments for Problem Solving
- Effective Decision Making Process: 7 Steps with Examples
- 174 Performance Feedback Examples (Reliability, Integrity, Problem Solving)
University Human Resources
8-step problem solving process, organizational effectiveness.
121 University Services Building, Suite 50 Iowa City , IA 52242-1911 United States
Step 1: Define the Problem
- What is the problem?
- How did you discover the problem?
- When did the problem start and how long has this problem been going on?
- Is there enough data available to contain the problem and prevent it from getting passed to the next process step? If yes, contain the problem.
Step 2: Clarify the Problem
- What data is available or needed to help clarify, or fully understand the problem?
- Is it a top priority to resolve the problem at this point in time?
- Are additional resources required to clarify the problem? If yes, elevate the problem to your leader to help locate the right resources and form a team.
- Consider a Lean Event (Do-it, Burst, RPI, Project).
- ∙Ensure the problem is contained and does not get passed to the next process step.
Step 3: Define the Goals
- What is your end goal or desired future state?
- What will you accomplish if you fix this problem?
- What is the desired timeline for solving this problem?
Step 4: Identify Root Cause of the Problem
- Identify possible causes of the problem.
- Prioritize possible root causes of the problem.
- What information or data is there to validate the root cause?
Step 5: Develop Action Plan
- Generate a list of actions required to address the root cause and prevent problem from getting to others.
- Assign an owner and timeline to each action.
- Status actions to ensure completion.
Step 6: Execute Action Plan
- Implement action plan to address the root cause.
- Verify actions are completed.
Step 7: Evaluate the Results
- Monitor and Collect Data.
- Did you meet your goals defined in step 3? If not, repeat the 8-Step Process.
- Were there any unforeseen consequences?
- If problem is resolved, remove activities that were added previously to contain the problem.
Step 8: Continuously Improve
- Look for additional opportunities to implement solution.
- Ensure problem will not come back and communicate lessons learned.
- If needed, repeat the 8-Step Problem Solving Process to drive further improvements.
7.3 Problem-Solving
Learning objectives.
By the end of this section, you will be able to:
- Describe problem solving strategies
- Define algorithm and heuristic
- Explain some common roadblocks to effective problem solving
People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.
The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.
PROBLEM-SOLVING STRATEGIES
When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.
Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.
A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.
Method | Description | Example |
---|---|---|
Trial and error | Continue trying different solutions until problem is solved | Restarting phone, turning off WiFi, turning off bluetooth in order to determine why your phone is malfunctioning |
Algorithm | Step-by-step problem-solving formula | Instruction manual for installing new software on your computer |
Heuristic | General problem-solving framework | Working backwards; breaking a task into steps |
Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?
A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):
- When one is faced with too much information
- When the time to make a decision is limited
- When the decision to be made is unimportant
- When there is access to very little information to use in making the decision
- When an appropriate heuristic happens to come to mind in the same moment
Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.
Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.
Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.
Additional Problem Solving Strategies :
- Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
- Analogy – is using a solution that solves a similar problem.
- Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
- Divide and conquer – breaking down large complex problems into smaller more manageable problems.
- Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
- Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
- Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
- Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
- Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
- Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
- Reduction – adapting the problem to be as similar problems where a solution exists.
- Research – using existing knowledge or solutions to similar problems to solve the problem.
- Root cause analysis – trying to identify the cause of the problem.
The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.
One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :
Missionary-Cannibal Problem
Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.
Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.
The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:
- 1. Only one disk can be moved at a time.
- 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
- 3. No disc may be placed on top of a smaller disk.
Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.
Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.
The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.
GESTALT PSYCHOLOGY AND PROBLEM SOLVING
As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.
As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage (1990) suggesting that while collecting data for what would later be his book The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.
While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).
While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.
Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground. Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).
Solving puzzles.
Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.
How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)
Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:
Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.
Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).
What steps did you take to solve this puzzle? You can read the solution at the end of this section.
Pitfalls to problem solving.
Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.
Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.
Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).
In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.
The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.
Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.
Bias | Description |
---|---|
Anchoring | Tendency to focus on one particular piece of information when making decisions or problem-solving |
Confirmation | Focuses on information that confirms existing beliefs |
Hindsight | Belief that the event just experienced was predictable |
Representative | Unintentional stereotyping of someone or something |
Availability | Decision is based upon either an available precedent or an example that may be faulty |
Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.
Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.
References:
Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology
Review Questions:
1. A specific formula for solving a problem is called ________.
a. an algorithm
b. a heuristic
c. a mental set
d. trial and error
2. Solving the Tower of Hanoi problem tends to utilize a ________ strategy of problem solving.
a. divide and conquer
b. means-end analysis
d. experiment
3. A mental shortcut in the form of a general problem-solving framework is called ________.
4. Which type of bias involves becoming fixated on a single trait of a problem?
a. anchoring bias
b. confirmation bias
c. representative bias
d. availability bias
5. Which type of bias involves relying on a false stereotype to make a decision?
6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.
a. social adjustment
b. student load payment options
c. emotional learning
d. insight learning
7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.
a. functional fixedness
c. working memory
Critical Thinking Questions:
1. What is functional fixedness and how can overcoming it help you solve problems?
2. How does an algorithm save you time and energy when solving a problem?
Personal Application Question:
1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?
anchoring bias
availability heuristic
confirmation bias
functional fixedness
hindsight bias
problem-solving strategy
representative bias
trial and error
working backwards
Answers to Exercises
algorithm: problem-solving strategy characterized by a specific set of instructions
anchoring bias: faulty heuristic in which you fixate on a single aspect of a problem to find a solution
availability heuristic: faulty heuristic in which you make a decision based on information readily available to you
confirmation bias: faulty heuristic in which you focus on information that confirms your beliefs
functional fixedness: inability to see an object as useful for any other use other than the one for which it was intended
heuristic: mental shortcut that saves time when solving a problem
hindsight bias: belief that the event just experienced was predictable, even though it really wasn’t
mental set: continually using an old solution to a problem without results
problem-solving strategy: method for solving problems
representative bias: faulty heuristic in which you stereotype someone or something without a valid basis for your judgment
trial and error: problem-solving strategy in which multiple solutions are attempted until the correct one is found
working backwards: heuristic in which you begin to solve a problem by focusing on the end result
Share This Book
- Increase Font Size
Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.
14.3 Problem Solving and Decision Making in Groups
Learning objectives.
- Discuss the common components and characteristics of problems.
- Explain the five steps of the group problem-solving process.
- Describe the brainstorming and discussion that should take place before the group makes a decision.
- Compare and contrast the different decision-making techniques.
- Discuss the various influences on decision making.
Although the steps of problem solving and decision making that we will discuss next may seem obvious, we often don’t think to or choose not to use them. Instead, we start working on a problem and later realize we are lost and have to backtrack. I’m sure we’ve all reached a point in a project or task and had the “OK, now what?” moment. I’ve recently taken up some carpentry projects as a functional hobby, and I have developed a great respect for the importance of advanced planning. It’s frustrating to get to a crucial point in building or fixing something only to realize that you have to unscrew a support board that you already screwed in, have to drive back to the hardware store to get something that you didn’t think to get earlier, or have to completely start over. In this section, we will discuss the group problem-solving process, methods of decision making, and influences on these processes.
Group Problem Solving
The problem-solving process involves thoughts, discussions, actions, and decisions that occur from the first consideration of a problematic situation to the goal. The problems that groups face are varied, but some common problems include budgeting funds, raising funds, planning events, addressing customer or citizen complaints, creating or adapting products or services to fit needs, supporting members, and raising awareness about issues or causes.
Problems of all sorts have three common components (Adams & Galanes, 2009):
- An undesirable situation. When conditions are desirable, there isn’t a problem.
- A desired situation. Even though it may only be a vague idea, there is a drive to better the undesirable situation. The vague idea may develop into a more precise goal that can be achieved, although solutions are not yet generated.
- Obstacles between undesirable and desirable situation. These are things that stand in the way between the current situation and the group’s goal of addressing it. This component of a problem requires the most work, and it is the part where decision making occurs. Some examples of obstacles include limited funding, resources, personnel, time, or information. Obstacles can also take the form of people who are working against the group, including people resistant to change or people who disagree.
Discussion of these three elements of a problem helps the group tailor its problem-solving process, as each problem will vary. While these three general elements are present in each problem, the group should also address specific characteristics of the problem. Five common and important characteristics to consider are task difficulty, number of possible solutions, group member interest in problem, group member familiarity with problem, and the need for solution acceptance (Adams & Galanes, 2009).
- Task difficulty. Difficult tasks are also typically more complex. Groups should be prepared to spend time researching and discussing a difficult and complex task in order to develop a shared foundational knowledge. This typically requires individual work outside of the group and frequent group meetings to share information.
- Number of possible solutions. There are usually multiple ways to solve a problem or complete a task, but some problems have more potential solutions than others. Figuring out how to prepare a beach house for an approaching hurricane is fairly complex and difficult, but there are still a limited number of things to do—for example, taping and boarding up windows; turning off water, electricity, and gas; trimming trees; and securing loose outside objects. Other problems may be more creatively based. For example, designing a new restaurant may entail using some standard solutions but could also entail many different types of innovation with layout and design.
- Group member interest in problem. When group members are interested in the problem, they will be more engaged with the problem-solving process and invested in finding a quality solution. Groups with high interest in and knowledge about the problem may want more freedom to develop and implement solutions, while groups with low interest may prefer a leader who provides structure and direction.
- Group familiarity with problem. Some groups encounter a problem regularly, while other problems are more unique or unexpected. A family who has lived in hurricane alley for decades probably has a better idea of how to prepare its house for a hurricane than does a family that just recently moved from the Midwest. Many groups that rely on funding have to revisit a budget every year, and in recent years, groups have had to get more creative with budgets as funding has been cut in nearly every sector. When group members aren’t familiar with a problem, they will need to do background research on what similar groups have done and may also need to bring in outside experts.
- Need for solution acceptance. In this step, groups must consider how many people the decision will affect and how much “buy-in” from others the group needs in order for their solution to be successfully implemented. Some small groups have many stakeholders on whom the success of a solution depends. Other groups are answerable only to themselves. When a small group is planning on building a new park in a crowded neighborhood or implementing a new policy in a large business, it can be very difficult to develop solutions that will be accepted by all. In such cases, groups will want to poll those who will be affected by the solution and may want to do a pilot implementation to see how people react. Imposing an excellent solution that doesn’t have buy-in from stakeholders can still lead to failure.
Group problem solving can be a confusing puzzle unless it is approached systematically.
Muness Castle – Problem Solving – CC BY-SA 2.0.
Group Problem-Solving Process
There are several variations of similar problem-solving models based on US American scholar John Dewey’s reflective thinking process (Bormann & Bormann, 1988). As you read through the steps in the process, think about how you can apply what we learned regarding the general and specific elements of problems. Some of the following steps are straightforward, and they are things we would logically do when faced with a problem. However, taking a deliberate and systematic approach to problem solving has been shown to benefit group functioning and performance. A deliberate approach is especially beneficial for groups that do not have an established history of working together and will only be able to meet occasionally. Although a group should attend to each step of the process, group leaders or other group members who facilitate problem solving should be cautious not to dogmatically follow each element of the process or force a group along. Such a lack of flexibility could limit group member input and negatively affect the group’s cohesion and climate.
Step 1: Define the Problem
Define the problem by considering the three elements shared by every problem: the current undesirable situation, the goal or more desirable situation, and obstacles in the way (Adams & Galanes, 2009). At this stage, group members share what they know about the current situation, without proposing solutions or evaluating the information. Here are some good questions to ask during this stage: What is the current difficulty? How did we come to know that the difficulty exists? Who/what is involved? Why is it meaningful/urgent/important? What have the effects been so far? What, if any, elements of the difficulty require clarification? At the end of this stage, the group should be able to compose a single sentence that summarizes the problem called a problem statement . Avoid wording in the problem statement or question that hints at potential solutions. A small group formed to investigate ethical violations of city officials could use the following problem statement: “Our state does not currently have a mechanism for citizens to report suspected ethical violations by city officials.”
Step 2: Analyze the Problem
During this step a group should analyze the problem and the group’s relationship to the problem. Whereas the first step involved exploring the “what” related to the problem, this step focuses on the “why.” At this stage, group members can discuss the potential causes of the difficulty. Group members may also want to begin setting out an agenda or timeline for the group’s problem-solving process, looking forward to the other steps. To fully analyze the problem, the group can discuss the five common problem variables discussed before. Here are two examples of questions that the group formed to address ethics violations might ask: Why doesn’t our city have an ethics reporting mechanism? Do cities of similar size have such a mechanism? Once the problem has been analyzed, the group can pose a problem question that will guide the group as it generates possible solutions. “How can citizens report suspected ethical violations of city officials and how will such reports be processed and addressed?” As you can see, the problem question is more complex than the problem statement, since the group has moved on to more in-depth discussion of the problem during step 2.
Step 3: Generate Possible Solutions
During this step, group members generate possible solutions to the problem. Again, solutions should not be evaluated at this point, only proposed and clarified. The question should be what could we do to address this problem, not what should we do to address it. It is perfectly OK for a group member to question another person’s idea by asking something like “What do you mean?” or “Could you explain your reasoning more?” Discussions at this stage may reveal a need to return to previous steps to better define or more fully analyze a problem. Since many problems are multifaceted, it is necessary for group members to generate solutions for each part of the problem separately, making sure to have multiple solutions for each part. Stopping the solution-generating process prematurely can lead to groupthink. For the problem question previously posed, the group would need to generate solutions for all three parts of the problem included in the question. Possible solutions for the first part of the problem (How can citizens report ethical violations?) may include “online reporting system, e-mail, in-person, anonymously, on-the-record,” and so on. Possible solutions for the second part of the problem (How will reports be processed?) may include “daily by a newly appointed ethics officer, weekly by a nonpartisan nongovernment employee,” and so on. Possible solutions for the third part of the problem (How will reports be addressed?) may include “by a newly appointed ethics commission, by the accused’s supervisor, by the city manager,” and so on.
Step 4: Evaluate Solutions
During this step, solutions can be critically evaluated based on their credibility, completeness, and worth. Once the potential solutions have been narrowed based on more obvious differences in relevance and/or merit, the group should analyze each solution based on its potential effects—especially negative effects. Groups that are required to report the rationale for their decision or whose decisions may be subject to public scrutiny would be wise to make a set list of criteria for evaluating each solution. Additionally, solutions can be evaluated based on how well they fit with the group’s charge and the abilities of the group. To do this, group members may ask, “Does this solution live up to the original purpose or mission of the group?” and “Can the solution actually be implemented with our current resources and connections?” and “How will this solution be supported, funded, enforced, and assessed?” Secondary tensions and substantive conflict, two concepts discussed earlier, emerge during this step of problem solving, and group members will need to employ effective critical thinking and listening skills.
Decision making is part of the larger process of problem solving and it plays a prominent role in this step. While there are several fairly similar models for problem solving, there are many varied decision-making techniques that groups can use. For example, to narrow the list of proposed solutions, group members may decide by majority vote, by weighing the pros and cons, or by discussing them until a consensus is reached. There are also more complex decision-making models like the “six hats method,” which we will discuss later. Once the final decision is reached, the group leader or facilitator should confirm that the group is in agreement. It may be beneficial to let the group break for a while or even to delay the final decision until a later meeting to allow people time to evaluate it outside of the group context.
Step 5: Implement and Assess the Solution
Implementing the solution requires some advanced planning, and it should not be rushed unless the group is operating under strict time restraints or delay may lead to some kind of harm. Although some solutions can be implemented immediately, others may take days, months, or years. As was noted earlier, it may be beneficial for groups to poll those who will be affected by the solution as to their opinion of it or even to do a pilot test to observe the effectiveness of the solution and how people react to it. Before implementation, groups should also determine how and when they would assess the effectiveness of the solution by asking, “How will we know if the solution is working or not?” Since solution assessment will vary based on whether or not the group is disbanded, groups should also consider the following questions: If the group disbands after implementation, who will be responsible for assessing the solution? If the solution fails, will the same group reconvene or will a new group be formed?
Once a solution has been reached and the group has the “green light” to implement it, it should proceed deliberately and cautiously, making sure to consider possible consequences and address them as needed.
Jocko Benoit – Prodigal Light – CC BY-NC-ND 2.0.
Certain elements of the solution may need to be delegated out to various people inside and outside the group. Group members may also be assigned to implement a particular part of the solution based on their role in the decision making or because it connects to their area of expertise. Likewise, group members may be tasked with publicizing the solution or “selling” it to a particular group of stakeholders. Last, the group should consider its future. In some cases, the group will get to decide if it will stay together and continue working on other tasks or if it will disband. In other cases, outside forces determine the group’s fate.
“Getting Competent”
Problem Solving and Group Presentations
Giving a group presentation requires that individual group members and the group as a whole solve many problems and make many decisions. Although having more people involved in a presentation increases logistical difficulties and has the potential to create more conflict, a well-prepared and well-delivered group presentation can be more engaging and effective than a typical presentation. The main problems facing a group giving a presentation are (1) dividing responsibilities, (2) coordinating schedules and time management, and (3) working out the logistics of the presentation delivery.
In terms of dividing responsibilities, assigning individual work at the first meeting and then trying to fit it all together before the presentation (which is what many college students do when faced with a group project) is not the recommended method. Integrating content and visual aids created by several different people into a seamless final product takes time and effort, and the person “stuck” with this job at the end usually ends up developing some resentment toward his or her group members. While it’s OK for group members to do work independently outside of group meetings, spend time working together to help set up some standards for content and formatting expectations that will help make later integration of work easier. Taking the time to complete one part of the presentation together can help set those standards for later individual work. Discuss the roles that various group members will play openly so there isn’t role confusion. There could be one point person for keeping track of the group’s progress and schedule, one point person for communication, one point person for content integration, one point person for visual aids, and so on. Each person shouldn’t do all that work on his or her own but help focus the group’s attention on his or her specific area during group meetings (Stanton, 2009).
Scheduling group meetings is one of the most challenging problems groups face, given people’s busy lives. From the beginning, it should be clearly communicated that the group needs to spend considerable time in face-to-face meetings, and group members should know that they may have to make an occasional sacrifice to attend. Especially important is the commitment to scheduling time to rehearse the presentation. Consider creating a contract of group guidelines that includes expectations for meeting attendance to increase group members’ commitment.
Group presentations require members to navigate many logistics of their presentation. While it may be easier for a group to assign each member to create a five-minute segment and then transition from one person to the next, this is definitely not the most engaging method. Creating a master presentation and then assigning individual speakers creates a more fluid and dynamic presentation and allows everyone to become familiar with the content, which can help if a person doesn’t show up to present and during the question-and-answer section. Once the content of the presentation is complete, figure out introductions, transitions, visual aids, and the use of time and space (Stanton, 2012). In terms of introductions, figure out if one person will introduce all the speakers at the beginning, if speakers will introduce themselves at the beginning, or if introductions will occur as the presentation progresses. In terms of transitions, make sure each person has included in his or her speaking notes when presentation duties switch from one person to the next. Visual aids have the potential to cause hiccups in a group presentation if they aren’t fluidly integrated. Practicing with visual aids and having one person control them may help prevent this. Know how long your presentation is and know how you’re going to use the space. Presenters should know how long the whole presentation should be and how long each of their segments should be so that everyone can share the responsibility of keeping time. Also consider the size and layout of the presentation space. You don’t want presenters huddled in a corner until it’s their turn to speak or trapped behind furniture when their turn comes around.
- Of the three main problems facing group presenters, which do you think is the most challenging and why?
- Why do you think people tasked with a group presentation (especially students) prefer to divide the parts up and have members work on them independently before coming back together and integrating each part? What problems emerge from this method? In what ways might developing a master presentation and then assigning parts to different speakers be better than the more divided method? What are the drawbacks to the master presentation method?
Decision Making in Groups
We all engage in personal decision making daily, and we all know that some decisions are more difficult than others. When we make decisions in groups, we face some challenges that we do not face in our personal decision making, but we also stand to benefit from some advantages of group decision making (Napier & Gershenfeld, 2004). Group decision making can appear fair and democratic but really only be a gesture that covers up the fact that certain group members or the group leader have already decided. Group decision making also takes more time than individual decisions and can be burdensome if some group members do not do their assigned work, divert the group with self-centered or unproductive role behaviors, or miss meetings. Conversely, though, group decisions are often more informed, since all group members develop a shared understanding of a problem through discussion and debate. The shared understanding may also be more complex and deep than what an individual would develop, because the group members are exposed to a variety of viewpoints that can broaden their own perspectives. Group decisions also benefit from synergy, one of the key advantages of group communication that we discussed earlier. Most groups do not use a specific method of decision making, perhaps thinking that they’ll work things out as they go. This can lead to unequal participation, social loafing, premature decisions, prolonged discussion, and a host of other negative consequences. So in this section we will learn some practices that will prepare us for good decision making and some specific techniques we can use to help us reach a final decision.
Brainstorming before Decision Making
Before groups can make a decision, they need to generate possible solutions to their problem. The most commonly used method is brainstorming, although most people don’t follow the recommended steps of brainstorming. As you’ll recall, brainstorming refers to the quick generation of ideas free of evaluation. The originator of the term brainstorming said the following four rules must be followed for the technique to be effective (Osborn, 1959):
- Evaluation of ideas is forbidden.
- Wild and crazy ideas are encouraged.
- Quantity of ideas, not quality, is the goal.
- New combinations of ideas presented are encouraged.
To make brainstorming more of a decision-making method rather than an idea-generating method, group communication scholars have suggested additional steps that precede and follow brainstorming (Cragan & Wright, 1991).
- Do a warm-up brainstorming session. Some people are more apprehensive about publicly communicating their ideas than others are, and a warm-up session can help ease apprehension and prime group members for task-related idea generation. The warm-up can be initiated by anyone in the group and should only go on for a few minutes. To get things started, a person could ask, “If our group formed a band, what would we be called?” or “What other purposes could a mailbox serve?” In the previous examples, the first warm up gets the group’s more abstract creative juices flowing, while the second focuses more on practical and concrete ideas.
- Do the actual brainstorming session. This session shouldn’t last more than thirty minutes and should follow the four rules of brainstorming mentioned previously. To ensure that the fourth rule is realized, the facilitator could encourage people to piggyback off each other’s ideas.
- Eliminate duplicate ideas. After the brainstorming session is over, group members can eliminate (without evaluating) ideas that are the same or very similar.
- Clarify, organize, and evaluate ideas. Before evaluation, see if any ideas need clarification. Then try to theme or group ideas together in some orderly fashion. Since “wild and crazy” ideas are encouraged, some suggestions may need clarification. If it becomes clear that there isn’t really a foundation to an idea and that it is too vague or abstract and can’t be clarified, it may be eliminated. As a caution though, it may be wise to not throw out off-the-wall ideas that are hard to categorize and to instead put them in a miscellaneous or “wild and crazy” category.
Discussion before Decision Making
The nominal group technique guides decision making through a four-step process that includes idea generation and evaluation and seeks to elicit equal contributions from all group members (Delbecq & Ven de Ven, 1971). This method is useful because the procedure involves all group members systematically, which fixes the problem of uneven participation during discussions. Since everyone contributes to the discussion, this method can also help reduce instances of social loafing. To use the nominal group technique, do the following:
- Silently and individually list ideas.
- Create a master list of ideas.
- Clarify ideas as needed.
- Take a secret vote to rank group members’ acceptance of ideas.
During the first step, have group members work quietly, in the same space, to write down every idea they have to address the task or problem they face. This shouldn’t take more than twenty minutes. Whoever is facilitating the discussion should remind group members to use brainstorming techniques, which means they shouldn’t evaluate ideas as they are generated. Ask group members to remain silent once they’ve finished their list so they do not distract others.
During the second step, the facilitator goes around the group in a consistent order asking each person to share one idea at a time. As the idea is shared, the facilitator records it on a master list that everyone can see. Keep track of how many times each idea comes up, as that could be an idea that warrants more discussion. Continue this process until all the ideas have been shared. As a note to facilitators, some group members may begin to edit their list or self-censor when asked to provide one of their ideas. To limit a person’s apprehension with sharing his or her ideas and to ensure that each idea is shared, I have asked group members to exchange lists with someone else so they can share ideas from the list they receive without fear of being personally judged.
During step three, the facilitator should note that group members can now ask for clarification on ideas on the master list. Do not let this discussion stray into evaluation of ideas. To help avoid an unnecessarily long discussion, it may be useful to go from one person to the next to ask which ideas need clarifying and then go to the originator(s) of the idea in question for clarification.
During the fourth step, members use a voting ballot to rank the acceptability of the ideas on the master list. If the list is long, you may ask group members to rank only their top five or so choices. The facilitator then takes up the secret ballots and reviews them in a random order, noting the rankings of each idea. Ideally, the highest ranked idea can then be discussed and decided on. The nominal group technique does not carry a group all the way through to the point of decision; rather, it sets the group up for a roundtable discussion or use of some other method to evaluate the merits of the top ideas.
Specific Decision-Making Techniques
Some decision-making techniques involve determining a course of action based on the level of agreement among the group members. These methods include majority, expert, authority, and consensus rule. Table 14.1 “Pros and Cons of Agreement-Based Decision-Making Techniques” reviews the pros and cons of each of these methods.
Majority rule is a simple method of decision making based on voting. In most cases a majority is considered half plus one.
Becky McCray – Voting – CC BY-NC-ND 2.0.
Majority rule is a commonly used decision-making technique in which a majority (one-half plus one) must agree before a decision is made. A show-of-hands vote, a paper ballot, or an electronic voting system can determine the majority choice. Many decision-making bodies, including the US House of Representatives, Senate, and Supreme Court, use majority rule to make decisions, which shows that it is often associated with democratic decision making, since each person gets one vote and each vote counts equally. Of course, other individuals and mediated messages can influence a person’s vote, but since the voting power is spread out over all group members, it is not easy for one person or party to take control of the decision-making process. In some cases—for example, to override a presidential veto or to amend the constitution—a super majority of two-thirds may be required to make a decision.
Minority rule is a decision-making technique in which a designated authority or expert has final say over a decision and may or may not consider the input of other group members. When a designated expert makes a decision by minority rule, there may be buy-in from others in the group, especially if the members of the group didn’t have relevant knowledge or expertise. When a designated authority makes decisions, buy-in will vary based on group members’ level of respect for the authority. For example, decisions made by an elected authority may be more accepted by those who elected him or her than by those who didn’t. As with majority rule, this technique can be time saving. Unlike majority rule, one person or party can have control over the decision-making process. This type of decision making is more similar to that used by monarchs and dictators. An obvious negative consequence of this method is that the needs or wants of one person can override the needs and wants of the majority. A minority deciding for the majority has led to negative consequences throughout history. The white Afrikaner minority that ruled South Africa for decades instituted apartheid, which was a system of racial segregation that disenfranchised and oppressed the majority population. The quality of the decision and its fairness really depends on the designated expert or authority.
Consensus rule is a decision-making technique in which all members of the group must agree on the same decision. On rare occasions, a decision may be ideal for all group members, which can lead to unanimous agreement without further debate and discussion. Although this can be positive, be cautious that this isn’t a sign of groupthink. More typically, consensus is reached only after lengthy discussion. On the plus side, consensus often leads to high-quality decisions due to the time and effort it takes to get everyone in agreement. Group members are also more likely to be committed to the decision because of their investment in reaching it. On the negative side, the ultimate decision is often one that all group members can live with but not one that’s ideal for all members. Additionally, the process of arriving at consensus also includes conflict, as people debate ideas and negotiate the interpersonal tensions that may result.
Table 14.1 Pros and Cons of Agreement-Based Decision-Making Techniques
Decision-Making Technique | Pros | Cons |
---|---|---|
Majority rule | ||
Minority rule by expert | ||
Minority rule by authority | ||
Consensus rule |
“Getting Critical”
Six Hats Method of Decision Making
Edward de Bono developed the Six Hats method of thinking in the late 1980s, and it has since become a regular feature in decision-making training in business and professional contexts (de Bono, 1985). The method’s popularity lies in its ability to help people get out of habitual ways of thinking and to allow group members to play different roles and see a problem or decision from multiple points of view. The basic idea is that each of the six hats represents a different way of thinking, and when we figuratively switch hats, we switch the way we think. The hats and their style of thinking are as follows:
- White hat. Objective—focuses on seeking information such as data and facts and then processes that information in a neutral way.
- Red hat. Emotional—uses intuition, gut reactions, and feelings to judge information and suggestions.
- Black hat. Negative—focuses on potential risks, points out possibilities for failure, and evaluates information cautiously and defensively.
- Yellow hat. Positive—is optimistic about suggestions and future outcomes, gives constructive and positive feedback, points out benefits and advantages.
- Green hat. Creative—tries to generate new ideas and solutions, thinks “outside the box.”
- Blue hat. Philosophical—uses metacommunication to organize and reflect on the thinking and communication taking place in the group, facilitates who wears what hat and when group members change hats.
Specific sequences or combinations of hats can be used to encourage strategic thinking. For example, the group leader may start off wearing the Blue Hat and suggest that the group start their decision-making process with some “White Hat thinking” in order to process through facts and other available information. During this stage, the group could also process through what other groups have done when faced with a similar problem. Then the leader could begin an evaluation sequence starting with two minutes of “Yellow Hat thinking” to identify potential positive outcomes, then “Black Hat thinking” to allow group members to express reservations about ideas and point out potential problems, then “Red Hat thinking” to get people’s gut reactions to the previous discussion, then “Green Hat thinking” to identify other possible solutions that are more tailored to the group’s situation or completely new approaches. At the end of a sequence, the Blue Hat would want to summarize what was said and begin a new sequence. To successfully use this method, the person wearing the Blue Hat should be familiar with different sequences and plan some of the thinking patterns ahead of time based on the problem and the group members. Each round of thinking should be limited to a certain time frame (two to five minutes) to keep the discussion moving.
- This decision-making method has been praised because it allows group members to “switch gears” in their thinking and allows for role playing, which lets people express ideas more freely. How can this help enhance critical thinking? Which combination of hats do you think would be best for a critical thinking sequence?
- What combinations of hats might be useful if the leader wanted to break the larger group up into pairs and why? For example, what kind of thinking would result from putting Yellow and Red together, Black and White together, or Red and White together, and so on?
- Based on your preferred ways of thinking and your personality, which hat would be the best fit for you? Which would be the most challenging? Why?
Influences on Decision Making
Many factors influence the decision-making process. For example, how might a group’s independence or access to resources affect the decisions they make? What potential advantages and disadvantages come with decisions made by groups that are more or less similar in terms of personality and cultural identities? In this section, we will explore how situational, personality, and cultural influences affect decision making in groups.
Situational Influences on Decision Making
A group’s situational context affects decision making. One key situational element is the degree of freedom that the group has to make its own decisions, secure its own resources, and initiate its own actions. Some groups have to go through multiple approval processes before they can do anything, while others are self-directed, self-governing, and self-sustaining. Another situational influence is uncertainty. In general, groups deal with more uncertainty in decision making than do individuals because of the increased number of variables that comes with adding more people to a situation. Individual group members can’t know what other group members are thinking, whether or not they are doing their work, and how committed they are to the group. So the size of a group is a powerful situational influence, as it adds to uncertainty and complicates communication.
Access to information also influences a group. First, the nature of the group’s task or problem affects its ability to get information. Group members can more easily make decisions about a problem when other groups have similarly experienced it. Even if the problem is complex and serious, the group can learn from other situations and apply what it learns. Second, the group must have access to flows of information. Access to archives, electronic databases, and individuals with relevant experience is necessary to obtain any relevant information about similar problems or to do research on a new or unique problem. In this regard, group members’ formal and information network connections also become important situational influences.
The urgency of a decision can have a major influence on the decision-making process. As a situation becomes more urgent, it requires more specific decision-making methods and types of communication.
Judith E. Bell – Urgent – CC BY-SA 2.0.
The origin and urgency of a problem are also situational factors that influence decision making. In terms of origin, problems usually occur in one of four ways:
- Something goes wrong. Group members must decide how to fix or stop something. Example—a firehouse crew finds out that half of the building is contaminated with mold and must be closed down.
- Expectations change or increase. Group members must innovate more efficient or effective ways of doing something. Example—a firehouse crew finds out that the district they are responsible for is being expanded.
- Something goes wrong and expectations change or increase. Group members must fix/stop and become more efficient/effective. Example—the firehouse crew has to close half the building and must start responding to more calls due to the expanding district.
- The problem existed from the beginning. Group members must go back to the origins of the situation and walk through and analyze the steps again to decide what can be done differently. Example—a firehouse crew has consistently had to work with minimal resources in terms of building space and firefighting tools.
In each of the cases, the need for a decision may be more or less urgent depending on how badly something is going wrong, how high the expectations have been raised, or the degree to which people are fed up with a broken system. Decisions must be made in situations ranging from crisis level to mundane.
Personality Influences on Decision Making
A long-studied typology of value orientations that affect decision making consists of the following types of decision maker: the economic, the aesthetic, the theoretical, the social, the political, and the religious (Spranger, 1928).
- The economic decision maker makes decisions based on what is practical and useful.
- The aesthetic decision maker makes decisions based on form and harmony, desiring a solution that is elegant and in sync with the surroundings.
- The theoretical decision maker wants to discover the truth through rationality.
- The social decision maker emphasizes the personal impact of a decision and sympathizes with those who may be affected by it.
- The political decision maker is interested in power and influence and views people and/or property as divided into groups that have different value.
- The religious decision maker seeks to identify with a larger purpose, works to unify others under that goal, and commits to a viewpoint, often denying one side and being dedicated to the other.
In the United States, economic, political, and theoretical decision making tend to be more prevalent decision-making orientations, which likely corresponds to the individualistic cultural orientation with its emphasis on competition and efficiency. But situational context, as we discussed before, can also influence our decision making.
Personality affects decision making. For example, “economic” decision makers decide based on what is practical and useful.
One Way Stock – Tough Decisions Ahead – CC BY-ND 2.0.
The personalities of group members, especially leaders and other active members, affect the climate of the group. Group member personalities can be categorized based on where they fall on a continuum anchored by the following descriptors: dominant/submissive, friendly/unfriendly, and instrumental/emotional (Cragan & Wright, 1999). The more group members there are in any extreme of these categories, the more likely that the group climate will also shift to resemble those characteristics.
- Dominant versus submissive. Group members that are more dominant act more independently and directly, initiate conversations, take up more space, make more direct eye contact, seek leadership positions, and take control over decision-making processes. More submissive members are reserved, contribute to the group only when asked to, avoid eye contact, and leave their personal needs and thoughts unvoiced or give into the suggestions of others.
- Friendly versus unfriendly. Group members on the friendly side of the continuum find a balance between talking and listening, don’t try to win at the expense of other group members, are flexible but not weak, and value democratic decision making. Unfriendly group members are disagreeable, indifferent, withdrawn, and selfish, which leads them to either not invest in decision making or direct it in their own interest rather than in the interest of the group.
- Instrumental versus emotional. Instrumental group members are emotionally neutral, objective, analytical, task-oriented, and committed followers, which leads them to work hard and contribute to the group’s decision making as long as it is orderly and follows agreed-on rules. Emotional group members are creative, playful, independent, unpredictable, and expressive, which leads them to make rash decisions, resist group norms or decision-making structures, and switch often from relational to task focus.
Cultural Context and Decision Making
Just like neighborhoods, schools, and countries, small groups vary in terms of their degree of similarity and difference. Demographic changes in the United States and increases in technology that can bring different people together make it more likely that we will be interacting in more and more heterogeneous groups (Allen, 2011). Some small groups are more homogenous, meaning the members are more similar, and some are more heterogeneous, meaning the members are more different. Diversity and difference within groups has advantages and disadvantages. In terms of advantages, research finds that, in general, groups that are culturally heterogeneous have better overall performance than more homogenous groups (Haslett & Ruebush, 1999). Additionally, when group members have time to get to know each other and competently communicate across their differences, the advantages of diversity include better decision making due to different perspectives (Thomas, 1999). Unfortunately, groups often operate under time constraints and other pressures that make the possibility for intercultural dialogue and understanding difficult. The main disadvantage of heterogeneous groups is the possibility for conflict, but given that all groups experience conflict, this isn’t solely due to the presence of diversity. We will now look more specifically at how some of the cultural value orientations we’ve learned about already in this book can play out in groups with international diversity and how domestic diversity in terms of demographics can also influence group decision making.
International Diversity in Group Interactions
Cultural value orientations such as individualism/collectivism, power distance, and high-/low-context communication styles all manifest on a continuum of communication behaviors and can influence group decision making. Group members from individualistic cultures are more likely to value task-oriented, efficient, and direct communication. This could manifest in behaviors such as dividing up tasks into individual projects before collaboration begins and then openly debating ideas during discussion and decision making. Additionally, people from cultures that value individualism are more likely to openly express dissent from a decision, essentially expressing their disagreement with the group. Group members from collectivistic cultures are more likely to value relationships over the task at hand. Because of this, they also tend to value conformity and face-saving (often indirect) communication. This could manifest in behaviors such as establishing norms that include periods of socializing to build relationships before task-oriented communication like negotiations begin or norms that limit public disagreement in favor of more indirect communication that doesn’t challenge the face of other group members or the group’s leader. In a group composed of people from a collectivistic culture, each member would likely play harmonizing roles, looking for signs of conflict and resolving them before they become public.
Power distance can also affect group interactions. Some cultures rank higher on power-distance scales, meaning they value hierarchy, make decisions based on status, and believe that people have a set place in society that is fairly unchangeable. Group members from high-power-distance cultures would likely appreciate a strong designated leader who exhibits a more directive leadership style and prefer groups in which members have clear and assigned roles. In a group that is homogenous in terms of having a high-power-distance orientation, members with higher status would be able to openly provide information, and those with lower status may not provide information unless a higher status member explicitly seeks it from them. Low-power-distance cultures do not place as much value and meaning on status and believe that all group members can participate in decision making. Group members from low-power-distance cultures would likely freely speak their mind during a group meeting and prefer a participative leadership style.
How much meaning is conveyed through the context surrounding verbal communication can also affect group communication. Some cultures have a high-context communication style in which much of the meaning in an interaction is conveyed through context such as nonverbal cues and silence. Group members from high-context cultures may avoid saying something directly, assuming that other group members will understand the intended meaning even if the message is indirect. So if someone disagrees with a proposed course of action, he or she may say, “Let’s discuss this tomorrow,” and mean, “I don’t think we should do this.” Such indirect communication is also a face-saving strategy that is common in collectivistic cultures. Other cultures have a low-context communication style that places more importance on the meaning conveyed through words than through context or nonverbal cues. Group members from low-context cultures often say what they mean and mean what they say. For example, if someone doesn’t like an idea, they might say, “I think we should consider more options. This one doesn’t seem like the best we can do.”
In any of these cases, an individual from one culture operating in a group with people of a different cultural orientation could adapt to the expectations of the host culture, especially if that person possesses a high degree of intercultural communication competence (ICC). Additionally, people with high ICC can also adapt to a group member with a different cultural orientation than the host culture. Even though these cultural orientations connect to values that affect our communication in fairly consistent ways, individuals may exhibit different communication behaviors depending on their own individual communication style and the situation.
Domestic Diversity and Group Communication
While it is becoming more likely that we will interact in small groups with international diversity, we are guaranteed to interact in groups that are diverse in terms of the cultural identities found within a single country or the subcultures found within a larger cultural group.
Gender stereotypes sometimes influence the roles that people play within a group. For example, the stereotype that women are more nurturing than men may lead group members (both male and female) to expect that women will play the role of supporters or harmonizers within the group. Since women have primarily performed secretarial work since the 1900s, it may also be expected that women will play the role of recorder. In both of these cases, stereotypical notions of gender place women in roles that are typically not as valued in group communication. The opposite is true for men. In terms of leadership, despite notable exceptions, research shows that men fill an overwhelmingly disproportionate amount of leadership positions. We are socialized to see certain behaviors by men as indicative of leadership abilities, even though they may not be. For example, men are often perceived to contribute more to a group because they tend to speak first when asked a question or to fill a silence and are perceived to talk more about task-related matters than relationally oriented matters. Both of these tendencies create a perception that men are more engaged with the task. Men are also socialized to be more competitive and self-congratulatory, meaning that their communication may be seen as dedicated and their behaviors seen as powerful, and that when their work isn’t noticed they will be more likely to make it known to the group rather than take silent credit. Even though we know that the relational elements of a group are crucial for success, even in high-performance teams, that work is not as valued in our society as the task-related work.
Despite the fact that some communication patterns and behaviors related to our typical (and stereotypical) gender socialization affect how we interact in and form perceptions of others in groups, the differences in group communication that used to be attributed to gender in early group communication research seem to be diminishing. This is likely due to the changing organizational cultures from which much group work emerges, which have now had more than sixty years to adjust to women in the workplace. It is also due to a more nuanced understanding of gender-based research, which doesn’t take a stereotypical view from the beginning as many of the early male researchers did. Now, instead of biological sex being assumed as a factor that creates inherent communication differences, group communication scholars see that men and women both exhibit a range of behaviors that are more or less feminine or masculine. It is these gendered behaviors, and not a person’s gender, that seem to have more of an influence on perceptions of group communication. Interestingly, group interactions are still masculinist in that male and female group members prefer a more masculine communication style for task leaders and that both males and females in this role are more likely to adapt to a more masculine communication style. Conversely, men who take on social-emotional leadership behaviors adopt a more feminine communication style. In short, it seems that although masculine communication traits are more often associated with high status positions in groups, both men and women adapt to this expectation and are evaluated similarly (Haslett & Ruebush, 1999).
Other demographic categories are also influential in group communication and decision making. In general, group members have an easier time communicating when they are more similar than different in terms of race and age. This ease of communication can make group work more efficient, but the homogeneity may sacrifice some creativity. As we learned earlier, groups that are diverse (e.g., they have members of different races and generations) benefit from the diversity of perspectives in terms of the quality of decision making and creativity of output.
In terms of age, for the first time since industrialization began, it is common to have three generations of people (and sometimes four) working side by side in an organizational setting. Although four generations often worked together in early factories, they were segregated based on their age group, and a hierarchy existed with older workers at the top and younger workers at the bottom. Today, however, generations interact regularly, and it is not uncommon for an older person to have a leader or supervisor who is younger than him or her (Allen, 2011). The current generations in the US workplace and consequently in work-based groups include the following:
- The Silent Generation. Born between 1925 and 1942, currently in their midsixties to mideighties, this is the smallest generation in the workforce right now, as many have retired or left for other reasons. This generation includes people who were born during the Great Depression or the early part of World War II, many of whom later fought in the Korean War (Clarke, 1970).
- The Baby Boomers. Born between 1946 and 1964, currently in their late forties to midsixties, this is the largest generation in the workforce right now. Baby boomers are the most populous generation born in US history, and they are working longer than previous generations, which means they will remain the predominant force in organizations for ten to twenty more years.
- Generation X. Born between 1965 and 1981, currently in their early thirties to midforties, this generation was the first to see technology like cell phones and the Internet make its way into classrooms and our daily lives. Compared to previous generations, “Gen-Xers” are more diverse in terms of race, religious beliefs, and sexual orientation and also have a greater appreciation for and understanding of diversity.
- Generation Y. Born between 1982 and 2000, “Millennials” as they are also called are currently in their late teens up to about thirty years old. This generation is not as likely to remember a time without technology such as computers and cell phones. They are just starting to enter into the workforce and have been greatly affected by the economic crisis of the late 2000s, experiencing significantly high unemployment rates.
The benefits and challenges that come with diversity of group members are important to consider. Since we will all work in diverse groups, we should be prepared to address potential challenges in order to reap the benefits. Diverse groups may be wise to coordinate social interactions outside of group time in order to find common ground that can help facilitate interaction and increase group cohesion. We should be sensitive but not let sensitivity create fear of “doing something wrong” that then prevents us from having meaningful interactions. Reviewing Chapter 8 “Culture and Communication” will give you useful knowledge to help you navigate both international and domestic diversity and increase your communication competence in small groups and elsewhere.
Key Takeaways
- Every problem has common components: an undesirable situation, a desired situation, and obstacles between the undesirable and desirable situations. Every problem also has a set of characteristics that vary among problems, including task difficulty, number of possible solutions, group member interest in the problem, group familiarity with the problem, and the need for solution acceptance.
The group problem-solving process has five steps:
- Define the problem by creating a problem statement that summarizes it.
- Analyze the problem and create a problem question that can guide solution generation.
- Generate possible solutions. Possible solutions should be offered and listed without stopping to evaluate each one.
- Evaluate the solutions based on their credibility, completeness, and worth. Groups should also assess the potential effects of the narrowed list of solutions.
- Implement and assess the solution. Aside from enacting the solution, groups should determine how they will know the solution is working or not.
- Before a group makes a decision, it should brainstorm possible solutions. Group communication scholars suggest that groups (1) do a warm-up brainstorming session; (2) do an actual brainstorming session in which ideas are not evaluated, wild ideas are encouraged, quantity not quality of ideas is the goal, and new combinations of ideas are encouraged; (3) eliminate duplicate ideas; and (4) clarify, organize, and evaluate ideas. In order to guide the idea-generation process and invite equal participation from group members, the group may also elect to use the nominal group technique.
- Common decision-making techniques include majority rule, minority rule, and consensus rule. With majority rule, only a majority, usually one-half plus one, must agree before a decision is made. With minority rule, a designated authority or expert has final say over a decision, and the input of group members may or may not be invited or considered. With consensus rule, all members of the group must agree on the same decision.
Several factors influence the decision-making process:
- Situational factors include the degree of freedom a group has to make its own decisions, the level of uncertainty facing the group and its task, the size of the group, the group’s access to information, and the origin and urgency of the problem.
- Personality influences on decision making include a person’s value orientation (economic, aesthetic, theoretical, political, or religious), and personality traits (dominant/submissive, friendly/unfriendly, and instrumental/emotional).
- Cultural influences on decision making include the heterogeneity or homogeneity of the group makeup; cultural values and characteristics such as individualism/collectivism, power distance, and high-/low-context communication styles; and gender and age differences.
- Scenario 1. Task difficulty is high, number of possible solutions is high, group interest in problem is high, group familiarity with problem is low, and need for solution acceptance is high.
- Scenario 2. Task difficulty is low, number of possible solutions is low, group interest in problem is low, group familiarity with problem is high, and need for solution acceptance is low.
- Scenario 1: Academic. A professor asks his or her class to decide whether the final exam should be an in-class or take-home exam.
- Scenario 2: Professional. A group of coworkers must decide which person from their department to nominate for a company-wide award.
- Scenario 3: Personal. A family needs to decide how to divide the belongings and estate of a deceased family member who did not leave a will.
- Scenario 4: Civic. A local branch of a political party needs to decide what five key issues it wants to include in the national party’s platform.
- Group communication researchers have found that heterogeneous groups (composed of diverse members) have advantages over homogenous (more similar) groups. Discuss a group situation you have been in where diversity enhanced your and/or the group’s experience.
Adams, K., and Gloria G. Galanes, Communicating in Groups: Applications and Skills , 7th ed. (Boston, MA: McGraw-Hill, 2009), 220–21.
Allen, B. J., Difference Matters: Communicating Social Identity , 2nd ed. (Long Grove, IL: Waveland, 2011), 5.
Bormann, E. G., and Nancy C. Bormann, Effective Small Group Communication , 4th ed. (Santa Rosa, CA: Burgess CA, 1988), 112–13.
Clarke, G., “The Silent Generation Revisited,” Time, June 29, 1970, 46.
Cragan, J. F., and David W. Wright, Communication in Small Group Discussions: An Integrated Approach , 3rd ed. (St. Paul, MN: West Publishing, 1991), 77–78.
de Bono, E., Six Thinking Hats (Boston, MA: Little, Brown, 1985).
Delbecq, A. L., and Andrew H. Ven de Ven, “A Group Process Model for Problem Identification and Program Planning,” The Journal of Applied Behavioral Science 7, no. 4 (1971): 466–92.
Haslett, B. B., and Jenn Ruebush, “What Differences Do Individual Differences in Groups Make?: The Effects of Individuals, Culture, and Group Composition,” in The Handbook of Group Communication Theory and Research , ed. Lawrence R. Frey (Thousand Oaks, CA: Sage, 1999), 133.
Napier, R. W., and Matti K. Gershenfeld, Groups: Theory and Experience , 7th ed. (Boston, MA: Houghton Mifflin, 2004), 292.
Osborn, A. F., Applied Imagination (New York: Charles Scribner’s Sons, 1959).
Spranger, E., Types of Men (New York: Steckert, 1928).
Stanton, C., “How to Deliver Group Presentations: The Unified Team Approach,” Six Minutes Speaking and Presentation Skills , November 3, 2009, accessed August 28, 2012, http://sixminutes.dlugan.com/group-presentations-unified-team-approach .
Thomas, D. C., “Cultural Diversity and Work Group Effectiveness: An Experimental Study,” Journal of Cross-Cultural Psychology 30, no. 2 (1999): 242–63.
Communication in the Real World Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.
6.2 Creative Problem-Solving Process
Portions of the material in this section are based on original work by Geoffrey Graybeal and produced with support from the Rebus Community. The original is freely available under the terms of the CC BY 4.0 license at https://press.rebus.community/media-innovation-and-entrepreneurship/.
Learning Objectives
By the end of this section, you will be able to:
- Describe the five steps in the creative problem-solving process
- Identify and describe common creative problem-solving tools
Creativity can be an important trait of an entrepreneur, as the chapter on Creativity, Innovation, and Invention discussed. In that discussion, we learned about creativity’s role in innovation . Here, we will look in more depth at creativity’s role in problem solving . Let’s first formally define creativity as the development of original ideas to solve an issue. The intent of being an entrepreneur is to break away from practical norms and use imagination to embrace quick and effective solutions to an existing problem, usually outside the corporate environment.
The Steps of the Creative Problem-Solving Process
Training oneself to think like an entrepreneur means learning the steps to evaluating a challenge: clarify, ideate, develop, implement, and evaluate ( Figure 6.9 ).
Step 1: Clarify
To clarify is the critical step of recognizing the existence of a gap between the current state and a desired state. This can also be thought of as having need awareness , which occurs when the entrepreneur notes a gap between societal or customer needs and actual circumstances. Clarifying the problem by speaking with clients and developing a detailed description of the problem brings the specifics of a problem to light. Failure to identify the specifics of a problem leaves the entrepreneur with the impossible task of solving a ghost problem, a problem that is fully unknown or unseen. To establish and maintain credibility, an entrepreneur must clarify the problem by focusing on solving the problem itself, rather than solving a symptom of the problem.
For example, a farm could have polluted water, but it would not be enough to solve the problem only on that farm. Clarifying would involve identifying the source of the pollution to adequately tackle the problem. After gaining an understanding of a problem, the entrepreneur should begin to formulate plans for eliminating the gap. A fishbone diagram , as shown in Figure 6.10 , is a tool that can be used to identify the causes of such a problem.
In the case of our water pollution example, a fishbone diagram exploring the issue might reveal the items shown in Figure 6.11 .
Step 2: Ideate
To ideate is the step of the creative problem-solving process that involves generating and detailing ideas by the entrepreneur. After collecting all information relevant to the problem, the entrepreneur lists as many causes of the problem as possible. This is the step in which the largest variety of ideas are put forth. Each idea must be evaluated for feasibility and cost as a solution to the problem. If a farm does not have clean water, for example, the entrepreneur must list causes of toxic water and eliminate as many of those causes as possible. The entrepreneur must then move forward investigating solutions to bring the water back to a safe state. If, say, nearby livestock are polluting the water, the livestock should be isolated from the water source.
Step 3: Develop
To develop is the step in which the entrepreneur takes the list of ideas generated and tests each solution for feasibility. The entrepreneur must consider the cost of each idea and the obstacles to implementation. In the preceding example, adding a chemical to the water may not be a feasible solution to the farmer. Not every farmer wants additional chloride or fluoride added to the water due to the effect on both humans and livestock. These tradeoffs should be addressed in the feasibility assessment. The farmer might prefer a filtration system, but the cost of that solution might not be practicable. The entrepreneur should identify and assess alternative solutions to find one that is most cost-effective and feasible to the customer.
Step 4: Implement
To implement is the step in which the solution to the problem is tested and evaluated. The entrepreneur walks through the planned implementation with the client and tests each part of the solution, if a service, or thoroughly tests a developed good. The entrepreneur implements the solution and goes through a structured system of follow-up to ensure the solution remains effective and viable. In the water example, the solution would be reducing runoff from toxic insecticides by adding prairie strips, buffers of grass, and vegetation along banks of streams.
Step 5: Evaluate
To evaluate is the step in which the final solution is assessed. This is a very important step that entrepreneurs often overlook. Any fallacy in the implementation of the product or service is reassessed, and new solutions are implemented. A continual testing process may be needed to find the final solution. The prairie strips, buffers of grass, and vegetation along banks of streams chosen in the farming water example should then be analyzed and tested to ensure the chosen solution changed the content of the water.
Are You Ready?
Implementing creative problem solving.
Removing waste is a problem, and it can also present an entrepreneurial opportunity. Try to examine ways in which waste products that you usually pay to have hauled away can now generate revenue. Whether it’s recycling aluminum cans or cardboard, or garbage that could be used to feed animals, your task is to come up with solutions to this entrepreneurial-oriented problem.
- Try following the first step of the creative problem-solving process and clearly identify the problem.
- Next, gather data and formulate the challenge.
- Then, explore ideas and come up with solutions.
- Develop a plan of action.
- Finally, note how you would evaluate the effectiveness of your solution.
Using Creativity to Solve Problems
Entrepreneurs are faced with solving many problems as they develop their ideas for filling gaps, whether those opportunities involve establishing a new company or starting a new enterprise within an existing company. Some of these problems include staffing, hiring and managing employees, handling legal compliance, funding, marketing, and paying taxes. Beyond the mundane activities listed, the entrepreneur, or the team that the entrepreneur puts in place, is indispensable in maintaining the ongoing creativity behind the product line or service offered. Innovation and creativity in the business are necessary to expand the product line or develop a groundbreaking service.
It is not necessary for the entrepreneur to feel isolated when it comes to finding creative solutions to a problem. There are societies, tools, and new methods available to spur the creativity of the entrepreneur that will further support the success and expansion of a new enterprise. 14 Learning and using entrepreneurial methods to solve problems alleviates the stress many startup owners feel. The entrepreneur’s creativity will increase using collaborative methodologies . Some entrepreneurial collaborative methodologies include crowdsourcing, brainstorming, storyboarding, conducting quick online surveys to test ideas and concepts, and team creativity activities.
Crowdsourcing
Professor Daren Brabham at the University of Southern California has written books on crowdsourcing and touts its potential in for-profit and not-for-profit business sectors. He defines it simply as “an online, distributed problem-solving and production model.” 15 Crowdsourcing involves teams of amateurs and nonexperts working together to form a solution to a problem. 16 The idea, as cbsnews.com’s Jennifer Alsever has put it, is to “tap into the collective intelligence of the public at large to complete business-related tasks that a company would normally either perform itself or outsource to a third-party provider. Yet free labor is only a narrow part of crowdsourcing's appeal. More importantly, it enables managers to expand the size of their talent pool while also gaining deeper insight into what customers really want. The challenge is to take a cautionary approach to the ‘wisdom of the crowd,’ which can lead to a ‘herd’ mentality.” 17
Link to Learning
Read this article that discusses what crowdsourcing is, how to use it, and its benefits for more information.
This new business prototype, similar to outsourcing, features an enterprise posting a problem online and asking for volunteers to consider the problem and propose solutions. Volunteers earn a reward, such as prize money, promotional materials like a T-shirt, royalties on creative outlets like photos or designs, and in some cases, compensation for their labor. Before proposing the solution, volunteers learn that the solutions become the intellectual property of the startup posting the problem. The solution is then mass produced for profit by the startup that posted the problem. 18 The process evolves into the crowdsourcing process after the enterprise mass produces and profits from the labor of the volunteers and the team. Entrepreneurs should consider that untapped masses have solutions for many issues for which agendas do not yet exist. Crowdsourcing can exploit those agendas and add to the tools used to stimulate personal creativity. This type of innovation is planned and strategically implemented for profit.
For example, Bombardier held a crowdsourced innovation contest to solicit input on the future of train interiors, including seat design and coach class interior. A corporate jury judged the submissions, with the top ten receiving computers or cash prizes. Companies are often constrained, however, by internal rules limiting open source or external idea sourcing, as they could be accused of “stealing” an idea. While crowdsourcing outside of software can be problematic, some products such as MakerBot ’s 3D printers, 3DR’ s drones, and Jibo ’s Social Robot have used developer kits and “makers” to help build a community and stimulate innovation from the outside.
Work It Out
A crowdsourced potato chip.
In an effort to increase sales among millennials, PepsiCo turned to crowdsourcing to get new flavor ideas for their Lay’s potato chips (called Walker’s in the UK). Their 2012 campaign, “Do Us a Flavor,” was so successful that they received over 14 million submissions. The winner was Cheesy Garlic Bread, which increased their potato chip sales by 8 percent during the first three months after the launch.
- What are some other products that would work well for a crowdsourced campaign contest?
- What items wouldn’t work well?
Amazon ’s Mechanical Turk is an online crowdsourcing platform that allows individuals to post tasks for workers to complete. In many instances, these tasks are compensated, but the payment can be less than one dollar per item completed. Mechanical Turk is one of the largest and most well-known crowdsourcing platforms, but there are a number of other more niche ones as well that would apply to smaller markets. In the case of innovation contests and outsourced tasks from corporations, those tasks may be hosted internally by the corporation.
Brainstorming
Brainstorming is the generation of ideas in an environment free of judgment or dissension with the goal of creating solutions. See Creativity, Innovation, and Invention to refresh yourself on this technique. Brainstorming is meant to stimulate participants into thinking about problem solving in a new way. Using a multifunctional group, meaning participants come from different departments and with different skill sets, gives entrepreneurs and support teams a genuine chance to suggest and actualize ideas. The group works together to refine and prototype potential solutions to a problem.
Brainstorming is a highly researched and often practiced technique for the development of innovative solutions. One of the more successful proponents of brainstorming is the United Nations Children’s Fund (UNICEF) . UNICEF faces unique problems of solving resource problems for mothers and children in underdeveloped nations. See how UNICEF practices brainstorming to solve problems including child survival, gender inclusion, refugee crises, education, and others.
The setting for a brainstorming session should remain as informal and relaxed as possible. The group needs to avoid standard solutions. All ideas are welcome and listed and considered with no censorship and with no regard to administrative restrictions. All team members have an equal voice. The focus of brainstorming is on quantity of ideas rather than on the ideal solution provided in every suggestion. A classic entrepreneurial brainstorming activity, as popularized by business software developer Strategyzer , is known as the “silly cow” exercise. Teams come up with ideas for new business models pertaining to a cow, with the results often outrageous, ranging from sponsored cows to stroking cows for therapeutic release. Participants are asked to identify some aspect of a cow and develop three business models around that concept in a short time period, typically two minutes or fewer. The activity is designed to get creative juices flowing.
Watch this video from ABC’s Nightline that shows how IDEO designed a new shopping cart for an example of a design process that involves brainstorming.
Storyboarding
Storyboarding is the process of presenting an idea in a step-by-step graphic format, as Figure 6.12 shows. This tool is useful when the entrepreneur is attempting to visualize a solution to a problem. The steps to the solution of a problem are sketched and hung in graphic format. Once the original graphic is placed, images of steps working toward a solution are added, subtracted, and rearranged on a continual basis, until the ultimate solution emerges in the ultimate graphic format. For many years, entrepreneurs have used this process to create a pre-visual for various media sequences.
Team Creativity
Team creativity is the process whereby an entrepreneur works with a team to create an unexpected solution for an issue or challenge. Teams progress through the same creative problem-solving process described already: clarify, ideate, develop, implement, and evaluate. The main advantage of team creativity is the collaboration and support members receive from one another. Great teams trust in other team members, have diverse members with diverse points of view, are cohesive, and have chemistry.
Team members should work in a stress-free and relaxing environment. Reinforcement and expansion of ideas in the team environment motivates the team to continually expand horizons toward problem solution. A small idea in a team may spark the imagination of a team member to an original idea. Mark Zuckerberg , cofounder of Facebook , once said, “The most important thing for you as an entrepreneur trying to build something is, you need to build a really good team. And that’s what I spend all my time on.” 19
Entrepreneur In Action
Taaluma totes 20.
Young entrepreneurs Jack DuFour and Alley Heffern began to notice the beautiful fabrics that came from the different countries they visited. The entrepreneurs thought about what could be done with the fabrics to create employment opportunities both in the country from which the fabric originated and in their home base of Virginia. They decided to test producing totes from the fabrics they found and formed Taaluma Totes ( Figure 6.13 ). DuFour and Heffern also wanted to promote the production of these fabrics and help underserved populations in countries where the fabric originated maintain a living or follow a dream.
The team continued to test the process and gathered original fabrics, which they sent to Virginia to create totes. They trained individuals with disabilities in Virginia to manufacture the totes, thus serving populations in the United States. The entrepreneurs then decided to take 20 percent of their profits and make microloans to farmers and small business owners in the countries where the fabric originated to create jobs there. Microloans are small loans, below $50,000, which certain lenders offer to enterprising startups. These startups, for various reasons (they are in poor nations, at poverty level), can’t afford a traditional loan from a major bank. The lenders offer business support to the borrower, which in turn helps the borrower repay the microloan. The microloans from Taaluma are repaid when the borrower is able. Repayments are used to buy more fabric, completing Taaluma’s desire to serve dual populations. If the process proved unsuccessful, the co-owners would revise the process to meet the plan’s requirements.
DuFour and Heffern now have fabrics from dozens of countries from Thailand to Ecuador. The totes are specialized with features to meet individual needs. The product line is innovated regularly and Taaluma Totes serves a dual purpose of employing persons with disabilities in Virginia and creating employment for underserved populations in other countries.
- 14 “Creating a World of Opportunities.” The Collegiate Entrepreneurs’ Organization . n.d. https://www.c-e-o.org/
- 15 Daren C. Brabham. “Crowdsourcing as a Model for Problem Solving: An Introduction and Cases.” Convergence: The International Journal of Research into New Media Technologies 14, no. 1 (2008): 75–90.
- 16 Michael Houlihan and Bonnie Harvey. “How Crowdsourcing Is Shaping the Future of Everything.” Entrepreneur. January 13, 2018. https://www.entrepreneur.com/article/307438
- 17 Jennifer Alsever. “What Is Crowdsourcing?” CBS News . May 1, 2008. https://www.cbsnews.com/news/what-is-crowdsourcing
- 18 Daren C. Brabham. “Crowdsourcing as a Model for Problem Solving: An Introduction and Cases.” Convergence: The International Journal of Research into New Media Technologies 14, no. 1 (2008): 75–90.
- 19 “Three Tips for Entrepreneurs Creating the Perfect Team.” Virgin . n.d. https://www.virgin.com/entrepreneur/three-tips-entrepreneurs-creating-perfect-team
- 20 “Backpacks That Carry a Country.” Taaluma Totes. n.d. https://www.carryacountry.com/pages/about
This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.
Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.
Access for free at https://openstax.org/books/entrepreneurship/pages/1-introduction
- Authors: Michael Laverty, Chris Littel
- Publisher/website: OpenStax
- Book title: Entrepreneurship
- Publication date: Jan 16, 2020
- Location: Houston, Texas
- Book URL: https://openstax.org/books/entrepreneurship/pages/1-introduction
- Section URL: https://openstax.org/books/entrepreneurship/pages/6-2-creative-problem-solving-process
© Jun 26, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.
Thesoldiersproject is supported by its audience. When you buy through our links, we may earn an affiliate commission. Learn more
All About the 7-Step Military Problem Solving Process
Written by Everett Bledsoe / Fact checked by Brain Bartell
In addition to power and strength, the military relies on quick and decisive thinking. Members in service must be able to think on their feet and craft solutions in the blink of an eye. Obviously, this is not easy to do. But it is not too far-fetched when you realize that countless lives depend on a single personnel’s decision and course of action.
As such, every recruit coming into the military is taught and trained about the 7-step military problem solving process. This systematic approach is believed to be the best way for military members to address any problems that they encounter.
In short, the 7 steps to solve problems are:
- Pinpoint the Problem
- Identify the Facts and Assumptions
- Craft Alternatives
- Analyze the Generated Alternatives
- Weigh Between the Generated Alternatives
- Make and Carry Out Your Final Decision
- Evaluate the Results From Your Decision
To make it easier for you to comprehend and follow along, we have elaborated on each of the above steps in this article. So, continue reading by scrolling down!
Table of Contents
Step 1: Pinpoint the Problem
Step 2: identify the facts and assumptions, step 3: craft alternatives, step 4: analyze the generated alternatives, step 5: weigh between the generated alternatives, step 6: make and carry out your final decision, step 7: evaluate the results from your decision, army problem solving & decision making process, seven step military problem solving process.
The first step is to ID the problem, which means recognizing and identifying what needs fixing. Needless to say, you cannot attempt to seek a solution without first knowing what has to be addressed. By pinpointing your problem, you will have a clear goal or end destination in mind. Only then can you come up with the right steps to take.
To effectively define the problem, ask yourself the 5Ws—who, what, where, and when. In detail:
- Who is affected? Who is involved?
- What is affected? What is in the overall picture?
- When is/did this happen?
- Where is/did this happen?
Always be crystal clear about the problem and try to view it in the most objective way as much as possible. Imagine you are the third person looking at It rather than from it. It also helps to organize your answers into a coherent and concise problem statement.
The next step is to ID the facts and assumptions. This entails that you get whatever additional information you can in the time that you have. Try to garner more facts than assumptions by reviewing all the possible factors, internal and external, and use them together with what you have thought out in the step above to determine the cause of the problem. You should also be aware of the nature and scope of the problem from this step.
From here, you take a sub-step: think about what you want the final result to be. This does not have to be complicated but it has to be very clear. For instance, one of your troop members may be lost and uncontactable. Your ultimate goal is to find him/her and return to your base together. Remember, having a wishy-washy end state will only make your problem solving process more difficult.
These first two steps constitute situation assessment, which serves as the basis for you to work towards the remaining steps of the military problem solving process.
Onto the third step, strive to develop as many potential solutions as possible. Here, you will have to exercise your imagining and visualizing skills. Brainstorm and refine any ideas simultaneously. Engage both critical and critical thinking in this step. If possible, take note of what you have come up with. Do not be hesitant and brush off any ideas.
Then, analyze your options. Consider all of your possible courses of action with all the available information that you have compiled in the previous steps. Take into account your experiences, intuitions, and emotions. This does not have to be a purely rational or mathematical procedure. Nevertheless, this does not mean that you are 100% guided by your instincts and emotions. You must have a good balance between the two.
This step naturally lends itself to the next: compare between your generated alternatives. Weigh between their respective pros and cons. In particular, look at their cost and benefit of success. Are there any limiting factors or potential for unintended consequences? Evaluate carefully and ask yourself a lot of questions. You can also consider using a table, T-chart, or matrix to compare visually.
Try to settle for the “best” solution or course of action that is both logical and feels “right”. Apart from picking the best, select two or three more workable solutions as backups. Keep them handy in case you need to refer back to them. During this process, you may merge ideas and mix-match bits and pieces—that’s perfectly fine!
Once you have made your decision, craft your action plans. Know the details—what exactly do you have to do to solve the problem? If it is a long-term problem that you have to address, set milestones and timelines with clear methods of measuring progress and success. On the other hand, if it is a short, instantaneous problem, communicate your plans clearly to anyone else involved. Be aware of the specifics and be brutally honest. Execute your course of action with care. But do not be rigid. If something happens out of the plan, be willing to adjust and adapt.
After your solution implementation, wrap up by assessing the results. Was it what you envisioned? Were there deviations? What did you take away? Answer all of the questions so you can be even more equipped for future endeavors. Think of it as a reflection stage. The 7 steps to problem solving in the military are a continuous process—you will be confronted with challenges over and over, so do not skip this strengthening step. It will further your skills and expertise to handle problems going forward.
Another set of seven steps that you may come across during your service is the army problem solving steps. Needless to say, this is applied to the army problem solving process.
- Receiving the Mission
- Analyzing the Mission
- Developing the Course of Action
- Analyzing the Course of Action
- Comparing the Course of Action
- Getting Approval for the Course of Action
- Producing, Disseminating, and Transitioning Orders
This is a part of the MDMP, short for the military decision making process. In each step, there are inputs and outputs. In general, it is more specific than the above set of steps.
These seven steps focus on collaborative planning and performance. Plus, set the stage for interactions between different military agents, including commanders, staff, headquarters, etc.
COA is an abbreviation for a course of action. Thus, these steps are relatively similar to the steps that we have gone through earlier; specifically steps two: mission analysis, three: COA development, four: COA analysis, and five: COA comparison. Like the previous seven steps, these are carried out sequentially but can be revisited when needed.
The main difference is that these 7 steps to problem solving in the army are more explicitly directed to junior personnel. Hence, the mentioning of orders from higher-ranks, the significant role of commanders, and the need to earn approval before execution.
A mnemonic that service members use to remember this process is M.A.D.A.C.A.P. for:
- A: Analysis
You might want to remember this for an exam at military school, at NCO, or soldier of the month board.
You can learn more about the MDMP here:
So, there you have it—the 7-step military problem solving process. You should now be aware of two different but equally important sets of steps to problem solving and decision making. If you have any follow-up questions or thoughts, let us know in the comments. We look forward to hearing from you!
I am Everett Bledsoe, taking on the responsibility of content producer for The Soldiers Project. My purpose in this project is to give honest reviews on the gear utilized and tested over time. Of course, you cannot go wrong when checking out our package of information and guide, too, as they come from reliable sources and years of experience.
Have an account?
Suggestions for you See more
9th - 11th
Design cycle, 6th - 8th , computer basics, design process, 6th - 7th , google docs, 5th - 7th , software development life cycle (practic..., 10th - 12th , coding review, kg - 2nd , solving multistep equations.
Unit 1 -- Problem Solving -- Post Test
6th - 8th grade.
20 questions
Introducing new Paper mode
No student devices needed. Know more
If you are identifying the problem you are trying to solve, figuring out what your constraints are and determining what success will look like, what part of the problem solving process are you working on?
If you are brainstorming and researching possible solutions, comparing pros and cons and/or making a plan, what part of the problem solving process are you working on?
If you are attempting to put your plan into action, what part of the problem solving process are you working on?
If you are comparing your results to the goals you set, determining what you can learn to do better next time, and/or identifying new problems that were discovered, what part of the problem solving process are you working on?
My partner and I have determined that we must design a boat out of foil that holds as many pennies as possible without sinking. What part of the problem solving process am I working on?
My partner and I discuss what we think will be the best way to build our boat to hold many pennies and write down what we are going to do. What part of the problem solving process are we working on?
My partner and I build our boat and test to see how many pennies our boat will hold. What part of the problem solving process are we working on?
My partner and I looked at our results and determined what we could improve on our boat if we built another one. What part of the problem solving process are we working on?
If you were asked to solve a word search, organize party seats in a classroom, and plan a trip of your choice that could only last one school day. What would make solving the word search easier to solve than planning the trip?
The problem was already clearly defined in the crossword puzzle
Most people already knew how to do the crossword puzzle so it didn't take as much discussion and compromise to complete
There were more constraints to consider and goals to create and reach when planning the trip
All of the other choices are correct
What are the benefits of getting peer feedback on any plan developed when preparing to solve a problem? Select the answer that does not apply.
Another group might catch flaws in the logic of your plan
Another group might give you suggestions about a constraint you had not considered in your original plan
Another group will make you feel good by telling you what a great job you did
Another group may give you some suggestions on another approach for solving your problem in a way your group had not considered
What is a computer?
A machine that can solve informational problems
Anything that computes
A machine that can go on the internet
A machine that can solve any problem
Choose the answer below which is not a way input information into the computer?
tapping on a touch screen
seeing a picture on the screen
clicking on a mouse
typing on a keyboard
Which answer below is not output from a computer?
You tap on your touch screen
You type on a keyboard
Music comes out of your speakers
You click on the mouse
Which answer response is an example of information being processed in a computer?
Your Google Drive has documents
You tap on a button on your screen and your camera changes from pointing in front of you to selfie mode (facing you)
Using bullets to emphasize text
You see a picture on your screen
What answer choice below is not a general type of information does a computer store?
the date and time
photos / images
none of the above
all of the above
What does an algorithm have to do with processing?
Algorithms are the steps that would be converted into a program that a computer could use to process information, changing it from input to an output.
Algorithms are a series of steps
Algorithms are the steps that would be converted into a program that a computer could use to process information, changing it from output to input.
Algorithms have nothing to do with processing
A precise sequence of instructions for processes that can be executed by a computer is called a(n) ...
Which answer choice below does not tell us why is it important for a programmer to write out an algorithm before trying to program it?
The algorithm helps to make sure he/she doesn't miss any steps when coding the program
The algorithm can be used for debugging purposes if the programmer is having trouble finding the error in his or her code
The algorithm might help a programmer find errors in logic before the program even starts to be coded
It is not important for programmers to design algorithms before coding
Which of these is a problem that a computer CANNOT solve?
Getting rid of racism
Making a game for entertainment
Getting news out to the public quickly
Helping architects build models of new buildings
If I wanted to design an app for world peace, what problems could a computer help me to solve?
Stop a war that is currently happening
Make the leader of a country change his/her mind about going to war
Design an interactive map where people can see where war is taking place
Get rid of racism
Explore all questions with a free account
Continue with email
Continue with phone
IMAGES
VIDEO
COMMENTS
In order to effectively manage and run a successful organization, leadership must guide their employees and develop problem-solving techniques. Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step 1: Define the Problem. Step2: Generate ...
Devising a Plan. given the information provided, a plan of action is created. Carrying out the Plan. the process of solving the problem using the plan of action created; finding a possible solution to the problem. Looking Back. checking and interpreting the solution as it relates to the initial question. Palindrome.
Define problem solving. 3 basic components of problem solving. Problem solving = a process of moving from a start state (problem) to a goal state (solution) Problem, solution, operators. Initial state vs goal state. Initial state that is lacking in some respect (problem) Goal state that we want to reach (solution) Operators (or operations)
Overview of the Problem-Solving Mental Process. Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation.
The problem solving process typically includes: Pinpointing what's broken by gathering data and consulting with team members. Figuring out why it's not working by mapping out and troubleshooting the problem. Deciding on the most effective way to fix it by brainstorming and then implementing a solution. While skills like active listening ...
The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...
Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.
If problem is resolved, remove activities that were added previously to contain the problem. Step 8: Continuously Improve. Look for additional opportunities to implement solution. Ensure problem will not come back and communicate lessons learned. If needed, repeat the 8-Step Problem Solving Process to drive further improvements.
Additional Problem Solving Strategies:. Abstraction - refers to solving the problem within a model of the situation before applying it to reality.; Analogy - is using a solution that solves a similar problem.; Brainstorming - refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal ...
Step 2: Analyze the Problem. During this step a group should analyze the problem and the group's relationship to the problem. Whereas the first step involved exploring the "what" related to the problem, this step focuses on the "why.". At this stage, group members can discuss the potential causes of the difficulty.
Study with Quizlet and memorize flashcards containing terms like What are the 4 steps in the problem solving process?, What is step one in the problem solving process?, What is step two in the problem solving process? and more.
Step 2: Ideate. To ideate is the step of the creative problem-solving process that involves generating and detailing ideas by the entrepreneur. After collecting all information relevant to the problem, the entrepreneur lists as many causes of the problem as possible. This is the step in which the largest variety of ideas are put forth.
Decision-making is the process of choosing a solution based on your judgment, situation, facts, knowledge or a combination of available data. The goal is to avoid potential difficulties. Identifying opportunity is an important part of the decision-making process. Making decisions is often a part of problem-solving.
Seven Step Military Problem Solving Process. Step 1: Pinpoint the Problem. Step 2: Identify the Facts and Assumptions. Step 3: Craft Alternatives. Step 4: Analyze the Generated Alternatives. Step 5: Weigh Between the Generated Alternatives. Step 6: Make and Carry Out Your Final Decision. Step 7: Evaluate the Results From Your Decision.
Heddie Carson. 1. Multiple Choice. If you are identifying the problem you are trying to solve, figuring out what your constraints are and determining what success will look like, what part of the problem solving process are you working on? 2. Multiple Choice. If you are brainstorming and researching possible solutions, comparing pros and cons ...
a situation that needs to be corrected or solved. Problem Solving Process. A strategy for solving problems involving the following steps: Define, Prepare, Try and Reflect. Study with Quizlet and memorize flashcards containing terms like Which question would be part of the define stage of problem solving?, Which statement would be the best ...
problem solving, do the following: 1. Defer Judgment 2. Go for Quantity 3. Seek Wild and Unusual Ideas 4. Build on other Ideas 5. Write Everything Down, Every Idea is Equal CONVERGE When it's time to converge during the creative problem solving process, do the following: 1. Apply affirmative Judgment 2. Keep Novelty Alive 3. Check your ...
Here is a six-step process to follow when using a problem-solving model: 1. Define the problem. First, determine the problem that your team needs to solve. During this step, teams may encourage open and honest communication so everyone feels comfortable sharing their thoughts and concerns.
Walking through the algorithm step by step. What is documentation? anything that provides info on the program. ie comments in teh code, data tables that describe the data used in the code and external docs. (flow charts, user manual, design, etc. Study with Quizlet and memorize flashcards containing terms like Why do we need to problem solve ...
The question is asking what should be done in every step of the problem-solving process. Here are the options: Option Action. a) gather more information. b) review the. Continue reading. Relevant documents. Documents that match the answer. 4. Week 2- Reading Notes. Critical Thinking and Problem Solving None. 8.
Study with Quizlet and memorize flashcards containing terms like After screening criteria have been made, those who are problem solving develop _____ in order to differentiate among possible solutions., What are the three types of information and knowledge that you and your team will look for during the Military Problem Solving Process?, Which screening criteria would your team use to check on ...
The answer is: B) Keep our biases from limiting our solutions. Assumptions are preconceptions that we have, perdjuices over some topic or some knowledge that we believe as true, questioning this assumptions can help us find better and smarter solutions to problems that we have, for example during the renaissance a false assumption was that everything orbitated around the earth, questioning ...