Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Descriptive Research | Definition, Types, Methods & Examples

Descriptive Research | Definition, Types, Methods & Examples

Published on May 15, 2019 by Shona McCombes . Revised on June 22, 2023.

Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what , where , when and how   questions , but not why questions.

A descriptive research design can use a wide variety of research methods  to investigate one or more variables . Unlike in experimental research , the researcher does not control or manipulate any of the variables, but only observes and measures them.

Table of contents

When to use a descriptive research design, descriptive research methods, other interesting articles.

Descriptive research is an appropriate choice when the research aim is to identify characteristics, frequencies, trends, and categories.

It is useful when not much is known yet about the topic or problem. Before you can research why something happens, you need to understand how, when and where it happens.

Descriptive research question examples

  • How has the Amsterdam housing market changed over the past 20 years?
  • Do customers of company X prefer product X or product Y?
  • What are the main genetic, behavioural and morphological differences between European wildcats and domestic cats?
  • What are the most popular online news sources among under-18s?
  • How prevalent is disease A in population B?

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

descriptive research includes all of these except quizlet

Descriptive research is usually defined as a type of quantitative research , though qualitative research can also be used for descriptive purposes. The research design should be carefully developed to ensure that the results are valid and reliable .

Survey research allows you to gather large volumes of data that can be analyzed for frequencies, averages and patterns. Common uses of surveys include:

  • Describing the demographics of a country or region
  • Gauging public opinion on political and social topics
  • Evaluating satisfaction with a company’s products or an organization’s services

Observations

Observations allow you to gather data on behaviours and phenomena without having to rely on the honesty and accuracy of respondents. This method is often used by psychological, social and market researchers to understand how people act in real-life situations.

Observation of physical entities and phenomena is also an important part of research in the natural sciences. Before you can develop testable hypotheses , models or theories, it’s necessary to observe and systematically describe the subject under investigation.

Case studies

A case study can be used to describe the characteristics of a specific subject (such as a person, group, event or organization). Instead of gathering a large volume of data to identify patterns across time or location, case studies gather detailed data to identify the characteristics of a narrowly defined subject.

Rather than aiming to describe generalizable facts, case studies often focus on unusual or interesting cases that challenge assumptions, add complexity, or reveal something new about a research problem .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Descriptive Research | Definition, Types, Methods & Examples. Scribbr. Retrieved June 19, 2024, from https://www.scribbr.com/methodology/descriptive-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is quantitative research | definition, uses & methods, correlational research | when & how to use, descriptive statistics | definitions, types, examples, what is your plagiarism score.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

5.8: Descriptive Research

  • Last updated
  • Save as PDF
  • Page ID 59848

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Differentiate between descriptive, experimental, and correlational research
  • Explain the strengths and weaknesses of case studies, naturalistic observation, and surveys

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions to extensive, in-depth interviews—to well-controlled experiments.

The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies . These studies are used to describe general or specific behaviors and attributes that are observed and measured. In the early stages of research it might be difficult to form a hypothesis, especially when there is not any existing literature in the area. In these situations designing an experiment would be premature, as the question of interest is not yet clearly defined as a hypothesis. Often a researcher will begin with a non-experimental approach, such as a descriptive study, to gather more information about the topic before designing an experiment or correlational study to address a specific hypothesis. Descriptive research is distinct from correlational research , in which psychologists formally test whether a relationship exists between two or more variables. Experimental research goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about how these conditions affect behavior. It aims to determine if one variable directly impacts and causes another. Correlational and experimental research both typically use hypothesis testing, whereas descriptive research does not.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While this allows for results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While this can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later in the text, there is a tremendous amount of control over variables of interest. While this is a powerful approach, experiments are often conducted in very artificial settings. This calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

The three main types of descriptive studies are case studies, naturalistic observation, and surveys.

Query \(\PageIndex{1}\)

Query \(\PageIndex{2}\)

Query \(\PageIndex{3}\)

Query \(\PageIndex{4}\)

Case Studies

In 2011, the New York Times published a feature story on Krista and Tatiana Hogan, Canadian twin girls. These particular twins are unique because Krista and Tatiana are conjoined twins, connected at the head. There is evidence that the two girls are connected in a part of the brain called the thalamus, which is a major sensory relay center. Most incoming sensory information is sent through the thalamus before reaching higher regions of the cerebral cortex for processing.

Link to Learning

To learn more about Krista and Tatiana, watch this video about their lives as conjoined twins.

The implications of this potential connection mean that it might be possible for one twin to experience the sensations of the other twin. For instance, if Krista is watching a particularly funny television program, Tatiana might smile or laugh even if she is not watching the program. This particular possibility has piqued the interest of many neuroscientists who seek to understand how the brain uses sensory information.

These twins represent an enormous resource in the study of the brain, and since their condition is very rare, it is likely that as long as their family agrees, scientists will follow these girls very closely throughout their lives to gain as much information as possible (Dominus, 2011).

In observational research, scientists are conducting a clinical or case study when they focus on one person or just a few individuals. Indeed, some scientists spend their entire careers studying just 10–20 individuals. Why would they do this? Obviously, when they focus their attention on a very small number of people, they can gain a tremendous amount of insight into those cases. The richness of information that is collected in clinical or case studies is unmatched by any other single research method. This allows the researcher to have a very deep understanding of the individuals and the particular phenomenon being studied.

If clinical or case studies provide so much information, why are they not more frequent among researchers? As it turns out, the major benefit of this particular approach is also a weakness. As mentioned earlier, this approach is often used when studying individuals who are interesting to researchers because they have a rare characteristic. Therefore, the individuals who serve as the focus of case studies are not like most other people. If scientists ultimately want to explain all behavior, focusing attention on such a special group of people can make it difficult to generalize any observations to the larger population as a whole. Generalizing refers to the ability to apply the findings of a particular research project to larger segments of society. Again, case studies provide enormous amounts of information, but since the cases are so specific, the potential to apply what’s learned to the average person may be very limited.

Query \(\PageIndex{5}\)

Query \(\PageIndex{6}\)

Naturalistic Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this module: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about hand washing, we have other options available to us.

Suppose we send a classmate into the restroom to actually watch whether everyone washes their hands after using the restroom. Will our observer blend into the restroom environment by wearing a white lab coat, sitting with a clipboard, and staring at the sinks? We want our researcher to be inconspicuous—perhaps standing at one of the sinks pretending to put in contact lenses while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

A photograph shows two police cars driving, one with its lights flashing.

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. If you have any doubt about this, ask yourself how your driving behavior might differ in two situations: In the first situation, you are driving down a deserted highway during the middle of the day; in the second situation, you are being followed by a police car down the same deserted highway (Figure 1).

It should be pointed out that naturalistic observation is not limited to research involving humans. Indeed, some of the best-known examples of naturalistic observation involve researchers going into the field to observe various kinds of animals in their own environments. As with human studies, the researchers maintain their distance and avoid interfering with the animal subjects so as not to influence their natural behaviors. Scientists have used this technique to study social hierarchies and interactions among animals ranging from ground squirrels to gorillas. The information provided by these studies is invaluable in understanding how those animals organize socially and communicate with one another. The anthropologist Jane Goodall, for example, spent nearly five decades observing the behavior of chimpanzees in Africa (Figure 2). As an illustration of the types of concerns that a researcher might encounter in naturalistic observation, some scientists criticized Goodall for giving the chimps names instead of referring to them by numbers—using names was thought to undermine the emotional detachment required for the objectivity of the study (McKie, 2010).

(a) A photograph shows Jane Goodall speaking from a lectern. (b) A photograph shows a chimpanzee’s face.

The greatest benefit of naturalistic observation is the validity, or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people or animals modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. In our restroom study, what if you stood in the restroom all day prepared to record people’s hand washing behavior and no one came in? Or, what if you have been closely observing a troop of gorillas for weeks only to find that they migrated to a new place while you were sleeping in your tent? The benefit of realistic data comes at a cost. As a researcher you have no control of when (or if) you have behavior to observe. In addition, this type of observational research often requires significant investments of time, money, and a good dose of luck.

Sometimes studies involve structured observation. In these cases, people are observed while engaging in set, specific tasks. An excellent example of structured observation comes from Strange Situation by Mary Ainsworth (you will read more about this in the module on lifespan development). The Strange Situation is a procedure used to evaluate attachment styles that exist between an infant and caregiver. In this scenario, caregivers bring their infants into a room filled with toys. The Strange Situation involves a number of phases, including a stranger coming into the room, the caregiver leaving the room, and the caregiver’s return to the room. The infant’s behavior is closely monitored at each phase, but it is the behavior of the infant upon being reunited with the caregiver that is most telling in terms of characterizing the infant’s attachment style with the caregiver.

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Query \(\PageIndex{7}\)

Query \(\PageIndex{8}\)

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally (Figure 3). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population.

A sample online survey reads, “Dear visitor, your opinion is important to us. We would like to invite you to participate in a short survey to gather your opinions and feedback on your news consumption habits. The survey will take approximately 10-15 minutes. Simply click the “Yes” button below to launch the survey. Would you like to participate?” Two buttons are labeled “yes” and “no.”

There is both strength and weakness of the survey in comparison to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this module: people don’t always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the US Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Query \(\PageIndex{9}\)

Query \(\PageIndex{10}\)

Query \(\PageIndex{11}\)

Query \(\PageIndex{12}\)

Query \(\PageIndex{13}\)

Think It Over

A friend of yours is working part-time in a local pet store. Your friend has become increasingly interested in how dogs normally communicate and interact with each other, and is thinking of visiting a local veterinary clinic to see how dogs interact in the waiting room. After reading this section, do you think this is the best way to better understand such interactions? Do you have any suggestions that might result in more valid data?

clinical or case study:  observational research study focusing on one or a few people

correlational research:  tests whether a relationship exists between two or more variables

descriptive research:  research studies that do not test specific relationships between variables; they are used to describe general or specific behaviors and attributes that are observed and measured

experimental research:  tests a hypothesis to determine cause and effect relationships

generalize inferring that the results for a sample apply to the larger population

inter-rater reliability:  measure of agreement among observers on how they record and classify a particular event

naturalistic observation:  observation of behavior in its natural setting

observer bias:  when observations may be skewed to align with observer expectations

population:  overall group of individuals that the researchers are interested in

sample:  subset of individuals selected from the larger population

survey:  list of questions to be answered by research participants—given as paper-and-pencil questionnaires, administered electronically, or conducted verbally—allowing researchers to collect data from a large number of people

Licenses and Attributions

CC licensed content, Original

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY-SA: Attribution-ShareAlike
  • Approaches to Research. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:iMyFZJzg@5/Approaches-to-Research . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Descriptive Research. Provided by : Boundless. Located at : https://www.boundless.com/psychology/textbooks/boundless-psychology-textbook/researching-psychology-2/types-of-research-studies-27/descriptive-research-124-12659/ . License : CC BY-SA: Attribution-ShareAlike

Using Science to Inform Educational Practices

Descriptive Research

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions to extensive, in-depth interviews—to well-controlled experiments. The main categories of psychological research are descriptive, correlational, and experimental research. Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions.

Research studies that do not test specific relationships between variables are called  descriptive studies . For this method, the research question or hypothesis can be about a single variable (e.g., How accurate are people’s first impressions?) or can be a broad and exploratory question (e.g., What is it like to be a working mother diagnosed with depression?). The variable of the study is measured and reported without any further relationship analysis. A researcher might choose this method if they only needed to report information, such as a tally, an average, or a list of responses. Descriptive research can answer interesting and important questions, but what it cannot do is answer questions about relationships between variables.

Video 2.4.1.  Descriptive Research Design  provides explanation and examples for quantitative descriptive research. A closed-captioned version of this video is available here .

Descriptive research is distinct from  correlational research , in which researchers formally test whether a relationship exists between two or more variables.  Experimental research  goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about causal relationships between variables. We will discuss each of these methods more in-depth later.

Table 2.4.1. Comparison of research design methods

Research design Goal Advantages Disadvantages
Descriptive To create a snapshot of the current state of affairs Provides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study. Does not assess relationships among variables. Maybe unethical if participants do not know they are being observed.
Correlational To assess the relationships between and among two or more variables Allows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events. Cannot be used to draw inferences about the causal relationships between and among the variables.
Experimental To assess the causal impact of one or more experimental manipulations on a dependent variable Allows drawing conclusions about the causal relationships among variables. Cannot experimentally manipulate many important variables. May be expensive and time-consuming.
Stangor, 2011.

Candela Citations

  • Descriptive Research. Authored by : Nicole Arduini-Van Hoose. Provided by : Hudson Valley Community College. Retrieved from : https://courses.lumenlearning.com/edpsy/chapter/descriptive-research/. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Descriptive Research. Authored by : Nicole Arduini-Van Hoose. Provided by : Hudson Valley Community College. Retrieved from : https://courses.lumenlearning.com/adolescent/chapter/descriptive-research/. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Educational Psychology Copyright © 2020 by Nicole Arduini-Van Hoose is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Research-Methodology

Descriptive Research

Descriptive research can be explained as a statement of affairs as they are at present with the researcher having no control over variable. Moreover, “descriptive studies may be characterised as simply the attempt to determine, describe or identify what is, while analytical research attempts to establish why it is that way or how it came to be” [1] . Three main purposes of descriptive studies can be explained as describing, explaining and validating research findings. This type of research is popular with non-quantified topic.

Descriptive research is “aimed at casting light on current issues or problems through a process of data collection that enables them to describe the situation more completely than was possible without employing this method.” [2] To put it simply, descriptive studies are used to describe various aspects of the phenomenon. In its popular format, descriptive research is used to describe characteristics and/or behaviour of sample population. It is an effective method to get information that can be used to develop hypotheses and propose associations.

Importantly, these types of studies do not focus on reasons for the occurrence of the phenomenon. In other words, descriptive research focuses on the question “What?”, but it is not concerned with the question “Why?”

Descriptive studies have the following characteristics:

1. While descriptive research can employ a number of variables, only one variable is required to conduct a descriptive study.

2. Descriptive studies are closely associated with observational studies, but they are not limited with observation data collection method. Case studies and  surveys can also be specified as popular data collection methods used with descriptive studies.

3. Findings of descriptive researches create a scope for further research. When a descriptive study answers to the question “What?”, a further research can be conducted to find an answer to “Why?” question.

Examples of Descriptive Research

Research questions in descriptive studies typically start with ‘What is…”. Examples of research questions in descriptive studies may include the following:

  • What are the most effective intangible employee motivation tools in hospitality industry in the 21 st century?
  • What is the impact of viral marketing on consumer behaviour in consumer amongst university students in Canada?
  • Do corporate leaders of multinational companies in the 21 st century possess moral rights to receive multi-million bonuses?
  • What are the main distinctive traits of organisational culture of McDonald’s USA?
  • What is the impact of the global financial crisis of 2007 – 2009 on fitness industry in the UK?

Advantages of Descriptive Research

  • Effective to analyse non-quantified topics and issues
  • The possibility to observe the phenomenon in a completely natural and unchanged natural environment
  • The opportunity to integrate the qualitative and quantitative methods of data collection. Accordingly, research findings can be comprehensive.
  • Less time-consuming than quantitative experiments
  • Practical use of research findings for decision-making

Disadvantages of Descriptive Research

  • Descriptive studies cannot test or verify the research problem statistically
  • Research results may reflect certain level of bias due to the absence of statistical tests
  • The majority of descriptive studies are not ‘repeatable’ due to their observational nature
  • Descriptive studies are not helpful in identifying cause behind described phenomenon

My e-book,  The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step assistance  contains discussions of theory and application of research designs. The e-book also explains all stages of the  research process  starting from the  selection of the research area  to writing personal reflection. Important elements of dissertations such as  research philosophy ,  research approach ,  methods of data collection ,  data analysis  and  sampling  are explained in this e-book in simple words.

John Dudovskiy

Descriptive research

[1] Ethridge, D.E. (2004) “Research Methodology in Applied Economics” John Wiley & Sons, p.24

[2] Fox, W. & Bayat, M.S. (2007) “A Guide to Managing Research” Juta Publications, p.45

Research Design

                                                                                    

A descriptive study is one in which information is collected without changing the environment (i.e., nothing is manipulated). Sometimes these are referred to as “ correlational ” or “ observational ” studies. The Office of Human Research Protections (OHRP) defines a descriptive study as “Any study that is not truly experimental.” In human research, a descriptive study can provide information about the naturally occurring health status, behavior, attitudes or other characteristics of a particular group. Descriptive studies are also conducted to demonstrate or relationships between things in the world around you.

Descriptive studies can involve a one-time interaction with groups of people ( ) or a study might follow individuals over time ( ). Descriptive studies, in which the researcher interacts with the participant, may involve surveys or interviews to collect the necessary information. Descriptive studies in which the researcher does not interact with the participant include observational studies of people in an environment and studies involving data collection using existing records (e.g., medical record review).

Descriptive studies are usually the best methods for collecting information that will demonstrate relationships and describe the world as it exists. These types of studies are often done before an experiment to know what specific things to manipulate and include in an experiment. Bickman and Rog (1998) suggest that descriptive studies can answer questions such as “what is” or “what was.” Experiments can typically answer “why” or “how.”

                                

                                                                                                                                

 

Which Descriptive Research Technique Is Correctly Matched with a Description

Question 111

Which descriptive research technique is correctly matched with a description?

A) survey - Participants are systematically studied in their natural environment. B) case study - A single individual or group is examined in detail. C) naturalistic observation - Questionnaires or interviews are used to probe behavior or attitudes. D) All of these choices are correctly matched.

Correct Answer:

Unlock this answer now Get Access to more Verified Answers free of charge.

Q29: Which sequence BEST reflects the order of

Q74: Which of the following statements BEST expresses

Q106: At a DUI checkpoint, some cars are

Q107: A sample whose characteristics are the same

Q109: Dr. O'Connor is telling his participants before

Q110: Naturalistic observation entails: A)the systematic, detailed study of

Q112: Amy is conducting a survey of dating

Q113: Which of the following is a component

Q114: Which sequence arranges the concepts in order

Q116: Dr. O'Malley is telling his participants before

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 3. Psychological Science

3.2 Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behaviour

Learning objectives.

  • Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  • Explain the goals of descriptive research and the statistical techniques used to interpret it.
  • Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  • Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behaviour are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table 3.2, are known as research designs . A research design  is the specific method a researcher uses to collect, analyze, and interpret data . Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research  is research designed to provide a snapshot of the current state of affairs . Correlational research  is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge . Experimental research  is research in which initial equivalence among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation . Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Table 3.2 Characteristics of the Three Research Designs
Research design Goal Advantages Disadvantages
Descriptive To create a snapshot of the current state of affairs Provides a relatively complete picture of what is occurring at a given time. Allows the development of questions for further study. Does not assess relationships among variables. May be unethical if participants do not know they are being observed.
Correlational To assess the relationships between and among two or more variables Allows testing of expected relationships between and among variables and the making of predictions. Can assess these relationships in everyday life events. Cannot be used to draw inferences about the causal relationships between and among the variables.
Experimental To assess the causal impact of one or more experimental manipulations on a dependent variable Allows drawing of conclusions about the causal relationships among variables. Cannot experimentally manipulate many important variables. May be expensive and time consuming.
Source: Stangor, 2011.

Descriptive Research: Assessing the Current State of Affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews three types of descriptive research : case studies , surveys , and naturalistic observation (Figure 3.4).

Sometimes the data in a descriptive research project are based on only a small set of individuals, often only one person or a single small group. These research designs are known as case studies — descriptive records of one or more individual’s experiences and behaviour . Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics or who find themselves in particularly difficult or stressful situations. The assumption is that by carefully studying individuals who are socially marginal, who are experiencing unusual situations, or who are going through a difficult phase in their lives, we can learn something about human nature.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses the psychoanalyst interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud, 1909/1964).

Another well-known case study is Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there are questions about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Rokeach (1964), who investigated in detail the beliefs of and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

In other cases the data from descriptive research projects come in the form of a survey — a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviours of a sample of people of interest . The people chosen to participate in the research (known as the sample) are selected to be representative of all the people that the researcher wishes to know about (the population). In election polls, for instance, a sample is taken from the population of all “likely voters” in the upcoming elections.

The results of surveys may sometimes be rather mundane, such as “Nine out of 10 doctors prefer Tymenocin” or “The median income in the city of Hamilton is $46,712.” Yet other times (particularly in discussions of social behaviour), the results can be shocking: “More than 40,000 people are killed by gunfire in the United States every year” or “More than 60% of women between the ages of 50 and 60 suffer from depression.” Descriptive research is frequently used by psychologists to get an estimate of the prevalence (or incidence ) of psychological disorders.

A final type of descriptive research — known as naturalistic observation — is research based on the observation of everyday events . For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biopsychologist who observes animals in their natural habitats. One example of observational research involves a systematic procedure known as the strange situation , used to get a picture of how adults and young children interact. The data that are collected in the strange situation are systematically coded in a coding sheet such as that shown in Table 3.3.

Table 3.3 Sample Coding Form Used to Assess Child’s and Mother’s Behaviour in the Strange Situation
Coder name:
This table represents a sample coding sheet from an episode of the “strange situation,” in which an infant (usually about one year old) is observed playing in a room with two adults — the child’s mother and a stranger. Each of the four coding categories is scored by the coder from 1 (the baby makes no effort to engage in the behaviour) to 7 (the baby makes a significant effort to engage in the behaviour). More information about the meaning of the coding can be found in Ainsworth, Blehar, Waters, and Wall (1978).
Coding categories explained
Proximity The baby moves toward, grasps, or climbs on the adult.
Maintaining contact The baby resists being put down by the adult by crying or trying to climb back up.
Resistance The baby pushes, hits, or squirms to be put down from the adult’s arms.
Avoidance The baby turns away or moves away from the adult.
Episode Coding categories
Proximity Contact Resistance Avoidance
Mother and baby play alone 1 1 1 1
Mother puts baby down 4 1 1 1
Stranger enters room 1 2 3 1
Mother leaves room; stranger plays with baby 1 3 1 1
Mother re-enters, greets and may comfort baby, then leaves again 4 2 1 2
Stranger tries to play with baby 1 3 1 1
Mother re-enters and picks up baby 6 6 1 2
Source: Stang0r, 2011.

The results of descriptive research projects are analyzed using descriptive statistics — numbers that summarize the distribution of scores on a measured variable . Most variables have distributions similar to that shown in Figure 3.5 where most of the scores are located near the centre of the distribution, and the distribution is symmetrical and bell-shaped. A data distribution that is shaped like a bell is known as a normal distribution .

A distribution can be described in terms of its central tendency — that is, the point in the distribution around which the data are centred — and its dispersion, or spread . The arithmetic average, or arithmetic mean , symbolized by the letter M , is the most commonly used measure of central tendency . It is computed by calculating the sum of all the scores of the variable and dividing this sum by the number of participants in the distribution (denoted by the letter N ). In the data presented in Figure 3.5 the mean height of the students is 67.12 inches (170.5 cm). The sample mean is usually indicated by the letter M .

In some cases, however, the data distribution is not symmetrical. This occurs when there are one or more extreme scores (known as outliers ) at one end of the distribution. Consider, for instance, the variable of family income (see Figure 3.6), which includes an outlier (a value of $3,800,000). In this case the mean is not a good measure of central tendency. Although it appears from Figure 3.6 that the central tendency of the family income variable should be around $70,000, the mean family income is actually $223,960. The single very extreme income has a disproportionate impact on the mean, resulting in a value that does not well represent the central tendency.

The median is used as an alternative measure of central tendency when distributions are not symmetrical. The median  is the score in the center of the distribution, meaning that 50% of the scores are greater than the median and 50% of the scores are less than the median . In our case, the median household income ($73,000) is a much better indication of central tendency than is the mean household income ($223,960).

A final measure of central tendency, known as the mode , represents the value that occurs most frequently in the distribution . You can see from Figure 3.6 that the mode for the family income variable is $93,000 (it occurs four times).

In addition to summarizing the central tendency of a distribution, descriptive statistics convey information about how the scores of the variable are spread around the central tendency. Dispersion refers to the extent to which the scores are all tightly clustered around the central tendency , as seen in Figure 3.7.

Or they may be more spread out away from it, as seen in Figure 3.8.

One simple measure of dispersion is to find the largest (the maximum ) and the smallest (the minimum ) observed values of the variable and to compute the range of the variable as the maximum observed score minus the minimum observed score. You can check that the range of the height variable in Figure 3.5 is 72 – 62 = 10. The standard deviation , symbolized as s , is the most commonly used measure of dispersion . Distributions with a larger standard deviation have more spread. The standard deviation of the height variable is s = 2.74, and the standard deviation of the family income variable is s = $745,337.

An advantage of descriptive research is that it attempts to capture the complexity of everyday behaviour. Case studies provide detailed information about a single person or a small group of people, surveys capture the thoughts or reported behaviours of a large population of people, and naturalistic observation objectively records the behaviour of people or animals as it occurs naturally. Thus descriptive research is used to provide a relatively complete understanding of what is currently happening.

Despite these advantages, descriptive research has a distinct disadvantage in that, although it allows us to get an idea of what is currently happening, it is usually limited to static pictures. Although descriptions of particular experiences may be interesting, they are not always transferable to other individuals in other situations, nor do they tell us exactly why specific behaviours or events occurred. For instance, descriptions of individuals who have suffered a stressful event, such as a war or an earthquake, can be used to understand the individuals’ reactions to the event but cannot tell us anything about the long-term effects of the stress. And because there is no comparison group that did not experience the stressful situation, we cannot know what these individuals would be like if they hadn’t had the stressful experience.

Correlational Research: Seeking Relationships among Variables

In contrast to descriptive research, which is designed primarily to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. For instance, the variables of height and weight are systematically related (correlated) because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors he or she will make. When there are two variables in the research design, one of them is called the predictor variable and the other the outcome variable . The research design can be visualized as shown in Figure 3.9, where the curved arrow represents the expected correlation between these two variables.

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatter plot . As you can see in Figure 3.10 a scatter plot  is a visual image of the relationship between two variables . A point is plotted for each individual at the intersection of his or her scores for the two variables. When the association between the variables on the scatter plot can be easily approximated with a straight line , as in parts (a) and (b) of Figure 3.10 the variables are said to have a linear relationship .

When the straight line indicates that individuals who have above-average values for one variable also tend to have above-average values for the other variable , as in part (a), the relationship is said to be positive linear . Examples of positive linear relationships include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case, people who score higher on one of the variables also tend to score higher on the other variable. Negative linear relationships , in contrast, as shown in part (b), occur when above-average values for one variable tend to be associated with below-average values for the other variable. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses, and between practice on and errors made on a learning task. In these cases, people who score higher on one of the variables tend to score lower on the other variable.

Relationships between variables that cannot be described with a straight line are known as nonlinear relationships . Part (c) of Figure 3.10 shows a common pattern in which the distribution of the points is essentially random. In this case there is no relationship at all between the two variables, and they are said to be independent . Parts (d) and (e) of Figure 3.10 show patterns of association in which, although there is an association, the points are not well described by a single straight line. For instance, part (d) shows the type of relationship that frequently occurs between anxiety and performance. Increases in anxiety from low to moderate levels are associated with performance increases, whereas increases in anxiety from moderate to high levels are associated with decreases in performance. Relationships that change in direction and thus are not described by a single straight line are called curvilinear relationships .

The most common statistical measure of the strength of linear relationships among variables is the Pearson correlation coefficient , which is symbolized by the letter r . The value of the correlation coefficient ranges from r = –1.00 to r = +1.00. The direction of the linear relationship is indicated by the sign of the correlation coefficient. Positive values of r (such as r = .54 or r = .67) indicate that the relationship is positive linear (i.e., the pattern of the dots on the scatter plot runs from the lower left to the upper right), whereas negative values of r (such as r = –.30 or r = –.72) indicate negative linear relationships (i.e., the dots run from the upper left to the lower right). The strength of the linear relationship is indexed by the distance of the correlation coefficient from zero (its absolute value). For instance, r = –.54 is a stronger relationship than r = .30, and r = .72 is a stronger relationship than r = –.57. Because the Pearson correlation coefficient only measures linear relationships, variables that have curvilinear relationships are not well described by r , and the observed correlation will be close to zero.

It is also possible to study relationships among more than two measures at the same time. A research design in which more than one predictor variable is used to predict a single outcome variable is analyzed through multiple regression (Aiken & West, 1991).  Multiple regression  is a statistical technique, based on correlation coefficients among variables, that allows predicting a single outcome variable from more than one predictor variable . For instance, Figure 3.11 shows a multiple regression analysis in which three predictor variables (Salary, job satisfaction, and years employed) are used to predict a single outcome (job performance). The use of multiple regression analysis shows an important advantage of correlational research designs — they can be used to make predictions about a person’s likely score on an outcome variable (e.g., job performance) based on knowledge of other variables.

An important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables. Consider, for instance, a researcher who has hypothesized that viewing violent behaviour will cause increased aggressive play in children. He has collected, from a sample of Grade 4 children, a measure of how many violent television shows each child views during the week, as well as a measure of how aggressively each child plays on the school playground. From his collected data, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behaviour. Although the researcher is tempted to assume that viewing violent television causes aggressive play, there are other possibilities. One alternative possibility is that the causal direction is exactly opposite from what has been hypothesized. Perhaps children who have behaved aggressively at school develop residual excitement that leads them to want to watch violent television shows at home (Figure 3.13):

Although this possibility may seem less likely, there is no way to rule out the possibility of such reverse causation on the basis of this observed correlation. It is also possible that both causal directions are operating and that the two variables cause each other (Figure 3.14).

Still another possible explanation for the observed correlation is that it has been produced by the presence of a common-causal variable (also known as a third variable ). A common-causal variable  is a variable that is not part of the research hypothesis but that causes both the predictor and the outcome variable and thus produces the observed correlation between them . In our example, a potential common-causal variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may produce children who like to watch violent television and who also behave aggressively in comparison to children whose parents use less harsh discipline (Figure 3.15)

In this case, television viewing and aggressive play would be positively correlated (as indicated by the curved arrow between them), even though neither one caused the other but they were both caused by the discipline style of the parents (the straight arrows). When the predictor and outcome variables are both caused by a common-causal variable, the observed relationship between them is said to be spurious . A spurious relationship  is a relationship between two variables in which a common-causal variable produces and “explains away” the relationship . If effects of the common-causal variable were taken away, or controlled for, the relationship between the predictor and outcome variables would disappear. In the example, the relationship between aggression and television viewing might be spurious because by controlling for the effect of the parents’ disciplining style, the relationship between television viewing and aggressive behaviour might go away.

Common-causal variables in correlational research designs can be thought of as mystery variables because, as they have not been measured, their presence and identity are usually unknown to the researcher. Since it is not possible to measure every variable that could cause both the predictor and outcome variables, the existence of an unknown common-causal variable is always a possibility. For this reason, we are left with the basic limitation of correlational research: correlation does not demonstrate causation. It is important that when you read about correlational research projects, you keep in mind the possibility of spurious relationships, and be sure to interpret the findings appropriately. Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems.

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible because the predictor variables cannot be manipulated. Correlational designs also have the advantage of allowing the researcher to study behaviour as it occurs in everyday life. And we can also use correlational designs to make predictions — for instance, to predict from the scores on their battery of tests the success of job trainees during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments.

Experimental Research: Understanding the Causes of Behaviour

The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables ) and the dependent variable . The independent variable  in an experiment is the causing variable that is created (manipulated) by the experimenter . The dependent variable  in an experiment is a measured variable that is expected to be influenced by the experimental manipulation . The research hypothesis suggests that the manipulated independent variable or variables will cause changes in the measured dependent variables. We can diagram the research hypothesis by using an arrow that points in one direction. This demonstrates the expected direction of causality (Figure 3.16):

Research Focus: Video Games and Aggression

Consider an experiment conducted by Anderson and Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behaviour. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (Wolfenstein 3D) or a nonviolent video game (Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (aggressive behaviour) was the level and duration of noise delivered to the opponent. The design of the experiment is shown in Figure 3.17

Two advantages of the experimental research design are (a) the assurance that the independent variable (also known as the experimental manipulation ) occurs prior to the measured dependent variable, and (b) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table . Anderson and Dill first randomly assigned about 100 participants to each of their two groups (Group A and Group B). Because they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet — and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation — they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then they compared the dependent variable (the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable (and not some other variable) that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Second, and more important, is that some of the most interesting and key social variables cannot be experimentally manipulated. If we want to study the influence of the size of a mob on the destructiveness of its behaviour, or to compare the personality characteristics of people who join suicide cults with those of people who do not join such cults, these relationships must be assessed using correlational designs, because it is simply not possible to experimentally manipulate these variables.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviours in a given group of people. Descriptive research is summarized using descriptive statistics.
  • Correlational research designs measure two or more relevant variables and assess a relationship between or among them. The variables may be presented on a scatter plot to visually show the relationships. The Pearson Correlation Coefficient ( r ) is a measure of the strength of linear relationship between two variables.
  • Common-causal variables may cause both the predictor and outcome variable in a correlational design, producing a spurious relationship. The possibility of common-causal variables makes it impossible to draw causal conclusions from correlational research designs.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Random assignment to conditions is normally used to create initial equivalence between the groups, allowing researchers to draw causal conclusions.

Exercises and Critical Thinking

  • There is a negative correlation between the row that a student sits in in a large class (when the rows are numbered from front to back) and his or her final grade in the class. Do you think this represents a causal relationship or a spurious relationship, and why?
  • Think of two variables (other than those mentioned in this book) that are likely to be correlated, but in which the correlation is probably spurious. What is the likely common-causal variable that is producing the relationship?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Image Attributions

Figure 3.4: “ Reading newspaper ” by Alaskan Dude (http://commons.wikimedia.org/wiki/File:Reading_newspaper.jpg) is licensed under CC BY 2.0

Aiken, L., & West, S. (1991).  Multiple regression: Testing and interpreting interactions . Newbury Park, CA: Sage.

Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978).  Patterns of attachment: A psychological study of the strange situation . Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life.  Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In  Social neuroscience: Key readings.  (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1909/1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.),  Personality: Readings in theory and research  (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909).

Kotowicz, Z. (2007). The strange case of Phineas Gage.  History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964).  The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Stangor, C. (2011). Research methods for the behavioural sciences (4th ed.). Mountain View, CA: Cengage.

Long Descriptions

Figure 3.6 long description: There are 25 families. 24 families have an income between $44,000 and $111,000 and one family has an income of $3,800,000. The mean income is $223,960 while the median income is $73,000. [Return to Figure 3.6]

Figure 3.10 long description: Types of scatter plots.

  • Positive linear, r=positive .82. The plots on the graph form a rough line that runs from lower left to upper right.
  • Negative linear, r=negative .70. The plots on the graph form a rough line that runs from upper left to lower right.
  • Independent, r=0.00. The plots on the graph are spread out around the centre.
  • Curvilinear, r=0.00. The plots of the graph form a rough line that goes up and then down like a hill.
  • Curvilinear, r=0.00. The plots on the graph for a rough line that goes down and then up like a ditch.

[Return to Figure 3.10]

Introduction to Psychology - 1st Canadian Edition Copyright © 2014 by Jennifer Walinga and Charles Stangor is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

descriptive research includes all of these except quizlet

Chapter 5 Research Design

Research design is a comprehensive plan for data collection in an empirical research project. It is a “blueprint” for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: (1) the data collection process, (2) the instrument development process, and (3) the sampling process. The instrument development and sampling processes are described in next two chapters, and the data collection process (which is often loosely called “research design”) is introduced in this chapter and is described in further detail in Chapters 9-12.

Broadly speaking, data collection methods can be broadly grouped into two categories: positivist and interpretive. Positivist methods , such as laboratory experiments and survey research, are aimed at theory (or hypotheses) testing, while interpretive methods, such as action research and ethnography, are aimed at theory building. Positivist methods employ a deductive approach to research, starting with a theory and testing theoretical postulates using empirical data. In contrast, interpretive methods employ an inductive approach that starts with data and tries to derive a theory about the phenomenon of interest from the observed data. Often times, these methods are incorrectly equated with quantitative and qualitative research. Quantitative and qualitative methods refers to the type of data being collected (quantitative data involve numeric scores, metrics, and so on, while qualitative data includes interviews, observations, and so forth) and analyzed (i.e., using quantitative techniques such as regression or qualitative techniques such as coding). Positivist research uses predominantly quantitative data, but can also use qualitative data. Interpretive research relies heavily on qualitative data, but can sometimes benefit from including quantitative data as well. Sometimes, joint use of qualitative and quantitative data may help generate unique insight into a complex social phenomenon that are not available from either types of data alone, and hence, mixed-mode designs that combine qualitative and quantitative data are often highly desirable.

Key Attributes of a Research Design

The quality of research designs can be defined in terms of four key design attributes: internal validity, external validity, construct validity, and statistical conclusion validity.

Internal validity , also called causality, examines whether the observed change in a dependent variable is indeed caused by a corresponding change in hypothesized independent variable, and not by variables extraneous to the research context. Causality requires three conditions: (1) covariation of cause and effect (i.e., if cause happens, then effect also happens; and if cause does not happen, effect does not happen), (2) temporal precedence: cause must precede effect in time, (3) no plausible alternative explanation (or spurious correlation). Certain research designs, such as laboratory experiments, are strong in internal validity by virtue of their ability to manipulate the independent variable (cause) via a treatment and observe the effect (dependent variable) of that treatment after a certain point in time, while controlling for the effects of extraneous variables. Other designs, such as field surveys, are poor in internal validity because of their inability to manipulate the independent variable (cause), and because cause and effect are measured at the same point in time which defeats temporal precedence making it equally likely that the expected effect might have influenced the expected cause rather than the reverse. Although higher in internal validity compared to other methods, laboratory experiments are, by no means, immune to threats of internal validity, and are susceptible to history, testing, instrumentation, regression, and other threats that are discussed later in the chapter on experimental designs. Nonetheless, different research designs vary considerably in their respective level of internal validity.

External validity or generalizability refers to whether the observed associations can be generalized from the sample to the population (population validity), or to other people, organizations, contexts, or time (ecological validity). For instance, can results drawn from a sample of financial firms in the United States be generalized to the population of financial firms (population validity) or to other firms within the United States (ecological validity)? Survey research, where data is sourced from a wide variety of individuals, firms, or other units of analysis, tends to have broader generalizability than laboratory experiments where artificially contrived treatments and strong control over extraneous variables render the findings less generalizable to real-life settings where treatments and extraneous variables cannot be controlled. The variation in internal and external validity for a wide range of research designs are shown in Figure 5.1.

descriptive research includes all of these except quizlet

Figure 5.1. Internal and external validity.

Some researchers claim that there is a tradeoff between internal and external validity: higher external validity can come only at the cost of internal validity and vice-versa. But this is not always the case. Research designs such as field experiments, longitudinal field surveys, and multiple case studies have higher degrees of both internal and external validities. Personally, I prefer research designs that have reasonable degrees of both internal and external validities, i.e., those that fall within the cone of validity shown in Figure 5.1. But this should not suggest that designs outside this cone are any less useful or valuable. Researchers’ choice of designs is ultimately a matter of their personal preference and competence, and the level of internal and external validity they desire.

Construct validity examines how well a given measurement scale is measuring the theoretical construct that it is expected to measure. Many constructs used in social science research such as empathy, resistance to change, and organizational learning are difficult to define, much less measure. For instance, construct validity must assure that a measure of empathy is indeed measuring empathy and not compassion, which may be difficult since these constructs are somewhat similar in meaning. Construct validity is assessed in positivist research based on correlational or factor analysis of pilot test data, as described in the next chapter.

Statistical conclusion validity examines the extent to which conclusions derived using a statistical procedure is valid. For example, it examines whether the right statistical method was used for hypotheses testing, whether the variables used meet the assumptions of that statistical test (such as sample size or distributional requirements), and so forth. Because interpretive research designs do not employ statistical test, statistical conclusion validity is not applicable for such analysis. The different kinds of validity and where they exist at the theoretical/empirical levels are illustrated in Figure 5.2.

descriptive research includes all of these except quizlet

Figure 5.2. Different Types of Validity in Scientific Research

Improving Internal and External Validity

The best research designs are those that can assure high levels of internal and external validity. Such designs would guard against spurious correlations, inspire greater faith in the hypotheses testing, and ensure that the results drawn from a small sample are generalizable to the population at large. Controls are required to assure internal validity (causality) of research designs, and can be accomplished in four ways: (1) manipulation, (2) elimination, (3) inclusion, and (4) statistical control, and (5) randomization.

In manipulation , the researcher manipulates the independent variables in one or more levels (called “treatments”), and compares the effects of the treatments against a control group where subjects do not receive the treatment. Treatments may include a new drug or different dosage of drug (for treating a medical condition), a, a teaching style (for students), and so forth. This type of control is achieved in experimental or quasi-experimental designs but not in non-experimental designs such as surveys. Note that if subjects cannot distinguish adequately between different levels of treatment manipulations, their responses across treatments may not be different, and manipulation would fail.

The elimination technique relies on eliminating extraneous variables by holding them constant across treatments, such as by restricting the study to a single gender or a single socio-economic status. In the inclusion technique, the role of extraneous variables is considered by including them in the research design and separately estimating their effects on the dependent variable, such as via factorial designs where one factor is gender (male versus female). Such technique allows for greater generalizability but also requires substantially larger samples. In statistical control , extraneous variables are measured and used as covariates during the statistical testing process.

Finally, the randomization technique is aimed at canceling out the effects of extraneous variables through a process of random sampling, if it can be assured that these effects are of a random (non-systematic) nature. Two types of randomization are: (1) random selection , where a sample is selected randomly from a population, and (2) random assignment , where subjects selected in a non-random manner are randomly assigned to treatment groups.

Randomization also assures external validity, allowing inferences drawn from the sample to be generalized to the population from which the sample is drawn. Note that random assignment is mandatory when random selection is not possible because of resource or access constraints. However, generalizability across populations is harder to ascertain since populations may differ on multiple dimensions and you can only control for few of those dimensions.

Popular Research Designs

As noted earlier, research designs can be classified into two categories – positivist and interpretive – depending how their goal in scientific research. Positivist designs are meant for theory testing, while interpretive designs are meant for theory building. Positivist designs seek generalized patterns based on an objective view of reality, while interpretive designs seek subjective interpretations of social phenomena from the perspectives of the subjects involved. Some popular examples of positivist designs include laboratory experiments, field experiments, field surveys, secondary data analysis, and case research while examples of interpretive designs include case research, phenomenology, and ethnography. Note that case research can be used for theory building or theory testing, though not at the same time. Not all techniques are suited for all kinds of scientific research. Some techniques such as focus groups are best suited for exploratory research, others such as ethnography are best for descriptive research, and still others such as laboratory experiments are ideal for explanatory research. Following are brief descriptions of some of these designs. Additional details are provided in Chapters 9-12.

Experimental studies are those that are intended to test cause-effect relationships (hypotheses) in a tightly controlled setting by separating the cause from the effect in time, administering the cause to one group of subjects (the “treatment group”) but not to another group (“control group”), and observing how the mean effects vary between subjects in these two groups. For instance, if we design a laboratory experiment to test the efficacy of a new drug in treating a certain ailment, we can get a random sample of people afflicted with that ailment, randomly assign them to one of two groups (treatment and control groups), administer the drug to subjects in the treatment group, but only give a placebo (e.g., a sugar pill with no medicinal value). More complex designs may include multiple treatment groups, such as low versus high dosage of the drug, multiple treatments, such as combining drug administration with dietary interventions. In a true experimental design , subjects must be randomly assigned between each group. If random assignment is not followed, then the design becomes quasi-experimental . Experiments can be conducted in an artificial or laboratory setting such as at a university (laboratory experiments) or in field settings such as in an organization where the phenomenon of interest is actually occurring (field experiments). Laboratory experiments allow the researcher to isolate the variables of interest and control for extraneous variables, which may not be possible in field experiments. Hence, inferences drawn from laboratory experiments tend to be stronger in internal validity, but those from field experiments tend to be stronger in external validity. Experimental data is analyzed using quantitative statistical techniques. The primary strength of the experimental design is its strong internal validity due to its ability to isolate, control, and intensively examine a small number of variables, while its primary weakness is limited external generalizability since real life is often more complex (i.e., involve more extraneous variables) than contrived lab settings. Furthermore, if the research does not identify ex ante relevant extraneous variables and control for such variables, such lack of controls may hurt internal validity and may lead to spurious correlations.

Field surveys are non-experimental designs that do not control for or manipulate independent variables or treatments, but measure these variables and test their effects using statistical methods. Field surveys capture snapshots of practices, beliefs, or situations from a random sample of subjects in field settings through a survey questionnaire or less frequently, through a structured interview. In cross-sectional field surveys , independent and dependent variables are measured at the same point in time (e.g., using a single questionnaire), while in longitudinal field surveys , dependent variables are measured at a later point in time than the independent variables. The strengths of field surveys are their external validity (since data is collected in field settings), their ability to capture and control for a large number of variables, and their ability to study a problem from multiple perspectives or using multiple theories. However, because of their non-temporal nature, internal validity (cause-effect relationships) are difficult to infer, and surveys may be subject to respondent biases (e.g., subjects may provide a “socially desirable” response rather than their true response) which further hurts internal validity.

Secondary data analysis is an analysis of data that has previously been collected and tabulated by other sources. Such data may include data from government agencies such as employment statistics from the U.S. Bureau of Labor Services or development statistics by country from the United Nations Development Program, data collected by other researchers (often used in meta-analytic studies), or publicly available third-party data, such as financial data from stock markets or real-time auction data from eBay. This is in contrast to most other research designs where collecting primary data for research is part of the researcher’s job.

Secondary data analysis may be an effective means of research where primary data collection is too costly or infeasible, and secondary data is available at a level of analysis suitable for answering the researcher’s questions. The limitations of this design are that the data might not have been collected in a systematic or scientific manner and hence unsuitable for scientific research, since the data was collected for a presumably different purpose, they may not adequately address the research questions of interest to the researcher, and interval validity is problematic if the temporal precedence between cause and effect is unclear.

Case research is an in-depth investigation of a problem in one or more real-life settings (case sites) over an extended period of time. Data may be collected using a combination of interviews, personal observations, and internal or external documents. Case studies can be positivist in nature (for hypotheses testing) or interpretive (for theory building). The strength of this research method is its ability to discover a wide variety of social, cultural, and political factors potentially related to the phenomenon of interest that may not be known in advance. Analysis tends to be qualitative in nature, but heavily contextualized and nuanced. However, interpretation of findings may depend on the observational and integrative ability of the researcher, lack of control may make it difficult to establish causality, and findings from a single case site may not be readily generalized to other case sites. Generalizability can be improved by replicating and comparing the analysis in other case sites in a multiple case design .

Focus group research is a type of research that involves bringing in a small group of subjects (typically 6 to 10 people) at one location, and having them discuss a phenomenon of interest for a period of 1.5 to 2 hours. The discussion is moderated and led by a trained facilitator, who sets the agenda and poses an initial set of questions for participants, makes sure that ideas and experiences of all participants are represented, and attempts to build a holistic understanding of the problem situation based on participants’ comments and experiences.

Internal validity cannot be established due to lack of controls and the findings may not be generalized to other settings because of small sample size. Hence, focus groups are not generally used for explanatory or descriptive research, but are more suited for exploratory research.

Action research assumes that complex social phenomena are best understood by introducing interventions or “actions” into those phenomena and observing the effects of those actions. In this method, the researcher is usually a consultant or an organizational member embedded within a social context such as an organization, who initiates an action such as new organizational procedures or new technologies, in response to a real problem such as declining profitability or operational bottlenecks. The researcher’s choice of actions must be based on theory, which should explain why and how such actions may cause the desired change. The researcher then observes the results of that action, modifying it as necessary, while simultaneously learning from the action and generating theoretical insights about the target problem and interventions. The initial theory is validated by the extent to which the chosen action successfully solves the target problem. Simultaneous problem solving and insight generation is the central feature that distinguishes action research from all other research methods, and hence, action research is an excellent method for bridging research and practice. This method is also suited for studying unique social problems that cannot be replicated outside that context, but it is also subject to researcher bias and subjectivity, and the generalizability of findings is often restricted to the context where the study was conducted.

Ethnography is an interpretive research design inspired by anthropology that emphasizes that research phenomenon must be studied within the context of its culture. The researcher is deeply immersed in a certain culture over an extended period of time (8 months to 2 years), and during that period, engages, observes, and records the daily life of the studied culture, and theorizes about the evolution and behaviors in that culture. Data is collected primarily via observational techniques, formal and informal interaction with participants in that culture, and personal field notes, while data analysis involves “sense-making”. The researcher must narrate her experience in great detail so that readers may experience that same culture without necessarily being there. The advantages of this approach are its sensitiveness to the context, the rich and nuanced understanding it generates, and minimal respondent bias. However, this is also an extremely time and resource-intensive approach, and findings are specific to a given culture and less generalizable to other cultures.

Selecting Research Designs

Given the above multitude of research designs, which design should researchers choose for their research? Generally speaking, researchers tend to select those research designs that they are most comfortable with and feel most competent to handle, but ideally, the choice should depend on the nature of the research phenomenon being studied. In the preliminary phases of research, when the research problem is unclear and the researcher wants to scope out the nature and extent of a certain research problem, a focus group (for individual unit of analysis) or a case study (for organizational unit of analysis) is an ideal strategy for exploratory research. As one delves further into the research domain, but finds that there are no good theories to explain the phenomenon of interest and wants to build a theory to fill in the unmet gap in that area, interpretive designs such as case research or ethnography may be useful designs. If competing theories exist and the researcher wishes to test these different theories or integrate them into a larger theory, positivist designs such as experimental design, survey research, or secondary data analysis are more appropriate.

Regardless of the specific research design chosen, the researcher should strive to collect quantitative and qualitative data using a combination of techniques such as questionnaires, interviews, observations, documents, or secondary data. For instance, even in a highly structured survey questionnaire, intended to collect quantitative data, the researcher may leave some room for a few open-ended questions to collect qualitative data that may generate unexpected insights not otherwise available from structured quantitative data alone. Likewise, while case research employ mostly face-to-face interviews to collect most qualitative data, the potential and value of collecting quantitative data should not be ignored. As an example, in a study of organizational decision making processes, the case interviewer can record numeric quantities such as how many months it took to make certain organizational decisions, how many people were involved in that decision process, and how many decision alternatives were considered, which can provide valuable insights not otherwise available from interviewees’ narrative responses. Irrespective of the specific research design employed, the goal of the researcher should be to collect as much and as diverse data as possible that can help generate the best possible insights about the phenomenon of interest.

  • Social Science Research: Principles, Methods, and Practices. Authored by : Anol Bhattacherjee. Provided by : University of South Florida. Located at : http://scholarcommons.usf.edu/oa_textbooks/3/ . License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike

Methods of Social Research, SOC 300, Exam 1 ANSWERS                        Summer 2003, Price

Matching (2 points each)

Terms                            Letter of Matching Definition

1. Sociology                                        B

2. Experiments                                    H

3. Content Analysis                             I

4. Field Research                                A

5. Grounded Theory                             C                 

6. Research Design                             E

7. Interactionism or Interpretive              G

8. Conflict or Critical Theory                  D

9. Functionalism                                  J

10. SOC 300                                       F

Definitions

a.        Research in which a researcher directly observes people interacting in a natural setting.

b.        The study of social interaction and social organization.

c.        A way of developing explanations about the social world that starts with empirical observations of the world and builds abstract patterns from them.

d.        The theoretical perspective which views social issues and problems in terms of dominant groups exerting power over others to ensure that the dominant group’s interests are served.

e.        A plan for systematically gathering and analyzing information to answer a research question.

f.          A course with content that many students find boring.

g.        The theoretical perspective that focuses on how people understand the everyday social settings in which they interact with others.

h.        Research in which one intervenes or does something to one group of people but not to another, then compares results of the two groups.               

i.          Research that examines patterns of symbolic meaning within written text, audio, visual or other communication medium.

j.          The theoretical perspective that explains social patterns as existing because they serve a purpose in society.

Multiple Choice: Choose the Best Response (3 points each)

11.      Dalessha developed a pure model of the "street walker" prostitute to help her study a large city ghetto. She is using a(n):  

          a.    Parsimony

          b.    Ideal Type **

c.        Metaphor

d.        Jargon

12.      Dr. Smith said that social science cannot be value neutral, and a good study requires putting results into action to help people change society. Dr. Smith uses which approach to social science?

a.        Positivism

b.        Interpretative Social Science

c.        Critical Social Science **

d.        None of the above

13.     Henry Hogson conducted an experiment in which he tested the theory that the intensity of social interaction among people increases if they are anxious. What type of study is this most likely to be?

a.        Cost Benefit Analysis

b.       Explanatory Research **

c.        Content Analysis

d.        Exploratory Research

14.      For the positivist approach to research, a theory looks like:

          a.    A series of positive statements about the world.

          b.    A logical system of laws, axioms, and propositions.   **

          c.    A critique which claims that people are being mislead.

          d.    A political program of action and social change.

15.      In exploratory research one does all of the following, EXCEPT:

a.        Become familiar with the basic facts, people and concerns involved.

b.        Generate many ideas and develop tentative hypotheses.

c.        Determine the feasibility of doing additional research.

d.       Test a theory or explanation. **

16.      Professor Tun-jen Cheng wanted to study the cause for thousands of people from Hong Kong moving to Vancouver, British Columbia. In order to establish temporal order in his causal argument he must show which of the following:

          a.    There is a correlation between events in Hong Kong and a decision to move.

          b.    Events occurred in Hong Kong before people moved to Vancouver.

          c.    A fear for the future of Hong Kong and no other reason caused the move to Vancouver.

          d.    All of the above.   **

**THREW #16 OUT:   Only 4 students got the right answer.

17.   Social research methods include all of the following, except:

a.         Surveys

b.         Therapy   **

c.         Experiments

d.         Interviews

18.      A local human service organization contacted Mr. Tanaka. The organization asked him to conduct a study to identify the difficulties and problems of the elderly in the local community so that the organization could develop social programs to help them. What type of study would this be?

a.       Needs assessment *

b.        Cost-benefit analysis

c.        Planning, Programming and Budgeting System

d.        Summative Evaluation Research

19.      Which best summarizes the main goal of descriptive research ?

a.        Advance knowledge about an underlying process or complete a theory.

b.       Develop a detailed picture of a situation or issue. **

c.        Extend a theory or principle into new areas or issues.

d.        Provide evidence to support or refute an explanation.

20.   A research method in which subjects respond to a series of items in a questionnaire:

a.        random sample.

b.        target group.

c.        experiment.

d.       Survey.   **

21.      Elizabeth Bethouse conducted a study of gambling establishments operated by American Indian groups. She examined two establishments operated by different tribes. During the study she spent many hours at each establishment and gained a detailed knowledge of the tribal leaders, gambling employees and gambling customers. She also investigated how the establishments were organized, their impact on economic development in the area and how tribal members saw them. She conducted:

a.       a case study **

b.        a summative evaluation study

c.        a cohort study

d.         action research

22.      What is the purpose of basic social research or basic sociology ?

a.        Solve social problems and find which policies are best.

b.        Improve social programs so they become more effective.

c.        Invent new taxonomies and jargon.

d.       Create fundamental knowledge about how the social world works. **

23.      Which approach says that the purpose of research is to study the creation of social meaning?

          a.    Positivism

          b.    Interpretative Social Science **

c.        Critical Social Science

d.        None of the above               

24.     Social research methods are:

a.       Ways to gather information to answer a question about the social world. **

b.        Ways to convince people to participate in a study.

c.        Ways to manipulate people.

d.        Ways to increase the number of friends you have.

25.      Which of the following is not an example of a qualitative research method:

          a.    Ethnography

          b.    Time series**

          c.    Covert Observation

          d.    Informal or Personal Interviews

26.      A friend makes the following comment: “Persons who grew up with a much older sibling tend to treat the older sibling as a parent figure.”   She is making a:

          a.    Verstehen

          b.    Theory

          c.    Relativism

          d.    Generalization **

27.      Joe Foss studied gender differences in attitudes toward mathematics and science among 45 first grade students. Over the next twelve years he studied the same 45 children when they were in the fifth, eighth and twelfth grades. This is what type of research?

          a.    Case study research

          b.    Cross-sectional research (a study on a cross-sectional sample)

          c.    Panel study research   (a study on a panel sample)   **

          d.    Action-oriented research

28.      A research method in which a researcher asks study participants several conversational style questions and does not provide a set of responses to choose from:

a.        case study

b.       interview **

c.        comparative method

          d.    quantitative study

29.      All of the following characterize applied sociological research except which one?

          a.    Doing research is usually part of a job assignment and sponsors/supervisors who are not professional researchers will judge/use the results.

          b.    Success is based on whether sponsors/supervisors use the results in decision-making.

          c.    The primary concern is with the internal logic and rigor of the research design, so a researcher attempts to reach the absolute norms of scientific rigor and scholarship.   **

          d.    Research projects are limited by the demands and interests of employers or sponsors.

30.   This test: (No wrong answer)

a.        Fairly reflects the course readings, lectures and discussion thus far this semester.

b.        Does not fairly reflect the course readings, lectures and discussion thus far this semester.

Essay (20 points) : Write an essay answer on ONE of the following, approximately 1 page in length.

Briefly describe the steps involved in conducting a research project.    WRITTEN IN ESSAY FORM.   SHOULD GIVE AN EXAMPLE OF EACH STEP, PERHAPS USING YOUR RESEARCH QUESTION

  • Identify a question/problem/topic.
  • Learn what else is known on this question or problem (Lit Review).   Revise question/topic.
  • Choose a way to observe the question or problem to gain new insight (experiment, survey, interview, observation, etc.).
  • Collect data.
  • Analyze data.
  • Interpret meaning of analysis findings.
  • Disseminate findings.  

+20 points: Student clearly identified each step.

+15 points: Student clearly identified most of the steps.

+10 points: Student clearly identified half of the steps.

  +5 points: Student clearly identified 1-2 steps.

-2 to -5 points for minor mistakes.

-10 IF NOT IN ESSAY FORM

Explain the difference between qualitative and quantitative research. Use examples. Quantitative

Assumptions: There is one reality/truth that exists independent of the research.   We can know it before observing reality and develop a theory to test and standardized questions (variables) to ask people.   We can then measure reality to test our theory objectively (free from researcher bias, values).     

Process of research unfolds as: theory → research q → method → theory

Any problem or topic of study can be broken down into all of its parts, and that the sum of the parts equals the whole problem.   A scientist studies a question/issue by “reducing” it into measurable, observable parts called variables.   After measuring the parts, the scientist adds them back up again to describe or understand the original problem.  

Examples of Quantitative Research:  

Questions that ask “what?” or “how many?”.  

Includes surveys, experiments, most existing/secondary data  

Qualitative

Assumptions: There is no one reality for a theory to capture.   There is no one understanding.   Meanings and reality change across people, place and time.   Need to let reality, not apriori theory, drive understanding (grounded theory).   Researcher values enhance/shape the study.

Process of research unfolds as: research q → method → theory

A problems or topic of study cannot be broken down into parts.   You have to observe the topic/problem in its natural form.   

Examples of Qualitative Research:

Questions that ask “why?” or “ how does something occur”?   Also use if the topic is too complicated to develop survey type questions about, or you don’t know enough about the topic to write questions about.

Includes interviews, observation, historical/comparative, content analysis, case studies.

Quantitative Answer: 10 points total

Qualitative Answer: 10 points total

+5 points: Student’s explanation of quantitative research conveys understanding of main tenets of quantitative research. 

+5 points: Student’s explanation of qualitative research conveys understanding of main tenets of qualitative research. 

+5 points: Student identifies examples of quantitative research: surveys, experiments, types of questions best answered by quantitative methods.

+5 points: Student identifies examples of qualitative research: interviews, observation, historical/comparative, types of questions best answered by qualitative methods.

What is the role of the major theoretical frameworks in research?   Use examples.

Theory frames how we think about or see a topic.   As such, theory influences which topics we choose to study.

Theory influences how we interpret past research findings.

Theory influences choice of research method:   Functionalist and Conflict approaches to topics tend to use quantitative methods.   SI approaches tend to use qualitative.  

Inductive/Qualitative Research: Theory plays a bigger role after data is collected and researcher is making sense of the data observed/collected.  

Deductive/Quantitative Research: Theory plays a biggest role at beginning and end of research.   Quantitative research begins with a theory to test, and ends by revising the theory based on the study findings.

+5 points: Student provides general description of how theory influences research topic chosen.

+5 points: Student identifies that theory influences choice of research method.

+5 points: Student identifies role of theory in quantitative/deductive research.

+5 points: Student identifies role of theory in qualitative/inductive research.

A local PTA hires you to identify what services and programs parents would like the PTA to provide. What method would you use to help answer their question?   How would you use this method?

Based on what students know thus far in the course, the best methods are probably a mail or telephone survey.   But, you could also do qualitative/in-depth interviews.   (Focus groups would be good but the students don’t know much about them yet.)   Methods that would not work include experiments, observation, historical/document analysis, secondary data.

Process Involved =

a.          Clarifying the PTA’s questions – what they want to know, what they want to do with data.

b.          Learn what else is known on this question or problem.

c.          How you would collect data using this method.

Choice of Reasonable Method = +5 points  

Logical Explanation of Why Chose this Method = +5 points

Description of How to Use Method = +10 points

  • Full 10 points if student identifies general process involved.     

·           5 points if student doesn’t convey a clear understanding of the process involved in using the method identified.

·           -2 to -5 points for minor mistakes.

IMAGES

  1. Explain the Difference Between Descriptive and Experimental Research

    descriptive research includes all of these except quizlet

  2. Descriptive Research: Methods, Types, and Examples

    descriptive research includes all of these except quizlet

  3. Descriptive Chart

    descriptive research includes all of these except quizlet

  4. descriptive research quiz

    descriptive research includes all of these except quizlet

  5. PPT

    descriptive research includes all of these except quizlet

  6. Descriptive Research: Methods, Types, and Examples

    descriptive research includes all of these except quizlet

VIDEO

  1. Exploratory vs Descriptive Research|Difference between exploratory and descriptive research

  2. Purpose of Research: Descriptive Research

  3. Descriptive research design

  4. Data analysis and interpretation of descriptive research study

  5. Descriptive Research methods

  6. DESCRIPTIVE RESEARCH DESIGN || PRACTICAL RESEARCH 2

COMMENTS

  1. Chapter 1: Descriptive Research Methods Flashcards

    research methods that yield descriptions of behavior. What are the types of descriptive research methods? naturalistic and laboratory observation, case study, survey. What is naturalistic observation? descriptive research method in which researchers observe and record behavior in its natural setting without attempting to influence or control ...

  2. Psychology Ch 2 Flashcards

    Study with Quizlet and memorize flashcards containing terms like Which of the following statements are true about descriptive research: (multiple choice answer) A. Descriptive Research can tell us how happy people are. B. Descriptive Research cannot tell us what makes people happy. C. Descriptive Research cannot tell us why people are happy. D. Descriptive Research can't tell us what to do to ...

  3. PSY ch.1 Flashcards

    Study with Quizlet and memorize flashcards containing terms like 1) Psychology A) is a collection of theories that have yet to be tested out. B) is the scientific study of behavior and mental processes. C) is the study of supernatural phenomena. D) consists solely of various forms of therapy. E) is the study of common sense in individuals., 2) Which of the following is FALSE regarding the ...

  4. Descriptive Research

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables. Unlike in experimental research, the researcher does ...

  5. The 3 Descriptive Research Methods of Psychology

    Types of descriptive research. Observational method. Case studies. Surveys. Recap. Descriptive research methods are used to define the who, what, and where of human behavior and other ...

  6. 5.8: Descriptive Research

    The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies. These studies are used to describe general or specific behaviors and attributes that are observed and measured.

  7. Descriptive Research

    Video 2.4.1. Descriptive Research Design provides explanation and examples for quantitative descriptive research.A closed-captioned version of this video is available here.. Descriptive research is distinct from correlational research, in which researchers formally test whether a relationship exists between two or more variables. Experimental research goes a step further beyond descriptive and ...

  8. Descriptive Research

    Descriptive studies have the following characteristics: 1. While descriptive research can employ a number of variables, only one variable is required to conduct a descriptive study. 2. Descriptive studies are closely associated with observational studies, but they are not limited with observation data collection method.

  9. Research Design : Descriptive Studies

    A descriptive study is one in which information is collected without changing the environment (i.e., nothing is manipulated). Sometimes these are referred to as " correlational " or " observational " studies. The Office of Human Research Protections (OHRP) defines a descriptive study as "Any study that is not truly experimental.".

  10. Which Descriptive Research Technique Is Correctly Matched with a

    Which descriptive research technique is correctly matched with a description? A)survey - Participants are systematically studied in their natural environment. B)case study - A single individual or group is examined in detail. C)naturalistic observation - Questionnaires or interviews are used to probe behavior or attitudes. D)All of these choices are correctly matched.

  11. 3.2 Psychologists Use Descriptive, Correlational, and Experimental

    Descriptive Research: Assessing the Current State of Affairs. Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behaviour of individuals. This section reviews three types of descriptive research: case studies, surveys, and naturalistic observation (Figure 3.4).

  12. Chapter 1: Descriptive Research Method Flashcards

    an intensive study of a single individual or small group of individuals. a questionnaire or interview designed to investigate the opinions, behaviors, or characteristics of a particular group. a selected segment of the population used to represent the group that is being studied. a selected segment that very closely parallels the larger ...

  13. Solved Descriptive studies include all of the following

    Question: Descriptive studies include all of the following EXCEPT: interviews case studies observational studies clinical trials. Show transcribed image text. Here's the best way to solve it. Created by Chegg. Share Share. Answer: Clinical Trials Researchers and psychologists gather data and describe the spe …. View the full answer.

  14. All of the following statements are true about descriptive research

    Descriptive research, as the term implies, describes the characteristics of the population or phenomenon being studied. It does not involve the manipulation of subjects or variables and does not establish cause-effect relationships. This research method includes observation, case studies, surveys, and interviews.

  15. Chapter 5 Research Design

    Research design is a comprehensive plan for data collection in an empirical research project. It is a "blueprint" for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: (1) the data collection process, (2) the instrument development process, and (3 ...

  16. Methods of Social Research, SOC 300, Exam 1

    A political program of action and social change. 15. In exploratory research one does all of the following, EXCEPT: a. Become familiar with the basic facts, people and concerns involved. b. Generate many ideas and develop tentative hypotheses. c. Determine the feasibility of doing additional research. d.

  17. Descriptive Research Design Flashcards

    3. Subject bias occurs. Causal-comparative research usually have three weaknesses: Study with Quizlet and memorize flashcards containing terms like Descriptive Research, what caused it, • Build on previous information • Show relationships between variables • Require representative samples • Structured research plans • Conclusive ...

  18. Research final Flashcards

    A. Cross-sectional design. B. Longitudinal design. C. Case study design. D. Correlational design. D. Although not considered the strongest evidence for change in nursing practice, findings from descriptive studies can be used in the following way (s) to support evidence-based nursing practice: A. Care planning. B. nursing interventions.

  19. Solved all of the following are considered qualitative

    e. in-depth interviews. all of the following are considered qualitative research except. a. experimnet. b. observation. c. focus group. d. social media. e. in-depth interviews. There are 2 steps to solve this one.

  20. Multiple Choice All of the following are true of descriptive research

    Descriptive research is a type of research that aims to describe a phenomenon or a topic, but it does not produce an exact solution. Explanation: Descriptive research is a type of research that aims to describe or explain a phenomenon or a topic. It focuses on collecting data through methods such as surveys, observations, or interviews, and ...

  21. Descriptive research is conducted for all of the following reasons except

    Expert-Verified Answer. Descriptive research aims to define, classify, catalog or characterize the object of study without resorting to quantification. Descriptive research is conducted for the analysis of the characteristics of a population or phenomenon without knowing the relationships between them. The main methods of descriptive research ...