Scientific Writing: Structuring a scientific article

  • Resume/Cover letter
  • Structuring a scientific article
  • AMA Citation Style This link opens in a new window
  • APA Citation Style This link opens in a new window
  • Scholarly Publishing This link opens in a new window

How to Structure a Scientific Article

Many scientific articles include the following elements:

I. Abstract: The abstract should briefly summarize the contents of your article. Be sure to include a quick overview of the focus, results and conclusion of your study.

II. Introduction:  The introduction should include any relevant background information and articulate the idea that is being investigated. Why is this study unique? If others have performed research on the topic, include a literature review. 

III. Methods and Materials:  The methods and materials section should provide information on how the study was conducted and what materials were included. Other researchers should be able to reproduce your study based on the information found in this section. 

IV. Results:  The results sections includes the data produced by your study. It should reflect an unbiased account of the study's findings. 

V.  Discussion and Conclusion:  The discussion section provides information on what researches felt was significant and analyzes the data. You may also want to provide final thoughts and ideas for further research in the conclusion section. 

For more information, see How to Read a Scientific Paper.  

Scientific Article Infographic

  • Structure of a Scientific Article
  • << Previous: Resume/Cover letter
  • Next: AMA Citation Style >>

Creative Commons License

  • Last Updated: Jul 16, 2024 11:58 AM
  • URL: https://guides.himmelfarb.gwu.edu/scientific-writing

GW logo

  • Himmelfarb Intranet
  • Privacy Notice
  • Terms of Use
  • GW is committed to digital accessibility. If you experience a barrier that affects your ability to access content on this page, let us know via the Accessibility Feedback Form .
  • Himmelfarb Health Sciences Library
  • 2300 Eye St., NW, Washington, DC 20037
  • Phone: (202) 994-2962
  • [email protected]
  • https://himmelfarb.gwu.edu

Structure of a Research Paper

Phillips-Wangensteen Building.

Structure of a Research Paper: IMRaD Format

I. The Title Page

  • Title: Tells the reader what to expect in the paper.
  • Author(s): Most papers are written by one or two primary authors. The remaining authors have reviewed the work and/or aided in study design or data analysis (International Committee of Medical Editors, 1997). Check the Instructions to Authors for the target journal for specifics about authorship.
  • Keywords [according to the journal]
  • Corresponding Author: Full name and affiliation for the primary contact author for persons who have questions about the research.
  • Financial & Equipment Support [if needed]: Specific information about organizations, agencies, or companies that supported the research.
  • Conflicts of Interest [if needed]: List and explain any conflicts of interest.

II. Abstract: “Structured abstract” has become the standard for research papers (introduction, objective, methods, results and conclusions), while reviews, case reports and other articles have non-structured abstracts. The abstract should be a summary/synopsis of the paper.

III. Introduction: The “why did you do the study”; setting the scene or laying the foundation or background for the paper.

IV. Methods: The “how did you do the study.” Describe the --

  • Context and setting of the study
  • Specify the study design
  • Population (patients, etc. if applicable)
  • Sampling strategy
  • Intervention (if applicable)
  • Identify the main study variables
  • Data collection instruments and procedures
  • Outline analysis methods

V. Results: The “what did you find” --

  • Report on data collection and/or recruitment
  • Participants (demographic, clinical condition, etc.)
  • Present key findings with respect to the central research question
  • Secondary findings (secondary outcomes, subgroup analyses, etc.)

VI. Discussion: Place for interpreting the results

  • Main findings of the study
  • Discuss the main results with reference to previous research
  • Policy and practice implications of the results
  • Strengths and limitations of the study

VII. Conclusions: [occasionally optional or not required]. Do not reiterate the data or discussion. Can state hunches, inferences or speculations. Offer perspectives for future work.

VIII. Acknowledgements: Names people who contributed to the work, but did not contribute sufficiently to earn authorship. You must have permission from any individuals mentioned in the acknowledgements sections. 

IX. References:  Complete citations for any articles or other materials referenced in the text of the article.

  • IMRD Cheatsheet (Carnegie Mellon) pdf.
  • Adewasi, D. (2021 June 14).  What Is IMRaD? IMRaD Format in Simple Terms! . Scientific-editing.info. 
  • Nair, P.K.R., Nair, V.D. (2014). Organization of a Research Paper: The IMRAD Format. In: Scientific Writing and Communication in Agriculture and Natural Resources. Springer, Cham. https://doi.org/10.1007/978-3-319-03101-9_2
  • Sollaci, L. B., & Pereira, M. G. (2004). The introduction, methods, results, and discussion (IMRAD) structure: a fifty-year survey.   Journal of the Medical Library Association : JMLA ,  92 (3), 364–367.
  • Cuschieri, S., Grech, V., & Savona-Ventura, C. (2019). WASP (Write a Scientific Paper): Structuring a scientific paper.   Early human development ,  128 , 114–117. https://doi.org/10.1016/j.earlhumdev.2018.09.011
  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Abstract

Research Paper Abstract – Writing Guide and...

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Research Methodology

Research Methodology – Types, Examples and...

Research Paper Citation

How to Cite Research Paper – All Formats and...

References in Research

References in Research – Types, Examples and...

Data Analysis

Data Analysis – Process, Methods and Types

  • Research Guides

Reading for Research: Social Sciences

Structure of a research article.

  • Structural Read

Guide Acknowledgements

How to Read a Scholarly Article from the Howard Tilton Memorial Library at Tulane University

Strategic Reading for Research   from the Howard Tilton Memorial Library at Tulane University

Bridging the Gap between Faculty Expectation and the Student Experience: Teaching Students toAnnotate and Synthesize Sources

Librarian for Sociology, Environmental Sociology, MHS and Public Policy Studies

Profile Photo

Academic writing has features that vary only slightly across the different disciplines. Knowing these elements and the purpose of each serves help you to read and understand academic texts efficiently and effectively, and then apply what you read to your paper or project.

Social Science (and Science) original research articles generally follow IMRD: Introduction- Methods-Results-Discussion

Introduction

  • Introduces topic of article
  • Presents the "Research Gap"/Statement of Problem article will address
  • How research presented in the article will solve the problem presented in research gap.
  • Literature Review. presenting and evaluating previous scholarship on a topic.  Sometimes, this is separate section of the article. 

​Method & Results

  • How research was done, including analysis and measurements.  
  • Sometimes labeled as "Research Design"
  • What answers were found
  • Interpretation of Results (What Does It Mean? Why is it important?)
  • Implications for the Field, how the study contributes to the existing field of knowledge
  • Suggestions for further research
  • Sometimes called Conclusion

You might also see IBC: Introduction - Body - Conclusion

  • Identify the subject
  • State the thesis 
  • Describe why thesis is important to the field (this may be in the form of a literature review or general prose)

Body  

  • Presents Evidence/Counter Evidence
  • Integrate other writings (i.e. evidence) to support argument 
  • Discuss why others may disagree (counter-evidence) and why argument is still valid
  • Summary of argument
  • Evaluation of argument by pointing out its implications and/or limitations 
  • Anticipate and address possible counter-claims
  • Suggest future directions of research
  • Next: Structural Read >>
  • Last Updated: Jan 19, 2024 10:44 AM
  • URL: https://researchguides.library.vanderbilt.edu/readingforresearch

Creative Commons License

This page has been archived and is no longer updated

Scientific Papers

Scientific papers are for sharing your own original research work with other scientists or for reviewing the research conducted by others. As such, they are critical to the evolution of modern science, in which the work of one scientist builds upon that of others. To reach their goal, papers must aim to inform, not impress. They must be highly readable — that is, clear, accurate, and concise. They are more likely to be cited by other scientists if they are helpful rather than cryptic or self-centered.

Scientific papers typically have two audiences: first, the referees, who help the journal editor decide whether a paper is suitable for publication; and second, the journal readers themselves, who may be more or less knowledgeable about the topic addressed in the paper. To be accepted by referees and cited by readers, papers must do more than simply present a chronological account of the research work. Rather, they must convince their audience that the research presented is important, valid, and relevant to other scientists in the same field. To this end, they must emphasize both the motivation for the work and the outcome of it, and they must include just enough evidence to establish the validity of this outcome.

Papers that report experimental work are often structured chronologically in five sections: first, Introduction ; then Materials and Methods , Results , and Discussion (together, these three sections make up the paper's body); and finally, Conclusion .

  • The Introduction section clarifies the motivation for the work presented and prepares readers for the structure of the paper.
  • The Materials and Methods section provides sufficient detail for other scientists to reproduce the experiments presented in the paper. In some journals, this information is placed in an appendix, because it is not what most readers want to know first.
  • The Results and Discussion sections present and discuss the research results, respectively. They are often usefully combined into one section, however, because readers can seldom make sense of results alone without accompanying interpretation — they need to be told what the results mean.
  • The Conclusion section presents the outcome of the work by interpreting the findings at a higher level of abstraction than the Discussion and by relating these findings to the motivation stated in the Introduction .

(Papers reporting something other than experiments, such as a new method or technology, typically have different sections in their body, but they include the same Introduction and Conclusion sections as described above.)

Although the above structure reflects the progression of most research projects, effective papers typically break the chronology in at least three ways to present their content in the order in which the audience will most likely want to read it. First and foremost, they summarize the motivation for, and the outcome of, the work in an abstract, located before the Introduction . In a sense, they reveal the beginning and end of the story — briefly — before providing the full story. Second, they move the more detailed, less important parts of the body to the end of the paper in one or more appendices so that these parts do not stand in the readers' way. Finally, they structure the content in the body in theorem-proof fashion, stating first what readers must remember (for example, as the first sentence of a paragraph) and then presenting evidence to support this statement.

The introduction

  • First, provide some context to orient those readers who are less familiar with your topic and to establish the importance of your work.
  • Second, state the need for your work, as an opposition between what the scientific community currently has and what it wants.
  • Third, indicate what you have done in an effort to address the need (this is the task).
  • Finally, preview the remainder of the paper to mentally prepare readers for its structure, in the object of the document.

Context and need

At the beginning of the Introduction section, the context and need work together as a funnel: They start broad and progressively narrow down to the issue addressed in the paper. To spark interest among your audience — referees and journal readers alike — provide a compelling motivation for the work presented in your paper: The fact that a phenomenon has never been studied before is not, in and of itself, a reason to study that phenomenon.

Write the context in a way that appeals to a broad range of readers and leads into the need. Do not include context for the sake of including context: Rather, provide only what will help readers better understand the need and, especially, its importance. Consider anchoring the context in time, using phrases such as recently , in the past 10 years , or since the early 1990s . You may also want to anchor your context in space (either geographically or within a given research field).

Convey the need for the work as an opposition between actual and desired situations. Start by stating the actual situation (what we have) as a direct continuation of the context. If you feel you must explain recent achievements in much detail — say, in more than one or two paragraphs — consider moving the details to a section titled State of the art (or something similar) after the Introduction , but do provide a brief idea of the actual situation in the Introduction . Next, state the desired situation (what we want). Emphasize the contrast between the actual and desired situations with such words as but , however, or unfortunately .

One elegant way to express the desired part of the need is to combine it with the task in a single sentence. This sentence expresses first the objective, then the action undertaken to reach this objective, thus creating a strong and elegant connection between need and task. Here are three examples of such a combination:

To confirm this assumption , we studied the effects of a range of inhibitors of connexin channels . . . on . . .
To assess whether such multiple-coil sensors perform better than single-signal ones , we tested two of them — the DuoPXK and the GEMM3 — in a field where . . . To form a better view of the global distribution and infectiousness of this pathogen , we examined 1645 postmetamorphic and adult amphibians collected from 27 countries between 1984 and 2006 for the presence of . . .

Task and object

An Introduction is usually clearer and more logical when it separates what the authors have done (the task) from what the paper itself attempts or covers (the object of the document). In other words, the task clarifies your contribution as a scientist, whereas the object of the document prepares readers for the structure of the paper, thus allowing focused or selective reading.

For the task,

  • use whoever did the work (normally, you and your colleagues) as the subject of the sentence: we or perhaps the authors;
  • use a verb expressing a research action: measured , calculated , etc.;
  • set that verb in the past tense.

The three examples below are well-formed tasks.

To confirm this assumption, we studied the effects of a range of inhibitors of connexin channels, such as the connexin mimetic peptides Gap26 and Gap27 and anti-peptide antibodies, on calcium signaling in cardiac cells and HeLa cells expressing connexins.
During controlled experiments, we investigated the influence of the HMP boundary conditions on liver flows.
To tackle this problem, we developed a new software verification technique called oblivious hashing, which calculates the hash values based on the actual execution of the program.

The list below provides examples of verbs that express research actions:

apply
We applied Laklöter's principle to . . .
assess We assessed the effects of larger doses of . . . calculate
We calculated the photoluminescence spectrum of . . .
compare We compared the effects of . . . to those of . . . compute We computed the velocity predicted by . . . derive We derived a new set of rules for . . . design We designed a series of experiments to . . . determine We determined the complete nucleotide sequence of . . .
develop We developed a new algorithm to . . . evaluate We evaluated the efficacy and biocompatibility of . . . explore We explored the relationship between . . . implement We implemented a genetic algorithm for . . . investigate We investigated the behavior of . . . measure We measured the concentration of cadmium in . . . model We modeled the diffraction behavior of . . .

For the object of the document,

  • use the document itself as the subject of the sentence: this paper , this letter , etc.;
  • use a verb expressing a communication action: presents , summarizes , etc.;
  • set the verb in the present tense.

The three examples below are suitable objects of the document for the three tasks shown above, respectively.

This paper clarifies the role of CxHc on calcium oscillations in neonatal cardiac myocytes and calcium transients induced by ATP in HL-cells originated from cardiac atrium and in HeLa cells expressing connexin 43 or 26. This paper presents the flow effects induced by increasing the hepatic-artery pressure and by obstructing the vena cava inferior. This paper discusses the theory behind oblivious hashing and shows how this approach can be applied for local software tamper resistance and remote code authentication.

The list below provides examples of verbs that express communication actions:

clarify
This paper clarifies the role of soils in . . . describe This paper describes the mechanism by which . . . detail This paper details the algorithm used for . . . discuss This paper discusses the influence of acidity on . . . explain This paper explains how the new encoding scheme . . . offer This paper offers four recommendations for . . . present This paper presents the results of . . . proposes This paper proposes a set of guidelines for . . . provide This paper provides the complete framework and . . . report This paper reports on our progress so far . . . summarize This paper summarizes our results for 27 patients with . . .

Even the most logical structure is of little use if readers do not see and understand it as they progress through a paper. Thus, as you organize the body of your paper into sections and perhaps subsections, remember to prepare your readers for the structure ahead at all levels. You already do so for the overall structure of the body (the sections) in the object of the document at the end of the Introduction . You can similarly prepare your readers for an upcoming division into subsections by introducing a global paragraph between the heading of a section and the heading of its first subsection. This paragraph can contain any information relating to the section as a whole rather than particular subsections, but it should at least announce the subsections, whether explicitly or implicitly. An explicit preview would be phrased much like the object of the document: "This section first . . . , then . . . , and finally . . . "

Although papers can be organized into sections in many ways, those reporting experimental work typically include Materials and Methods , Results , and Discussion in their body. In any case, the paragraphs in these sections should begin with a topic sentence to prepare readers for their contents, allow selective reading, and — ideally — get a message across.

Materials and methods

Results and discussion.

When reporting and discussing your results, do not force your readers to go through everything you went through in chronological order. Instead, state the message of each paragraph upfront: Convey in the first sentence what you want readers to remember from the paragraph as a whole. Focus on what happened, not on the fact that you observed it. Then develop your message in the remainder of the paragraph, including only that information you think you need to convince your audience.

The conclusion

At the end of your Conclusion , consider including perspectives — that is, an idea of what could or should still be done in relation to the issue addressed in the paper. If you include perspectives, clarify whether you are referring to firm plans for yourself and your colleagues ("In the coming months, we will . . . ") or to an invitation to readers ("One remaining question is . . . ").

If your paper includes a well-structured Introduction and an effective abstract, you need not repeat any of the Introduction in the Conclusion . In particular, do not restate what you have done or what the paper does. Instead, focus on what you have found and, especially, on what your findings mean. Do not be afraid to write a short Conclusion section: If you can conclude in just a few sentences given the rich discussion in the body of the paper, then do so. (In other words, resist the temptation to repeat material from the Introduction just to make the Conclusio n longer under the false belief that a longer Conclusion will seem more impressive.)

The abstract

Typically, readers are primarily interested in the information presented in a paper's Introduction and Conclusion sections. Primarily, they want to know the motivation for the work presented and the outcome of this work. Then (and only then) the most specialized among them might want to know the details of the work. Thus, an effective abstract focuses on motivation and outcome; in doing so, it parallels the paper's Introduction and Conclusion .

Accordingly, you can think of an abstract as having two distinct parts — motivation and outcome — even if it is typeset as a single paragraph. For the first part, follow the same structure as the Introduction section of the paper: State the context, the need, the task, and the object of the document. For the second part, mention your findings (the what ) and, especially, your conclusion (the so what — that is, the interpretation of your findings); if appropriate, end with perspectives, as in the Conclusion section of your paper.

Although the structure of the abstract parallels the Introduction and Conclusion sections, it differs from these sections in the audience it addresses. The abstract is read by many different readers, from the most specialized to the least specialized among the target audience. In a sense, it should be the least specialized part of the paper. Any scientist reading it should be able to understand why the work was carried out and why it is important (context and need), what the authors did (task) and what the paper reports about this work (object of the document), what the authors found (findings), what these findings mean (the conclusion), and possibly what the next steps are (perspectives). In contrast, the full paper is typically read by specialists only; its Introduction and Conclusion are more detailed (that is, longer and more specialized) than the abstract.

An effective abstract stands on its own — it can be understood fully even when made available without the full paper. To this end, avoid referring to figures or the bibliography in the abstract. Also, introduce any acronyms the first time you use them in the abstract (if needed), and do so again in the full paper (see Mechanics: Using abbreviations ).

This page appears in the following eBook

Topic rooms within Scientific Communication

Topic Rooms

Within this Subject (22)

  • Communicating as a Scientist (3)
  • Papers (4)
  • Correspondence (5)
  • Presentations (4)
  • Conferences (3)
  • Classrooms (3)

Other Topic Rooms

  • Gene Inheritance and Transmission
  • Gene Expression and Regulation
  • Nucleic Acid Structure and Function
  • Chromosomes and Cytogenetics
  • Evolutionary Genetics
  • Population and Quantitative Genetics
  • Genes and Disease
  • Genetics and Society
  • Cell Origins and Metabolism
  • Proteins and Gene Expression
  • Subcellular Compartments
  • Cell Communication
  • Cell Cycle and Cell Division

ScholarCast

© 2014 Nature Education

  • Press Room |
  • Terms of Use |
  • Privacy Notice |

Send

Visual Browse

  • Free Materials
  • English Language Editing
  • Technical Scientific Editing
  • Scientific Writing Workshops
  • Online courses
  • Meet the Team

Scientific paper structure: get started with this quick and easy guide

  • by kayciebutler
  • November 13, 2020 November 13, 2020

scientific paper structure is an hourglass

Why the scientific paper structure? It mimics the research process!

Science can be daunting enough – the scientific paper structure doesn’t have to be, too!

In fact, the structure of a scientific paper is meant to be anything but daunting, as it is designed to mimic how science actually progresses.

Don’t believe me? Think about this –

–>Research usually starts with a topic ( title ) .

–>Then, you need to study the s tate of the field around that topic, identify key gaps to address, and form a hypotheses ( introduction ).

–>Next, you gather the tools and equipment you need to do that research ( materials ) and perform experiments ( methods ).

–>After that, you report the results of those experiments ( results ) and see how those results affect the field and integrate back into it ( discussion ).

Helpfully, that is also exactly how your scientific paper is structured.

A scientific research paper is typically ordered:

  • Introduction
  • Materials and Methods
  • Discussion/Conclusions

*Note: This page is going to walk you though the scientific paper structure. If you want info on writing each of these sections, please see my comprehensive page on writing your scientific manuscript !

Scientific paper structure: IMRAD and scope

In more technical terms, the scientific paper is usually structured in what we call the IMRAD format, standing for “ I ntroduction, M ethods, R esults A nd D iscussion.”

An IMRAD-based paper includes:

I ntroduction

  •    Why did you do this research?
  •   What was the original hypothesis?
  •   When, where, and how did you do this research?
  •   What materials or subjects were involved?
  •   What did you discover?
  •   Was the tested hypothesis true?

a nd D iscussion

  •   What do your results mean?
  •   How does this fit within the field?
  •   What are the future  prospectives ?

Besides mimicking the research process, the structure of an IMRAD paper is also helpful for the reader in terms of the the scope of the paper and is designed to draw them in and then show them how your work matters.

What is the scope?

The scope indicates how broadly or narrowly the writing is focused. If the writing in a certain section has a broad scope , it is designed to be accessible to a broad audience . If the writing in a section has a narrow scope , it is designed to be the most focused on your specific work – which is directly accessible to a much smaller audience .

To show you what I mean, I made this diagram that shows how the scope of an IMRAD paper changes from beginning to end:

scientific paper structure is an hourglass

Note how the scope of a scientific paper makes an hourglass shape.

This makes sense, as the important results of your paper are the narrowest in scope. Because this scope is so narrow, it is not widely known, so it would not be accessible to a reader unless it was bookended with information that is much broader in scope, or information that is more well known and understood. This is how you teach the reader what they need to know to understand your work and give them the tools to place your work in context.

Therefore, the introduction of our paper is going to start at the very broadest scope, first introducing the reader to our field in general and then to our research more specifically. In this way, we will start at a very broad scope and slowly narrow into the results – which represent the narrowest scope in our paper.

Scientific paper structure: Key parts

1. title and abstract: attract the reader’s attention.

A scientific paper usually starts with two key parts that help attract a reader’s attention to your work: the title and abstract.

These parts are designed to essentially be the advertisement for your paper.

This means they need to be informative enough about the content of the paper to attract the right readers to your paper, and they also need to be written in a way that is interesting enough to attract those who might not otherwise find your paper.

Also note, basically any reader who gets to the paper body will have read your title and then abstract. By making sure your title and abstract are as attractive as possible, you can get more readers interested in also reading the paper body!

Circles indicating relative views of paper - title gets the most followed by abstract and then paper body

The title contains the key words of the paper, and tries to organize them in a way that lets the reader know what kind of study you conducted and roughly what you accomplished in that paper.

For all of my advice on writing your title, go here .

The abstract is also written to draw attention to your papers, so you want to structure it in a similar hourglass shape as the paper body.

The abstract should

  • start with a broad problem that is relatable to the average reader of that journal
  • indicate how your proposed to solve that problem ( hypothesis or research objectives )
  • give a few lines about what you did in the paper, including key methods and results
  • end with a statement about why your work is important and why it deserves to be published .

This is a lot to ask of a normally 250 word abstract!

Don’t worry – I show you exactly how to do this. For all of my advice on writing your abstract, go here.

Or, you can download your free abstract writing guide here .

2. Introduction: Introduce the reader to your work

After the reader has opened your paper, they need to be introduced to not only your work, but why it matters. This is where the introduction comes in!

Most scientists are good at introducing the literature surrounding their field – which is a big part of the introduction – but struggle to convey the importance or necessity of their work.

Part of this is because many people fail to see the importance of introducing the entire field to the reader to show why it is important to do research in that field.

Therefore, the introduction should start with a very wide overview and include a paragraph at the beginning that introduces the entire field to the reader.

Hourglass shows scope of introduction of scientific research paper

Paragraphs of your introduction

Paragraph 1. The first paragraph of the introduction should answer the question – “Why does my research field exist?” 

Importantly – this paragraph should include a very clear statement of a gap that still exists in the world that your field of research seeks to fill .

Paragraphs 2-3 . Next, it is important to introduce to the reader why your research project exists, which involves the traditional review of relevant literature that most scientists are comfortable writing. These next 1-2 paragraphs should answer the question – “Why does the research in this paper exist?”

Importantly – these paragraphs should include a very clear statement of a gap that still exists in the field that your specific research project seeks to fil l .

Paragraph 4 . The last paragraph of the introduction should give the reader an overview of what to expect in this paper. It should include a typical “Here, we did…” sentence as well as a very short summary of key methods or results.

But we aren’t done yet…

This final paragraph should also end on a sentence that answers the question – “Why does this work matter and deserve to be published?”

The most impactful introductions all end with this forward-thinking statement that helps the reader place the product of your work into context. Don’t underestimate this sentence – getting the “why” into your reader’s head from the beginning can do wonders for their ability to grasp the importance of your work.

For all of my advice on how to write your introduction, go here !

3. Materials and Methods: Tell the reader what you did and how you did it

After setting up why your research projected needed to exist and what you hoped to accomplish, it is time to tell the reader what you did and how you did it.

In terms of text, this section on your materials and methods is the narrowest in scope of all of you paper, as it related to your project alone.

Hourglass shows scope of materials and methods of scientific research paper

In this section, you need provide enough detail that your work could be repeated.

Tell your reader:

  • what materials you used and where you bought them
  • what equipment you used
  • what protocols you followed
  • how you did each experiment
  • how you analyzed your results
  • how you calculated statistics

If you want your work to be considered robust, others need to be able to repeat it.

At this point, your paper should convey what another lab would need to know to copy what you did in this work.

4. Results: Show the reader what you saw

The final section of the narrow scope in your paper is your results, where you tell the reader what you saw in your experiments.

Hourglass shows scope of results of scientific research paper

These paragraphs tell the story of your paper, and should be designed as such.

For the best readability of this section, the results should be structured such that each paragraph :

  • represents one experiment or group of related experiments
  • begins with a topic sentence that tells the reader what you did in that paragraph and why
  • end with a summary statement (1/2 – 1 sentence) telling the reader the main take-home point of that paragraph

The results section should not :

  • Provide extra introductory info only when it is needed to understand the following work and does not apply to the entire paper
  • Provide only enough here such that the reader understands what experiments were done and what the controls were .
  • The reader should not be able to reproduce your experiments from the details in this section
  • Provide only enough for the reader to understand the rest of the paper plus the paragraph-ending summary statement .

For all of my advice on how to write your results, go here !

5. Discussion: Walk the reader through what your results mean and how they affect the field

At the end of the paper, the reader needs to know what your results mean and how they integrate in the field – it is the only way to understand the importance and impact of your work!

For this, the discussion is the opposite of the introduction – it funnels the reader OUT of your work, building on your results to connect your work to the field and society as a whole.

Hourglass shows scope of discussion of scientific research paper

Paragraphs of your discussion

Paragraph 1. The first paragraph briefly summarizes the main results of the paper and directly shows how they address the gap in the field  that was mentioned in the introduction.

Paragraphs 2-4. These middle paragraphs discuss your results. For each paragraph, take one key result and:

  • analyze it – what does it mean?
  • relate it to the field – how does it tie into other work in the field?
  • relate it to the gap – how does it help fill the gap that you discussed in the introduction?
  • speculate beyond the current limits of the field – what new research questions do these results bring up?
  • f uture directions – how can this research be expanded on in the future?

Final paragraph – the conclusion.   The conclusion should never be a summary of the paper – this misses a great opportunity to highlight the importance and impact of your work, and leave the reader with a forward-thinking outlook.

Hourglass shows broad scope of conclusion of scientific research paper

The conclusion does a disservice to your paper if it doesn’t highlight why your work deserves to be published. Make sure it answers:

  • Why should scientists be excited about this work?
  • Why should non-scientists be excited?

For all of my advice on how to write your discussion, go here !

Scientific paper structure: Putting it all together and writing

Now after seeing how a scientific paper is structured and why, you might still be struggling to write the paper…don’t worry, this is completely normal!

Just because we know the structure we need to strive for, it still isn’t easy to translate our work into a paper. This is because the way a paper is structured is designed to help the reader through the process, but it is not necessarily the easiest ordering for writing a paper.

To now learn how to WRITE your scientific paper, you can find all of my advice on that topic here .

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

FREE ABSTRACT E-COURSE

Videos included in scientific abstract email course

Including: -> Detailed breakdowns of ideal abstracts -> Most common mistakes and how to avoid them ->How to WRITE your abstract from scratch ->And all of our best tips , info , and everything you need to know

But we don’t stop there! Joining our community includes: ->Members-only discounts on all of our courses ->Tips for writing , editing , and publishing your science -> First access to all our material direct to your inbox  – NO SPAM !

Here - have a cookie!

Privacy overview.

CookieDurationDescription
cookielawinfo-checkbox-advertisement1 yearThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
CookieDurationDescription
_ga2 yearsThis cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gat_gtag_UA_124193169_11 minuteThis cookie is set by Google and is used to distinguish users.
_gid1 dayThis cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
CONSENT16 years 5 months 23 days 10 hours 9 minutesThese cookies are set via embedded youtube-videos. They register anonymous statistical data on for example how many times the video is displayed and what settings are used for playback.No sensitive data is collected unless you log in to your google account, in that case your choices are linked with your account, for example if you click “like” on a video.
CookieDurationDescription
_fbp3 monthsThis cookie is set by Facebook to deliver advertisement when they are on Facebook or a digital platform powered by Facebook advertising after visiting this website.
fr3 monthsThe cookie is set by Facebook to show relevant advertisments to the users and measure and improve the advertisements. The cookie also tracks the behavior of the user across the web on sites that have Facebook pixel or Facebook social plugin.
IDE1 year 24 daysUsed by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
test_cookie15 minutesThis cookie is set by doubleclick.net. The purpose of the cookie is to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysThis cookie is set by Youtube. Used to track the information of the embedded YouTube videos on a website.
YSCsessionThis cookies is set by Youtube and is used to track the views of embedded videos.
CookieDurationDescription
_gumroad_app_sessionsessionNo description
_gumroad_guid10 yearsNo description available.
_mkra_stckNo description
yt-remote-connected-devicesneverNo description available.
yt-remote-device-idneverNo description available.

Logo for University of Wisconsin Pressbooks

3 Structure of a Scientific Research Paper

A primary way that scientists communicate with one another is through scientific papers.  We will model our Biocore lab reports on the format most commonly used by scientific journals.  Your lab reports should follow the guidelines described below unless the lab manual or your TA specifically tells you otherwise.   Some lab reports have a modified format or require only a subset of the standard sections listed below.

The figure below indicates the four main sections (Intro, Methods, Results and Discussion) that form the body of a scientific paper. Each section of the paper (except for “Title”) should begin with one of these terms as a heading These main sections are bookended on the front end with a Title and Abstract summarizing the whole document and on the back end by a Literature Cited and Appendices (optional) in support of the document.

Other classes and some scientific journals deviate from this format, and you should always consult the guidelines specified before preparing a paper for another class (or submitting a manuscript for publication ).

Introduction

Methods and materials.

  • Results (including figures and tables)

Literature Cited

Structure of a biocore lab report (see pdf for machine-readable version)

The Methods and Results are specific to your hypothesis and the experiment you performed.

Then the Discussion starts more narrowly focused on whether you support or reject your hypothesis, but then broadens to integrate your findings into the existing literature, and finishes with a conclusion that is based on the experimental evidence you present.

The title is a clear, specific statement of the subject of your report. Think of the words in your title as key search terms. It introduces the reader to your paper and lets them know what to expect.

Titles should:

  • Be concise and informative and need not be complete sentences.
  • Avoid filler words like “Studies on” or “Investigations of” and opening words like A, An, or The.
  • Be as specific as possible.
  • Avoid abbreviations and jargon.
  • state the results.

A Study of Aquatic Plants in a Pickle Jar in a Model Aquatic Ecosystem [SYSTEM]

 

Addition of caffeine ( ) to aquatic culture in concentrations of 0.1 to 0.5M decreases ( ) the stem length ( of , reed canary grass ( )
The Effect of Salt on Aquatic Waterflea, Red light expected to increase biomass and average hypocotyl length in compared to far-red light *Brine shrimp ( ) grown in acidic water (pH of 3-5) have faster heart rates than brine shrimp grown in water with pH of 7-9

*If your report constitutes the results of an experiment where you manipulated variables and analyzed the result, include the independent and dependent variables, the direction of your results, as well as the study organism/ subject in your title.

How will titles be evaluated? To see our expectations for your Title, see the  Biocore Research Paper Rubric in this Writing Manual.

In scientific journal articles, the first author listed is the primary author, and subsequent authors are listed according to the magnitude of their contribution to the study.  Research mentors such as principal investigators (PI’s) of labs, are typically listed last.  If all authors have made equivalent contributions to the article, then the paper will state that authors’ names are listed in alphabetical order.

In Biocore you will work within teams to do independent research projects, but we usually ask for individual lab reports because we want to give you many opportunities to work on your writing and thinking skills.  At other times we will ask you to submit group posters and PowerPoint presentations.  Here is how you should list teammates for various Biocore assignments:

  • Individual papers or mini-posters:  List yourself first as the primary author under your title, then list teammates as contributors at the top of the page in alphabetical order. Also list your lab section and TA.
  • Group posters or PowerPoint presentations: We assume that all of you have made equivalent contributions to these collaborative group assignments, so include all researchers’ names as authors in alphabetical order.

*Not all Biocore lab reports require abstracts! Research proposals generally do not require abstracts, but check assignment description for details.

The abstract forces the author to distill the essence of the paper to a very brief summary (100-200 words) .  Think of the abstract as the two-minute version of your entire experiment. Many readers use the abstract to decide whether they want to find and read the entire paper.

You must be concise. One way to do this is to summarize, in one or two sentences each :

  • the rationale behind the experiment (goal of your experiment, model system, most important background information)
  • your hypothesis
  • the approach you took (how and what you actually tested)
  • results or expected results
  • conclusions/implications

Other tips:

  • Always write the abstract last, after you thoroughly understand the experiment and its meaning.
  • Abstracts should be understandable without referring to the rest of the paper.
  • You do not cite references in an abstract. General and/or specifically applicable knowledge is assumed or is cited elsewhere in your paper.

Example Abstract From Systematic Observation Study

Adapted from paper by Kristin Magliocco (Fall 2009)

Phosphorus in the runoff to urban streams such as Willow Creek can lead to phosphorus build up and ultimately eutrophication of larger bodies of water. Rain gardens have been constructed on the UW Madison campus adjacent to Willow Creek to prevent accumulation of phosphorus in the creek itself. [Background] By slowing and delaying runoff from reaching the creek, the rain gardens are intended to retain phosphorus and, therefore decrease the amount of phosphorus that reaches the creek. [BR] To test the efficacy of the rain gardens, we hypothesized that there would be no significant difference in the phosphorus concentrations of the water in Willow Creek upstream and downstream of the boundaries of the northeast rain garden. [Hypothesis]We selected four replicate locations in the rain garden itself and in Willow Creek, both upstream and downstream of the rain garden, where we used a Hach phosphorus colorimeter to measure phosphorus concentration. [Approach] Our data supported our hypothesis, with the upstream mean concentration of 0.07335 ± 0.00471 mg/L and the downstream mean concentration of 0.08213 ± 0.0139 mg/L showing no statistically significant difference. [Results]We cautiously concluded that the rain gardens near Willow Creek do prevent further phosphorus accumulation in the stream, but pointed toward future studies focusing on amount of rainfall as an important factor in rain garden efficiency. [Conclusion]

How will abstracts be evaluated? To see our expectations for your Abstract, see the Biocore the Biocore Research Paper Rubric in this Writing Manual.

This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question , biological rationale, hypothesis , and general approach . If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.

Broad Question: based on an initial observation (e.g., “I see a lot of guppies close to the shore. Do guppies like living in shallow water?”).  This observation of the natural world may inspire you to investigate background literature on previous research by others or gather some initial data/ observations as a pilot study. Broad questions are not always included in your written text, but are essential for establishing the direction of your research.

Background information:   key issues, concepts, terminology, and definitions are needed to understand the biological rationale for the experiment. The background often includes a summary of findings from previous, relevant studies that introduce the study system, the independent and dependent variable. Remember to cite references, be concise, and only include relevant information given your audience and your experimental design. Your concise summary of background information should lead to specific scientific knowledge gaps that still exist.  (e.g., “No studies on lake guppy distribution to date have examined whether guppies do indeed spend more time in shallow water.”)

Testable Question :   these questions are much more focused than the initial broad question, are specific to the knowledge gap identified, and can be addressed with data.  (e.g., “Do guppies spend different amounts of time in water less than 1 meter deep as compared to their time in water that is greater than 1 meter deep?”)

Diagram: Broad questions lead to Background information, testable question, literature that connects independent and dependent variables, assumptions, and then hypothesis. (See PDF for full details.)

View testable question diagram as pdf

Biological Rationale (BR): The BR explains why you expect your independent variable(s) to affect your dependent variable(s) in the way your hypothesis indicates. After you have summarized the background information relevant to the study, the “BR” provides the logic and reasoning for your hypothesis and experimental approach, describing the biological mechanism that connects your independent and dependent variables and the assumptions that provides evidence for why your hypothesis should be supported.  The biological rationale is based on your interpretation of the scientific literature, your personal observations, and the underlying assumptions you are making about how you think the system works. If you have written your biological rationale logically and clearly, your reader should see your hypothesis in your introduction section and say to themselves— “Of course this hypothesis is supportable. It seems very logical based on the rationale presented.”

Steps for Developing a BR—Based on your background information:

  • Dependent Variable(s)- List key aspects of the dependent variable (DV) that are known (based on the scientific literature) and those that are unknown that you may need to assume or may be associated with a knowledge gap.
  • Independent Variable(s)- List key aspects of the independent variable (IV) that are known (based on the scientific literature) and those that are unknown that you may need to assume or may be associated with a knowledge gap.
  • Connection between DV and IV- List what is known and what you are assuming about the ways (mechanisms or relationships) in which the IV influences the DV , either directly or indirectly, either in the system you are studying, in a similar system, or a more distant dissimilar system. If possible, note literature that support any assumptions. The biological link between your IV and DV(s) is central piece of your BR.
  • Based on #3, articulate the specific knowledge gap you hope to fill in this study.
  • Generate a draft hypothesis based on steps 1-4.

Once you have done steps 1-5, start to sketch out your reasoning using a conceptual or graphic model

In Biocore, we will ask you to construct two different types of models as you are learning to develop your BR:

  • Conceptual Model – a logical flow of ideas utilizing boxes and arrows to indicate how variables are connected and support your hypothesis. Conceptual models are helpful for developing logical thought progression but are generally not included in a paper or final presentation.
  • Graphic or Visual Model – A cartoon or graphic depiction for how variables interact to result in your predicted outcome. Graphic models are often included in scientific posters and Powerpoint presentations, and sometimes in scientific papers.

See following sections for examples of Biological Rationale in the form of Conceptual and Graphic Models

Conceptual Model

In the Conceptual Model example below, the biological rationale is depicted as a logical flow of statements beginning with a testable question and ending with a hypothesis.

Biocore Biological Rationale chart (machine readable pdf linked on page)

View conceptual model as a pdf

Graphic or Visual Model

Graphic or Visual Model uses cartoon diagrams and symbols to communicate the predicted interaction among variables and the mechanism by which they interact. Visual models use shorthand literature citations (superscript numbers) to indicate literature references that are further discussed in an oral presentation (poster or PowerPoint) or written narrative (paper).

Example Graphic Model of Biological Rationale appropriate for diagram in a paper, poster, or presentation. Adapted from poster by McKenna DeFoer, Sadie Gugel, Evan Polce, Kyrie Sellnow in Biocore 486, Organismal Biology lab.

diagram of a seed undergoing different processes- mechanical scarification and chemical scarification, respectively.

Narrative : Scarification using sandpaper abates the seed coat of L. perennis. This process allows moisture to permeate the seed coat during stratification and initiates the biochemical pathway for germination (1. Diboll 2008). Similarly, exposing seeds to cellulose-derived smoke causes chemical scarification (2. Egerton-Warburton 1997). This type of smoke contains butenolide, a compound synthesized during the combustion of plant material that has been found to further stimulate germination (3. Keeley and Fotheringham 1997).

More on Biological Rationale:

  • A thorough rationale defines your knowledge gap about the system that has not been revealed in scientific literature or from previous observation. The knowledge gap is the knowledge we are attempting to create. The interpretation of your experimental data and the integration of literature will fill or partially fill the knowledge gap. In order to fill the knowledge gap, you may need to make assumptions about how your system operates. Assumptions are aspects of the system that you are not testing directly, but you think are particularly important since they drive the direction of your specific hypothesis or general predictions. Sometimes students confuse the knowledge gap and assumptions. Data gathered during the experiment can address the knowledge gap but generally do not provide direct evidence to support or refute assumptions.
  • Defining the BR is probably the most critical task for a writer, as it tells your reader why your research is biologically meaningful. It may help to think about the rationale as a link between your independent and dependent variables, because the rationale answers these questions— how is this investigation related to what we know, what assumptions am I making about what we don’t yet know, AND how will this experiment add to our knowledge?  
  • Expect to spend time and mental effort on your BR. You may have to do considerable digging into the scientific literature to define how your experiment fits into what is already known and why it is relevant to pursue.
  • Be open to the possibility that as you work with and think about your data, you may develop a deeper, more accurate understanding of the experimental system. You may find the original rationale needs to be revised to reflect your new, more sophisticated understanding.
  • As you progress through Biocore and upper level biology courses, your rationale should become more focused and matched with the level of study i.e ., cellular, biochemical, or physiological mechanisms that underlie the rationale. Achieving this type of understanding takes effort, but it will lead to better communication of your science.

Hypothesis / Predictions: specific prediction(s) that you will test during your experiment. For manipulative experiments , the hypothesis should include the independent variable (what you manipulate), the dependent variable(s) (what you measure), the organism or system , the direction of your results, and comparison to be made. See the following examples.


(manipulative experiment)

(manipulative experiment)
We hypothesized that reared in warm water will have a greater sexual mating response.

[The dependent variable “sexual response” has not been defined enough to be able to make this hypothesis testable or falsifiable. In addition, no comparison has been specified— greater sexual mating response as compared to what?]

We hypothesized that ) reared in warm water temperatures ranging from 25-28 °C ( ) would produce greater ( ) numbers of male offspring and females carrying haploid egg sacs ( ) than reared in cooler water temperatures of 18-22°C.

If you are doing a systematic observation , your hypothesis presents a variable or set of variables that you predict are important for helping you characterize the system as a whole, or predict differences between components/areas of the system that help you explain how the system functions or changes over time.


(systematic observation)

(systematic observation)
We hypothesize that the frequency and extent of algal blooms in Lake Mendota over the last 10 years causes fish kills and imposes a human health risk.

[The variables “frequency and extent of algal blooms”, “fish kills” and “human health risk” have not been defined enough to be able to make this hypothesis testable or falsifiable. How do you measure algal blooms? Although implied, hypothesis should express predicted direction of expected results (e.g. higher frequency associated with greater kills). Note that cause and effect cannot be implied without a controlled, manipulative experiment.]

We hypothesize that increasing ( ) cell densities of algae ( ) in Lake Mendota over the last 10 years is correlated with 1. increased numbers of dead fish ( ) washed up on Madison beaches and 2. increased numbers of reported hospital/clinical visits ( .) following full-body exposure to lake water.

Note that hypotheses/ predictions you develop in Biocore lab are much more specific than the general hypotheses that guide the research questions you encounter in scientific literature or in faculty research labs. That is because the research projects you do in Biocore are short-term, small(er) in scale or context specific, and therefore require greater specification to be testable within our class context.

Experimental Approach: Briefly gives the reader a general sense of the experiment, the type of data it will yield, and the kind of conclusions you expect to obtain from the data. Do not confuse the experimental approach with the experimental protocol . The experimental protocol consists of the detailed step-by-step procedures and techniques used during the experiment that are to be reported in the Methods and Materials section.

***Some Final Tips on Writing an Introduction***

  • As you progress through the Biocore sequence for instance, from organismal level of Biocore 381/382 to the cellular level in Biocore 383/384, we expect the contents of your “Introduction” paragraphs to reflect the level of your coursework and previous writing experience. For example, in Biocore 384 (Cell Biology Lab) biological rationale should draw upon assumptions we are making about cellular and biochemical processes.
  • Be Concise yet Specific: Remember to be concise and only include relevant information given your audience and your experimental design. As you write, keep asking, “Is this necessary information or is this irrelevant detail?” For example, if you are writing a paper claiming that a certain compound is a competitive inhibitor to the enzyme alkaline phosphatase and acts by binding to the active site, you need to explain (briefly) Michaelis-Menton kinetics and the meaning and significance of Km and Vmax. This explanation is not necessary if you are reporting the dependence of enzyme activity on pH because you do not need to measure Km and Vmax to get an estimate of enzyme activity.
  • Another example: if you are writing a paper reporting an increase in water flea heart rate upon exposure to caffeine you need not describe the reproductive cycle of water fleas unless it is germane to your results and discussion. Be specific and concrete, especially when making introductory or summary statements.

Where do you discuss Pilot Studies? Many times it is important to do pilot studies to help you get familiar with your experimental system or to improve your experimental design. If your pilot study influences your biological rationale or hypothesis, you need to describe it in your Introduction. If your pilot study simply informs the logistics or techniques, but does not influence your rationale, then the description of your pilot study belongs in the Materials and Methods section.

How will introductions be evaluated? To see our expectations for your Introduction, see the Biocore Research Paper Rubric in this Writing Manual.

Example Introductions

Example introduction from systematic observation study.

Adapted from a paper by Will Klein 2009

Throughout history, humans have discovered and used chemicals derived from plant extracts as antimicrobial compounds for medicinal purposes. Although useful to humans, why would a plant create an antimicrobial defense that affects the growth of bacteria?  [broad study question]    As non-mobile organisms, plants have evolved mutually beneficial associations with beneficial microbes (Brooker et al. 2011) and a full arsenal of adaptations for defense against pathogenic microorganisms (bacteria, viruses, fungi). Borchardt et al. (2008) did an antimicrobial screening of 339 plant species growing in Minnesota and Wisconsin, many of which are prairie plant species. The researchers tested aerial plant parts (leaves, stems, flowers) for growth inhibition of one, two or three common mammalian pathogens ( Escherichia coli , Staphylococcus aureus, Candida albicans) and found 109 species inhibited growth of at least one microorganism.  Leave extracts of Silphium sp. , a species found in the Biocore Prairie, contains antimicrobial compounds that inhibit the growth of many types of Gram-negative and Gram-positive bacteria (Kowalski and Kedzia, 2007; Kowalski, 2008). [background information]

Plants may produce chemical defense in the form of antimicrobial compounds contained in stems, roots, leaves, bark, flowers or fruits. [BR: assumption]  By investing energy to generate these antimicrobial compounds, the plant maximizes its likelihood to succeed in its particular ecological niche (i.e. the Biocore Prairie) and improves its biological fitness. [BR: assumption ]  No studies howver have directly examined the effect of native Biocore prairie plant extracts on indigenous soil bacteria growth.   [testable question]

Through preliminary investigations in the Biocore Prairie during summer 2010, we sought to find prairie plant species and extracts from different plant parts (roots, leaves or stems) that would inhibit soil bacteria-bacteria cultured from soil that the prairie plants are growing in. Although most soil bacteria are beneficial or do nothing to affect prairie plants, we reasoned that plant species coexisting in the same environment with particular soil microbes may have efficient defense mechanisms towards pathogenic “prairie soil” bacteria. [BR: assumption] Huechera richardsonii, Monarda fistulosa, and Euphorbia corollata are three species common to the Biocore Prairie. Although leaf tissue of these three species have all been shown to contain antimicrobial properties against S. aureus (Borchart et al. 2008), how extracts from these species influence growth of bacteria indigenous to the Biocore Prairie is not known. [knowledge gap] We believe these plant species will contain antimicrobial properties in leaves to protect the tissue from microbial leaf pathogens that also occur in the soil.  [BR:  assumption]

We hypothesized that leaf extracts of Huechera richardsonii, Monarda fistulosa, and Euphorbia corollata would exhibit antimicrobial properties on the bacteria found in their native environment. [hypothesis] Our approach was to grow soil bacteria collected from the Biocore Prairie on agar plates, and then expose bacteria to leaf extracts absorbed on filter paper discs and measure the extent to which the extracts inhibited bacterial growth. [approach]

*Note: If you are a Biocore 382 student—do not worry if you don’t understand the scientific content in these two examples. We will get there! These examples are provided to refer to as you progress through the curriculum

Example 4: Good Introduction from manipulative experiment in Cell Biology Lab

(adapted from a poster by Kari Esselman, John Kinzfogl, Amber Kugel, & Katie Luettgen, Spring 2003)

In the yeast ( Saccharomyces cerevisiae ) mating signal transduction pathway, interaction of the complete –mating factor with

the G-protein-coupled receptor on a MAT-a cell induces cell cycle arrest in the G1 phase, morphological changes or “shmooing,” and activation of genes involved in the mating process (Hoopes et al., 1998).  In Saccharomyces cerevisiae , the amino acids Trp1, Lys7 and Gln 10, the central ß –turn conformation, and the amino acids near the C-terminus are directly involved in the binding of the a–mating factor to the receptor (Saskiawan et al., 2002).  Altering the structure of the a –factor produces a conformational change in the receptor that is distinct from the conformational change of the normal a –factor, consequentially altering or even inhibiting the mating cascade of events (Bukusoglu and Kemmess. 1996).  Elimination of Lys7 and Gln10 from the a –mating factor results in greater than a 100 fold decrease in mating signal transduction (Xue et al., 1996). [all background info]

It is unclear whether elimination of amino acid residues other than Lys7 and Gln10 in the a –mating factor also decrease the yeast mating response. [broad question]   When introduced to MAT-a Saccharomyces cerevisiae cells, this sort of a – factor fragment could: 1.bind to the receptor site and induce the same change that the complete a –mating factor would; 2. bind to the receptor site but not induce the same changes as the complete a –factor, or 3.not bind to the receptor site at all. [BR: assumed biological mechanism]   If the mating response to this fragment is different than normal (BR: assumption) , this would indicate which amino acid side groups are important in binding the receptor.  An examination of Saccharomyces cerevisiae response to an a –mating factor fragment missing amino acids other than Lys7 and Gln10 would thus increase our understanding of the specificity of the a –factor receptor for its ligand. [BR: study goal/broader implication]

We hypothesized that the introduction of an a –mating factor fragment missing amino acids 7 through 13 to MAT-a Saccharomyces cerevisiae cells would cause more budding and less mating gene transcription and shmooing, as compared to the response to the complete a –factor. [hypothesis]   We tested this hypothesis by adding this a –factor fragment to yeast cells transformed with a plasmid containing the FUS1 promoter attached to the lacZ reporter gene and recording the resulting morphological changes (budding and shmooing) and ß-galactosidase (ß -gal) activity. [approach]

Example 5: Good Introduction from manipulative experiment in Organismal Biology Lab

(adapted from a paper by Matt Young, Fall 2003)

The diving response is a set of characteristic reactions following the immersion of certain body parts in water.  It is observed primarily in diving mammals and ducks, but humans have also elicited the response, perhaps as a trait that was not selected against during their evolution (McCulloch et. al. 1995; Hlastala and Berger 2001).  Gooden (1993) clearly demonstrated that the diving reflex prepares the animal’s body for the effects of long periods of apnea (breathing cessation) associated with being underwater.  It does this by decreasing oxygen consumption and redirecting blood flow out of the peripheral structures and towards the central organs such as the heart and brain.

McCulloch et. al. (1995) showed that the diving response is initiated by the stimulation of the trigeminal (Vth cranial) nerve, a primary sensory supply from the face, including the nose and forehead areas.  Stimulation of this nerve results in a complex series of sympathetic and parasympathetic nerve activations (Gooden 1994).  Increased parasympathetic activity triggers the vagus nerve to inhibit the cardiac pacemaker, resulting in reduced heart rate (Andersson et. al. 2000).  Limb vasoconstriction occurs in response to increased sympathetic nerve activity, which results in increased mean arterial blood pressure (MABP) (Andersson et. al. 2000; Gooden 1994). [all background info in previous paragraphs]

Along with submersion in water, apnea is believed to be a major component in eliciting a proper diving response.  It is still not clear, however, how necessary apnea is for the induction of the diving response or the mechanism for this induction (Gooden 1994). [broad question] Campbell et. al. (1969) argued that apnea, whether voluntary or involuntary, is essential for a diving response to occur, while Andersson et. al. (2000) found that facial immersion with eupnea resulted in reduced, but noticeable, diving responses.  [background info]

It is believed that apnea stimulates chemoreceptors and thoracic stretch receptors in order to exert its effects.  The thoracic stretch receptors are sensitive to movements in the airways, while chemoreceptors are sensitive to the oxygen lack associated with breath-holding.  Increased firing of these two receptors due to their respective stimuli is believed to be the method by which apnea influences the diving response, but the exact pathway this firing takes to exert such effects remains unclear.  It may either directly affect the cardiovascular centers, or indirectly affect the cardiovascular system via the medulla (Gooden 1994). [background info which identifies knowledge gap]

Does apnea significantly increase the human diving response during facial submersion?  [testable question]   It seems plausible that simultaneous activation of the trigeminal nerve, thoracic stretch receptors, and arterial chemorecptors would produce a more pronounced cardiovascular diving response. (BR: biological assumption)  The goal of this experiment is to examine whether the diving response in eupneic (normal breathing) situations is significantly different than that observed during apneic situations.  [BR: study goal] We will focus on heart rate and blood pressure changes, two of the many responses associated with the diving response.   If heart rate and blood pressure changes during apneic submersion are significantly greater than those observed during eupneic submersions, this would indicate that simultaneous stimulation of the trigeminal nerve, thoracic stretch receptors, and chemoreceptors produces a greater cardiovascular response than stimulation of the trigeminal nerve alone. [BR: assumed mechanism]

We hypothesized that diving responses in human participants would be more pronounced in those experiencing apnea during immersion compared to those experiencing eupnea.  More specifically, we expected non-breathing participants’ heart rates to decrease and blood pressures to increase significantly more than breathing participants in response to facial immersion in cold water. [hypothesis]

We tested this hypothesis by having 12 human subjects immerse their foreheads, noses, and cheekbones in cold water.  We used a paired analysis to determine whether the change in heart rate and blood pressure from just prior to immersion to the end of immersion was different during apneic as compared to eupneic submersions.  [approach]

This section is often the easiest to write since it is simply a clear explanation of the specific procedures, techniques , and materials you used .  In some cases ( e.g. , the projects carried out in the Biocore Prairie), it is necessary to include procedures carried out by previous classes as well.  Provide enough details that a knowledgeable reader ( e.g ., a Biocore peer who is not enrolled in lab) could replicate the experiment.  This will also allow him/her to evaluate whether to trust your findings.  In the case of field investigations, include a description of the type of community and the location of the site studied.

Mathematical manipulations or statistical analyses applied to the data should be explained under a subheading, but keep these brief.  Although calculations are not normally included in a scientific paper, we sometimes ask you to include examples to check whether you are doing them correctly.  If this is the case, put them in an appendix at the end of the paper.

Focus on essentials that affect the results .  For example, in a genetics experiment with flies, it is important to state whether the females used for the crosses were virgins; it is not necessary to list the type of food or anesthetic used. However, these details would be important if your experiment was testing how different diets affected fruit fly activity level or some other physiological parameter. In cases where detailed protocols are given in the lab manual, merely cite the appropriate chapter of the lab manual, note any details relevant to the experiment but not specified in the protocol ( e.g. , identify the particular strain of organism you and your teammates used when several were available), and describe any manipulations you made that are not outlined in the manual. Include only what is vital for the reader’s understanding of how the results were obtained.  (E.g., Drawing white poker chips out of a 1 quart Babcock Vanilla flavored ice cream container to get two numbers to pace out and place quadrats is not as important as the fact that quadrat placement was random.) If you are having trouble deciding what to put in and what to leave out, consult with your TA, peers, or other instructional staff for guidance before handing in your final paper.

sign with the word "Volumes" crossed out

  • Use subheadings, including one called “data analysis”
  • Describe your schedule of procedures in chronological order (if it makes sense to do so)
  • When writing a final paper, use the past tense for this section (because you refer to procedures that you carried out in the past).  When writing a proposal, use future tense.
  • Report final concentrations (in molar, millimolar, micromolar etc). rather than final volumes (see table below). Readers can replicate concentrations, but often find it difficult to discern concentrations when only volumes are reported.
Reporting final volumes. E.g.,  ‘We added 5 ml of NaCl solution to the reaction mixture.’ Reporting final concentrations. E.g., ‘The final reaction mixture contained 2 mM of NaCl.’

Example of Good Methods text

(Excerpt adapted from a paper by Beth Theusch, Biocore 384, Spring 2003:  Inorganic phosphate competitively inhibits alkaline phosphatase-catalyzed hydrolysis of p-nitrophenylphophate )  

Pilot Study*

A pilot study using various Pi concentrations but a constant substrate concentration close to the Km value was conducted in order to determine a Na2HPO4 concentration that has a moderate effect on initial reaction velocity to use in the inhibitor kinetics study.  We tested a range of concentrations between 2.5 uM and 200 uM Na2HPO4 in tubes containing 0.05 M Tris-HCl, pH 8.6, 0.05 mM pNPP (the approximate Km value), and 4 ug/ml bovine intestinal alkaline phosphatase in a total volume of 5 ml.  There was a control with no Na2HPO4 added and a blank with no enzyme added.

Experimental Protocol

The inhibitor kinetics study involved two sets of replicated reactions over a 0-0.5 mM range of pNPP substrate concentrations.  One set of reactions was conducted in the absence of inhibitor and used as a control.  The other set of reactions had a uniform concentration of Pi inhibitor, which was determined to be 0.05 mM from the pilot study, added to each tube.  All tubes had 0.05 M Tris pH 8.6, 4 ug/ml alkaline phosphatase, and the appropriate amount of distilled water to bring the total volume of each tube to 5 ml.  In each case, there was a control with no substrate added and a blank with no enzyme added.  The pH of the Na2HPO4 salt solution was checked to ensure that the pH was approximately the same in the uninhibited and the inhibited reactions.  Four replicates were performed for both the inhibited reaction and non-inhibited reaction.

For a complete protocol of the non-inhibited experiment, refer to “Enzyme Catalysis” in the Biocore Cellular Biology Lab Manual (Becker, Metzenberg, Dehring, 2003).  For the inhibitor kinetics study, the product concentrations were used to calculate the initial reaction velocities at each substrate concentration in the presence and absence of inhibitor.  Michaelis-Menten curves and Lineweaver-Burk plots were then generated to compare the values of Km and Vmax for the inhibited and uninhibited reactions.  Ki was determined using the relationship that the inhibited Km = (1 + [inhibitor] / Ki) times the uninhibited Km.

Statistical Analysis

We performed an independent sample T-test to determine whether the differences between the average Km and Vmax values between the inhibited and uninhibited reactions were statistically significant.

*Note: Not all papers require the inclusion of pilot studies in the Methods section.  Discuss this with your instructors.

How will methods/materials be evaluated? To see our expectations for your Methods & Materials, see the Biocore Research Paper Rubric in this Writing Manual.

The Results section is a logically organized presentation of your observational and numeric data .  This is an opportunity to emphasize points or trends that you will be focusing on in your discussion. In many cases the organization and subheadings of this section should be consistent with those of the Methods and Materials section.

Before you start writing, make sure you have discussed the data and have shared your plan for analysis with your group members. Your group should share a common data set and, therefore, should be working with the same mean, standard deviation, and other descriptive statistics. As long as all group members have the same raw data set, you may choose to display the data differently.

There are usually two parts to this section:

  • tables and figures

Text :  The key purpose of the text in the results section is to point out and emphasize patterns in your data. You may choose to illustrate some of these patterns, especially those that pertain to your hypothesis, in figures or tables. However, each figure and table needs accompanying text to point out the obvious—or sometimes the not so obvious.

  • Briefly describe, but do NOT make conclusions about ( i.e ., interpret) your data here — save that for the Discussion section .
  • Point out any trends. (Trends are relationships between one variable and another. e.g ., as variable one changes, variable 2 tends to change in a consistent way.)
  • Note differences or similarities between treatment groups.
  • If you perform statistical analyses, report any significant biological differences you found, followed by pertinent statistical summary information (test score such as a “t” or “F” value, degrees of freedom, one or two-tailed p-value; see Biocore Statistics Primer for more info).

Refer your reader to “Table 1” or “Figure 1” as you explicitly identify relationships, patterns, or general trends that you see in the data.  Remember that relationships that are obvious to you may not be obvious to someone who has not carried out the experiment.

  • Never write a sentence that just tells the reader where the data are. Point out to your reader the general trends in the data, then refer to the figure or table parenthetically.
  • When using the term “significant” in your results section recognize that it has a specific connotation in science that reads “statistically significant.” Therefore, use the term “significant” when explaining differences you observe only if you found statistically significant differences.

The Results section should not be controversial since you are merely reporting findings, not saying what you think they mean.  Avoid judging your data as “good” or “bad.”  Data are facts and facts simply are what they are.  Remember: you are not graded on whether your experiment “worked” or on your results; you are graded on how you handle them .   Always report what you saw , not what you think you should have seen.

See the following excerpt from a good Results section describing data from a systematic study.

Example of a Good Results Section from a Systematic Observation Study

(excerpted from a Biocore 382 paper by Kim Treml, Fall 2003)

Water Quality

Water quality testing revealed a mean pH of 6.67 +/-0.07 pH units (Table 1).  Mean dissolved oxygen and dissolved carbon dioxide were 3.4 +/- 0.4ppm and 55 +/-3ppm respectively.  Also, the total phosphorus was measured as 0.51 +/-0.5mg.L and conductivity, measured in microsiemens, was 1,063 +/-17μs.  All means were computed with n=45.  Both conductivity and phosphorus fall far out of range of optimal water quality levels for a healthy aquatic ecosystem (Table 1).  The measured phosphorus level is an order of magnitude larger than what is recommended by the EPA.  Conductivity is twice as high as the ideal level in a freshwater ecosystem. [RESULTS TEXT]

Table 1. Water quality data obtained from the University Bay marsh in 2003.  Each value represents the mean of 45 trials.  The error margin is + or – 1 standard error.  Optimal data ranges for a healthy aquatic ecosystem are shown for comparison.  [TABLE LEGEND]

pH 6.57 +/- 0.07 6.9 – 7.1
Conductivity (μs) 1,063 +/ 17 150 – 500
Dissolved O2 (ppm) 3.4 +/ 0.4 5 – 6
Dissolved CO2 (ppm) 55 +/ 3 > 20
Phosphorus (mg/L) 0.51 +/ 0.04 0.005 – 0.05

Macroinvertebrate Diversity

Macroinvertebrate species in the University Bay marsh were catalogued and presence or absence of each species was noted.  Figure 3* depicts the calculated frequency of each species per 500mL.  The species are approximately organized on the chart from left to right with increasing pollution tolerance as described on North Carolina State University’s water quality webpage (2003).  The highest frequency in both 2002 and 2003 exists among organisms around the mid-range of pollution tolerance.  Orb snails, scuds, backswimmers, copepods, seed and clam shrimp, nematodes and tubifex worms were present in over half of our samples in either 2002 or 2003.  Species indicative of very high water quality or very low water quality were less frequent compared to species indicative of the mid range.  Nonetheless, the data show an increase in the variety of species present from 18 species in 2002 to 26 in 2003.  [RESULTS TEXT]

* Figure 3 not shown in this Writing Manual

Tables and Figures:

Tables and figures are key elements of a scientific paper.

  • Tables are organized lists of numbers, ideas, or other data.
  • Figures are graphs, charts, diagrams, or photos.

Why use tables and figures?  First, they offer a concise way to present a large amount of information.  Second, they carry the bulk of the experimental evidence needed to support your conclusions.  Third, they offer the reader a chance to assess your data and determine whether or not your conclusions are valid.  Finally, the values in them can be used by other scientists who wish to build on your work.  Usually, summarized (e.g., averages and measures of variation) rather than raw data are included in a paper.  Always make it clear whether you are presenting actual data or averages.  (In some cases we will ask you to include raw data as an appendix.) Please refer to the Biocore Statistics Primer for directions on producing figures in Excel.

Each table or figure should be referred to in the text of your paper at least once.  If you have nothing to note about a particular table or figure, leave it out.  Identify and number tables or figures according to the order they appear in the text (Table 1, Table 2, Figure 1, Figure 2, etc.).  This way the reader will know exactly what data you are discussing.

Tables and figures should be neat, logically organized, and informative.  If properly prepared, they can stand independently of the paper.  Always remember that readers are not familiar with your data.  A table or figure that seems self-explanatory to you may not seem so to a reader.

Here are some rules for presentation of graphs and tables:

  • Present your final data in table or graphical form. The choice of table or figure should be based on the type of data you have. If you are trying to show trends or simple comparisons it may be best to use a figure. If you have long lists or many comparisons to be made across groups a table may be more appropriate. [ DO NOT present the same data in both table and graphic form.]
  • The most common way to present graphical data is either an XY scatterplot for continuous data or a bar chart for categorical data/ results of statistical comparison of the means of two or more groups.
  • Keep it simple! The amount of time it takes a reader to interpret a figure is inversely proportional to how well those data are presented. Do not overuse transformations or ratios if they are unnecessary for accuracy and clarity of your results.
  • Clearly label all axes or columns including units ( e.g. Time (min.), Concentration (mM), Mass (mg)). Describe any symbols you use in your graphs using a KEY (see figures below for examples of keys).
  • POOR LEGEND: Enzyme activity vs. salt (Avoid using the term vs)
  • BETTER : Average alkaline phosphatase activity for concentrations of NaCl from 0.1 to 1 mM. The substrate for the reaction was ATP at a concentration of 2 mM for a total reaction time of 3 minutes. Columns represent mean values (N=3) with error bars representing ± 1 SE.
  • Put table legends above a table. Put figure legends below or to the side of a figure.
  • Do NOT create titles for figures or tables. Instead of a title, use a simple legend numbering each table and figure consecutively is sufficient. Do not use titles like “Chart 1” that are automatically generated by Excel.
  • For graphs that present an average value as a single point or bar, include error bars and state what they represent. Usually, this will be 1 standard deviation (SD) or 1 standard error (SE) on either side of the mean (see figure 1 below for an example).
  • For tables presenting means, include some measure of variation (SD or SE). (See Table 1 above for an example of this).
  • State the number of samples used to calculate an average. If you measured the height of 12 purple cone flower plants and reported an average height of 0.82m, indicate the number of samples used to generate that statistic as n=12.
  • Do not connect the points on a line graph unless you really mean to say that the values in between the points shown should follow the line drawn. Trend lines have very limited predictive value or validity when connecting 3 points or less.  

Drawing a diagram or presenting a photomicrograph:  Drawn diagrams or photographs taken from a microscope and their legends should contain enough information that a reader can understand (as near as possible) what you actually observed and the conditions surrounding the observation.   Diagrams must be large enough to show significant details of what you observed.  In practice, this generally means that each diagram should cover at least a quarter of an 8.5×11” page .  Indicate the type of microscopy used and the total magnification in your legend.  Include a scale on your drawing.  Define the experimental conditions and include notes on the process of your investigation.  See Figures A-7, A-13, and A-14 in the World of the Cell’s “Principles & Techniques of Microscopy” for examples of good figure legends.

Example of Good Results bar graph

bar graph with axis label, figure legend, figure key, and error bars highlighted with arrows

Example of Good Results scatterplot

(excerpted and adapted from a presentation by Jennifer Rowland, Beth Rollmann, Simona Rosu, and Christopher Luty, Biocore 384, Spring 2003; Gramicidin Decreases CO2 Consumption in Elodea)

scatterplot image includes figure key, figure legend positioned below or to the side of the figure, and cautiously applied lines. See machine-readable pdf attachment for full text.

Figure 2: Change in dissolved CO2 levels in water surrounding six Elodea sprigs (6 cm in length) in 75 ml culture tubes over 100 minutes of light exposure. Dissolved gramicidin concentrations ranged from 0 to 0.8 µM.  Each data point represents the mean of N=11-15 culture tubes for each gramicidin concentration plus/minus one standard error.

view this figure as a pdf

Example of Good Table

(adapted from Jenna Voegele paper on water quality in Willow Creek, Biocore 382, Fall 2004)

Table 1. Mean values of water chemistry tests from upstream and downstream sampling locations during a three day study period, Sept 14-16, 2004.  Variation is shown as ± 1 SE next to each mean value, followed by sample size (in parentheses) in which varied for each test and sampling location. Note the smaller sample size for the nitrate-N test.

Sampling Location

 

Turbidity (NTU) 32.2 ± 9.7 (16) 23.6 ± 5.9 (13)
PH 6.99 ± 0.1 (16) 6.97 ± 0.12 (14)
Dissolved Oxygen Saturation (%) 77.1 ± 1.7 (32) 81.5 ± 1.9 (26)
Biochemical Oxygen Demand (mg/L) 2.6 ± 0.5 (20) 3.3 ± 0.7 (18)
Total Phosphorus (mg/L) 0.44 ± 0.09 (15) 0.58 ± 0.12 (14)
Nitrate-N (mg/L) 8.6 ± 1.4 (4) 11.0 ± 0.7 (4)
Water Temperature (°C) 20.8 ± 0.3 (17) 20.6 ± 0.3 (14)
Fecal Coliform (colonies/100ml water) 414 ± 185 (29) 684 ± 201 (24)

Writing a figure legend for a drawing or micrograph:

If you are including an image (drawing or photomicrograph) in your paper, highlight attributes of the image that are important for your paper and to your reader. If the reason for including the image is to highlight anatomy, you may want to label structures and include a description of movement or other important observations in the figure legend. When writing a figure legend to accompany a photo or drawing, include enough information so that a reader can understand (as near as possible) what you actually observed and the conditions surrounding the observation. This means that you should indicate the type of microscopy used (phase contrast, bright field, fluorescence, etc.) and any notes regarding the preparation (e.g., mounted in ProtoSlow, water or saliva, with coverslip, types of stains used, etc.).  Also indicate the total magnification in your legend.  Diagrams must be large enough to show significant details of what you observed.  It is important to include a scale on your drawing.

Click on the three purple icons in the diagram below for more information about each element.

See machine-readable pdf attachment for full text.

Figure 1.1  Micrograph of the protozoan Pelomyxa carolinensis viewed under phase contrast microscopy, magnification 100X.  The specimen is mounted in ProtoSlow and coverslip to reduce its movement.   Plasmagel streams readily into pseudopodia (seen at the bottom right of the photo) allowing the amoeba to slowly crawl across the field of view.

In the figure descripton above, the writer has indicated the type of microscopy (phase contrast microscopy, magnification 100X) and the total magnification (100X).

How will results (including text & figures/tables) be evaluated? To see our expectations for your Results, see the Biocore Research Paper Rubric in this Writing Manual.

This is where you interpret your results for the reader .  It is the most important part of your paper and often one of the most difficult to write. The discussion section is NOT a restatement of your results, but rather where you provide your insight on the investigation through logical analysis. Key elements of your discussion section include:

  • BROAD STUDY QUESTION that your research is trying to address
  • SUPPORT/REJECT HYPOTHESIS
  • INTERPRET the dependent variable measured (if multiple variables are measured you  interpret each variable independently and then INTEGRATE variables for overall interpretation of data)
  • Formulate argument for your conclusions, emphasizing how your data do or do not support your biological rationale & by comparing with relevant findings in the literature
  • NEW KNOWLEDGE that your investigation has generated: highlight the knowledge gap that your data help address, and the implications of your work. Introduce at least one new paper from the scientific literature to help you discuss or support your findings.
  • EVALUATE confidence in experimental design and reliability of data
  • NEW QUESTIONS and FUTURE STUDIES that the new knowledge inspires
  • UNEXPECTED OBSERVATIONS are unique observations not collected in rigorous way but still intriguing and could inspire new investigations
  • CONCLUSION brief statement as summary.

The organization of your discussion section is not fixed but rather it is driven by the reliability of the data you collect. The discussion should complement the logic set up with your biological rationale in the Introduction.

The following is not an appropriate discussion section: “Our data supported the hypothesis. The results were what we expected (see Results section).”  Instead, state specifically what you observed in your data, and the conclusions you feel confident you can make based on the evidence you gathered. The Discussion should formulate and support a logical argument , leading the reader through the specific conclusions drawn from the data to their more general implications beyond the experiment.

Elements in the Discussion Section

Broad Study Question

What is the broad question that your research is trying to address? State your question clearly in the opening paragraph.

  Support or Reject Hypothesis :

  • If you have conducted a manipulative study, restate your hypothesis and whether you support or reject your hypothesis referencing appropriate data . (Note that finding no difference between two treatments is a result).
  • Critically evaluate your biological rationale, experimental design, data collection, and explicit/implicit assumptions throughout. After this evaluation, you should be able to support or reject your hypothesis….OR you may feel that you did not fully test your hypothesis after all. A key step here is to look at your controls and variation in your measurements. How much variation surrounds your controls? How reliable and accurate are your measurements?
  • IMPORTANT NOTE: finding no difference between treatments is NOT an inconclusive result–No difference is a very valid result that contributes to a conclusion for either supporting or rejecting a hypothesis!

crossed out sign that says "We proved our hypothesis correct or incorrect"

Interpreting Data : If you feel that your protocol allowed you to test your hypothesis,

  • Interpret each piece of data presented in the results independently and evaluate the reliability of the data.
  • Discuss how these data are similar (confirm) or contrast with what is reported in literature you presented in the introduction OR new literature you discovered after you completed your experiment. Explain the trends you feel are important to support your conclusion(s) and evaluate how this supports or contradicts the biological assumptions you outlined in your biological rationale. Be prepared to detach yourself from your original biological rationale in explaining or being critical of your results.
  • Combine and integrate the multiple types of reliable data you collected and discuss how together they inform the broad question (only combine data you are confident in).

Generating New Knowledge

Describe how your experiment contributes to the knowledge gap you identified in your introduction. Cite similar, contrary and/or supportive literature.

  • If your data supported your hypothesis: guide your readers through the steps in your reasoning referring back to your biological rationale to provide context.  Present the arguments that explain how your experimental approach and the pieces of evidence (data) convince you of your conclusion. Explain how do your findings add to those that others have observed.  Compare your findings with information from the literature (this often requires a post-experimental literature search), citing appropriate references that support for your results. These references include many that you cited in your Introduction section; briefly summarize them but avoid redundancy.
  • If your results are contrary to your hypothesis , you need to speculate the reasons for this difference, continue your literature search to explain your alternative results.  Are your results consistent or inconsistent with others findings—why or why not? Distance yourself from the project while writing and be reasonably critical of your data. What evidence do you have that your biological rationale is acting? Is the mechanism you propose in effect? Evaluate the key biological assumptions in your biological rationale which were not correct.
  • Implications of your findings- How does your experiment add to the current body of knowledge? Speculate on the implications of your findings. It is essential that you refer back to your biological rationale . Implications are specific, reasonable extensions of your results or the meaning of your results for the larger picture.  Be careful, however, with your choice of words: state implications as logical possibilities rather than as fact.  Your results may lead to new insights about relationships in nature.  An unexpected result (if it holds up on repeating the experiment) may yield insight to guide a more effective experimental approach.

Evaluate Confidence in Experimental Design and Data Reliability/Quality

  • Evaluate the strengths and weakness of your experiment and your confidence (or lack of) in your experimental design. Explain how these factors allow you to gauge the strength of your conclusion(s). Always address whether your protocol allowed you to truly test your hypothesis (see special note about inconclusive results in ‘support or reject hypothesis’ section above). In some cases you may discover unexpected inaccuracies in your data or that the methods you used were not appropriate or precise enough to address your question or test your hypothesis. Address the errors, unresolved issues and speculate how the experimental approach might be improved. Inconclusive results may show that you weren’t asking a relevant question in the first place or that the experiment was not able to test the question you posed.  This, in turn, can generate specific new questions and experimental approaches. Avoid making a laundry list of mistakes you made in carrying out your experiment.   Only mention errors if they help explain unexpected data values and/or lead you to conclude that your methods did not allow you to test your hypothesis.
  • Evaluate reliability of data – Once you have established that your experimental design was appropriate to address your original question, you must also evaluate how well you carried out your intended design and what that means to your data reliability ( e.g . evaluating whether the variation you see between samples is natural variation or experimenter’s error). How good are your data? Consider the variability in your data (variance, standard deviation, standard error). Did you have enough replicates? Did you have a large degree of experimental error? What are the implications of variability? Do not over-interpret your data . Recognize the magnitude of the variation within your data and the level of departure you would need to conclude true differences. In most cases you are trying to attach meaning to a group of numbers generated by some procedure.  Help your readers make sense of these numbers by explaining how the patterns and relationships you observed reflect the biological concepts or issues you set out to explore.  How do your data fit with your biological rationale?

New Questions and Future Studies : Science is built on an iterative cycle of questions, experiments, results and conclusions. Often it is appropriate to suggest the next step in the investigation.  Be sure to include the reasoning that leads to your insights .  Your experiment will likely provide many opportunities to ask new questions and suggest future studies.

Final Conclusion : End your paper strongly with a clear, brief conclusion that relates directly to the question, hypothesis, or knowledge gap you stated in the Introduction.

If you get stuck :  The hard work of making meaning of data will be easier if you have a clear idea of what it was that you set out to do in the first place.  Re-read your question and biological rationale.  Do your results allow you to answer the question you posed in light of your biological rationale? A second reading of your BR after examining your data will often solve much of the confusion you may be experiencing.  Be sure to discuss your results thoroughly with your research team. They may have some insight, intriguing literature for comparison, or thoughts about the data that could benefit your interpretation.

Other things you can do:

  • Take a look at the example of good discussions on the next pages.
  • Make a conceptual diagram for yourself or with your team. This is especially useful for seeing new connections, structuring ideas, and finding interactions at multiple levels.
  • Explain the experiment and its significance to a friend who knows nothing about it. If you understand the full content, context, results and relevance of your experiment, you should be able to explain what was done and what it means. This should help provide some organization to your paper.

How will discussions be evaluated ? To see our expectations for your Discussion, see the Biocore Research Paper Rubric in this Writing Manual.

Example of Good Discussion

Adapted from a paper by Jeremiah Wilke, Biocore 382, Fall 2003 Practice Paper entitled  “Queen Anne’s Lace ( Daucus carota ) Species Frequency Suggests Rototilling as Most Effective method for Control of Invasive Weeds in Prairie Restoration Projects

The results suggest that rototilling is the most effective method as mulching and mowing yielded frequency values approximately 5 fold greater. The greater effectiveness of rototilling over the other methods coincides with previous knowledge of Queen Anne’s lace as it is known to favor habitats in no-till fields (Rose and Sheaffer, 2003) and re-sprout stems even after being cut (Biocore 382, class 2001, unpublished data) . (setting up logical argument: referring back to biological rationale and comparing findings with the literature) . The frequency means suggest mowing to be slightly more effective than mulching; however, the distribution of the frequencies indicates little difference as the methods share common values. (Data interpretation- part of logical argument; Add re-statement of hypothesis and clearly state whether it was supported or rejected based on data interpretation)

Through rototilling seems to be the most efficacious for Queen Anne’s lace, several factors prevent us from making a definitive conclusion, most notably a small sample size. (Evaluating the validity and reliability of data) Frequency calculations can suggest patterns in the treatment, but they give no sense of the species density (number of a give species per quadrat). Examinations of the species frequency of Queen Anne’s lace in a control would also allow us to be more conclusive by gaining a sense of the improvement the methods made over untreated plots. (evaluating experimental design) Beyond our inability to decisively say which treatment is the most effective for Queen Anne’s lace, further work by the University of Wisconsin-Madison Biocore class of 2001 suggests we cannot generalize to other non-native species (Batzli, 2003). In their research, none of the methods demonstrated an appreciably greater capacity for weed control when tested on a variety of species. (discussion of other data makes our interpretation and argument more convincing) Species density calculations, measurements against a control, and the effectiveness of treatments on the other invasive plants therefore all necessitate future research. Mixing treatments has also been proposed (Batzli, 2003), while engineering novel methods deserves further study. (next steps)

(Final conclusion and brief discussion of implications of this research would help here)

Example of a Good Discussion that enumerates assumptions and how violating assumptions changes conclusions

Adapted from a poster by Beth Gausden, Katie Gielissen, Emily Gurnee, Jordan Mollet, and Carley Zeal, Biocore 384, Spring 2006

Addition of colchicines to MATa S. cerevisiae in vivo does not inhibit budding in the absence of α-factor but reduces shmooing and β-gal activity in response to α-factor

  The results in Fig. 2 do not support our hypothesis (rejection of original hypothesis) that yeast exposed to colchicine in the absence of α-factor show a drastic decline in the incidence of budding as compared to controls.  Our original hypothesis was based on the assumption that inhibition of mitotic division would prevent budding.  (clear statement of key assumption in biological rationale) Although nuclear division is mediated by microtubules, pinching action and subsequent cytokinesis (budding) is controlled by actin filaments1.  The tubulin-colchicine complex inhibits karygomy; however, bud formation can occur independently of nuclear division.1  Budding was still observed microscopically after three hours of incubation with colchicine (Fig. 2)- approximately two generations.  These results indicate that bud formation was not inhibited by colchicine; (summary of how results do not support biological assumption) however, later generations incubated in colchicine may show complete cessation of budding as a result of aneuploidy, an irregular number of chromosomes.1  This occurs when a yeast cell undergoes successful cytokinesis but unsuccessful karyogamy; if this process is continuous or prolonged, cells will be unable to bud.

The results in Fig. 1 and Fig. 2 do not support our hypothesis that colchicine does not affect shmooing or the transcription of mating genes.  We expected no change in the incidence of mating gene transcription as reported by the β-gal assay and percent of shmooing yeast in the yeast treated with colchicine compared to untreated yeast.  The β-gal assay, Fig. 1, indicates a large decrease occurred in the transcription of mating genes in the presence of colchicine.  Similarly, we observed a lower percentage of shmooing cells in the presence of colchicine.  If nuclear division were inhibited by colchicine, then the portion of cells experiencing aneuploidy would be unable to respond to α-factor by shmooing or transcribing mating genes.

Our results suggest that colchicine does not inhibit bud formation (in the absence of α-factor) after 3 hours.  We also observed decreased shmooing as well as β-galactosidase activity in yeast cells treated with colchicine and α-factor.  The consistency of our results provides reasonable confidence in the methods.  In future studies, longer incubation times, differing concentrations of colchicine, and chromosome and microtubule staining could be used to investigate the mechanism more thoroughly.

Adapted from a paper by Beth Theusch, Biocore 384, Spring 2003 Inorganic Phosphate Competitively Inhibits Alkaline Phosphatase-Catalyzed Hydrolysis of p-Nitrophenylphosphate

We hypothesized that inorganic phosphate (Pi) would act as a competitive inhibitor of the alkaline phosphatase-catalyzed pNPP hydrolysis reaction.   Our data support this hypothesis.  (re-statement of hypothesis and whether it was supported or rejected)   As expected, we found that addition of inorganic phosphate increased the Km of the alkaline phosphatase-catalyzed pNPP hydrolysis reaction while the Vmax remained relatively unchanged. (setting up logical argument)          After the addition of a concentration of Pi inhibitor approximately equal to the uninhibited Km substrate concentration, the apparent Km became 6-7 times as large (from 0.038 mM to 0.253 mM) as the uninhibited Km.  Therefore, pNPP substrate molecules had to be almost 7 times as numerous as inhibitor molecules to access alkaline phosphatase’s active site and produce product equivalent to an initial uninhibited reaction velocity of 1/2 Vmax.  These data indicate that Pi is quite an effective competitive inhibitor.  One reason for its effectiveness as an inhibitor could be that the molecular weight (MW) of inorganic phosphate is about 96 g/mol, while the MW of pNPP, with its bulky nitrophenyl group, is almost 217 g/mol.  Temperature is a measure of average molecular kinetic energy and is proportional to mv2.  This means that lighter molecules have to move faster than heavy ones at 37oC in order to have the same kinetic energy as the large molecules.  Molecules that move faster have more collisions, so it is likely that each Pi molecule had a greater chance of colliding with the alkaline phosphatase (AP) active site than did each pNPP substrate molecule during our experiment.  (constructing new knowledge: references would help a lot here to show that the differences in molecular weight mentioned could significantly change kinetic energy)      In addition, AP may have had a greater affinity for Pi than it did for the pNPP substrate, since alkaline phosphatases have a high affinity for inorganic phosphate (McComb et al ., 1979).  The bulky phenyl group on pNPP may have sterically hindered the hydrolysis reaction more than the hydrogen on Pi, depending on the specific geometry of the active site.   As we mentioned previously, AP generally hydrolyzes Pi at a slower rate than it hydrolyzes phosphomonoesters (Schwartz, 1963), and so it may be that Pi  occupies the AP active site longer per hydrolysis and thus excludes available pNPP from subsequently binding. (constructing new knowledge: referring back to biological rationale and comparing findings with the literature)

At first glance, it might appear that some of the increase in apparent Km could be attributed to a slight change in pH, since the Km value is pH dependent.  Dibasic Pi can act as a base by adding a proton and becoming h1PO4- and as an acid by losing a proton and forming PO43-, but phosphate is predominantly the dianion at a pH of 8.6.  Since the pH of the 0.05 mM Na2HPO4 salt solution was 7.7, which is close to the targeted value of 8.6, it is a reasonable to assume that the buffer counteracted any fluctuations in pH and essentially kept the pH constant. (evaluating experimental design)

Although the Vmax did not change dramatically between uninhibited and inhibited reactions, there was some difference between the uninhibited value of 0.056 umol/min and the inhibited value of 0.070 umol/min.  Since Vmax did not decrease, it was clear that Pi did not act as a noncompetitive inhibitor.  Since Vmax increases in the presence of an activator, it is possible that slight changes in ionic strength resulting from the addition of the salt could have activated AP somewhat.  However, previous studies at a pH of 10 have shown that the activities of mammalian alkaline phosphatases are either unaffected or diminished by an increase in ionic strength.  Specifically, calf intestinal AP experienced no change in activity following the addition of 1M NaCl, a much higher concentration than the Na+ that we introduced in our experiment.  In other systems, NaCl addition at a pH of 9.0, close to the 8.6 we used in our experiment, had little effect on maximum velocity and actually inhibited it at low substrate concentrations (McComb et al ., 1979).  Since other variables in the experiment were held constant, the differences in Vmax values could simply be due to experimental error. (evaluating data reliability & experimental design)

The Ki value of 8.78 uM obtained from this study was comparable to but slightly greater than literature values for the Ki of E. coli AP.  The values of 1 uM (O’Brien and Herschlag, 2001) and 0.6 uM (McComb et al ., 1979) for Pi inhibition of E. coli AP were both obtained at a pH of 8.0 and temperature of 25oC, while we used a pH of 8.6, a temperature of 37oC, and bovine intestinal AP in our study.  Just like Km values, Ki values are pH dependent.  It is generally recognized that competitive inhibitors of AP are more effective at lower pHs (McComb et al ., 1979).  The pH difference alone could probably explain why our Ki was slightly larger and our inhibitor was slightly less effective than in the E. coli studies.  In addition, bovine intestinal AP has a structure that is somewhat different from E. coli AP, so it is reasonable that the kinetics of the two enzymes could differ slightly.  Some studies in rats have shown that only 1/10 as much Pi is needed to inhibit intestinal AP as compared to the amount that is needed to inhibit AP in other rat tissues (McComb et al ., 1979).  (evaluating data reliability & experimental design)  Perhaps there are lower Pi concentrations in intestinal cells as compared to cells in other tissues.  It would be interesting to see if this is true for bovine and other mammalian AP as well. (New questions/Future Studies)

The inhibition of AP by Pi, the product of AP catalyzed hydrolysis reactions, is a substrate-level regulation mechanism (Becker, Kleinsmith, and Hardin, 2003).  This allows the AP enzyme to be responsive to product concentrations, so it is not always functioning at its maximum rate.  It is not in the best interest of the cell to convert all phosphomonoesters into Pi and an alcohol at once, and the competitive inhibition by Pi helps to prevent this.  This is precisely why initial reaction velocities are used when studying enzyme kinetics; if products are allowed to accumulate, they are likely to have an inhibitory effect on the enzyme. (implications of results, referring back to biological rationale)

Overall, the results of this study indicate that Pi is indeed a competitive inhibitor of bovine intestinal AP, as we had hypothesized.  Specifically, we found that the Km value increased from 0.038 mM to 0.253 mM while Vmax  remained relatively constant. We also found that our Ki value of 8.78 uM was reasonably similar to that reported previously for this particular enzyme and inhibitor. (final conclusion) 

Parenthetical Citations Within Text

  • Cite all information that you use from published or unpublished sources in the body of your paper and provide full citations in the Literature Cited section at end of the paper.
  • Parenthetical author-date format within a sentence or at the end of a block of text. Provide the last name of the author(s) and the date the work was published, both enclosed by parentheses. Example: Global warming is a looming threat to biodiversity (Peters and Lovejoy 1992).
  • More than one source , list them in chronological order: e.g. (Jones 1992; Smith and Jacobs 1993; Torrez 1995). If a work has more than two authors, you may list the first followed by et al. (latin for “and others”) and the date: (Jones et al. 1995).  However, the names of all of the authors must be included in the list of citations at the end of the paper.
  • Unpublished information: If you cannot find a published citation you can site personal communication in the body of your text – NOT in the literature cited. The format for unpublished information or data communication to you by a colleague is the source followed by “personal communication” or “unpublished data”: e.g. (Maria Rodriguez, personal communication 2002; Biocore 382 class, unpublished data). ***Use these sparingly as sources usually are not formal and cannot be verified easily. DO NOT base the major foundation of your study on personal communication unless the information gained is unique and not found elsewhere.

List all works cited in the text – and no others – alphabetically in the References section at the end of your paper.  The specific format used for references varies depending on each journal’s conventions, web-site format and the type of source to which you are referring.  We would like you to use the format demonstrated below which follows the Name-Year system . Each reference should include the names of all the authors, the date the article or book was published and/or the date the website was accessed and its title.  Regardless of the exact format used, make sure that you are consistent!

Here are some examples to follow:

Format as follows :

Author(s). year of publication. Title of the article (with only the first word capitalized). title of journal plus volume (issue): Inclusive page numbers.

One author example

Vitousek, P.M. 1994. Beyond global warming: ecology and global change. Ecology 75: 1861-1876.

Multiple author example

Post, W.M., Emanuel, W.R., Zinke, P.J., and Stangenberger, A.G. 1982. Soil carbon pools and world life zones. Nature 298: 156-159.

Internet Sources

A full discussion of number and types of internet resources is beyond the scope of this manual.

However, the following is a general guide for most articles that are published on the internet. As with all resources, especially those found on the internet, you must be wary of the source and its validity. If it doesn’t have an author or publication/ posting date BEWARE!

Format as follows :

Author(s). Year of publication. Title of the work. Title of the complete work or website or on-line journal plus volume (issue) if available/ applicable. Website URL or address (except for online journal or personal email). Date you accessed the web page.

Carbon, J.J. Physiology data. Personal email (7 July 2010).

Listserv or RSS feed newslist:

Blystone, R.V. 1994. Setting up a digital classroom and other stuff. [email protected] (accessed May 10, 1996).

World Wide Web: Basic form is: Author. Date. Title. URL (Access date)

Waterman, M., Stanley, E., Soderberg, P., and Jungck, J.R. 1999 Kingdoms entangled: molecules, malaria, and maise. BioQUEST Curriculum Consortium. http://bioquest.org/case.html (accessed  April 12, 2012)

Macreal, H. 2001. Large Fish, Small Pond. http://www.bigfish.org/articles (accessed April 20, 2001)

Splice, G. 2000. Mutations are the Ultimate form of Variation. University Press Weekly vol 22. Electric Library. http://www.elibrary.com/ (accessed October 17, 2011).

*Note: Do not write out a website address (URL) as a parenthetic citation within the text of your paper—instead include the author and year of publication (e.g. Macreal 2001), just as you do with all other publications. Whenever possible, list the author. If you can’t find an author, list the organization that provided the information. If you can’t find the name of the organization, question the quality of your source.

Biocore Lab Manual

You will be citing one of your Biocore lab manuals in many of your research papers.  To do this, look at the lab manual chapter to find the author(s) you wish to cite and the example format below.  NOTE: This is an example for the Biocore Prairie chapter of the Biocore 382 lab manual.

Book Citations

Format as follows:

First author’s last name, First initials, subsequent authors’ name separated by commas, year of publication, title of book (italicized, with only the first word capitalized), edition number (if it is not the first edition), the publisher, the city of publication, and the state (omit the state for well known cities like New York).

Kuhn, T.S. 1962. The structure of scientific revolutions. University of Chicago Press, Chicago.

Purves, W.K., Sadava, D., Orians, G.H., and Heller, H.C. 2001. Life, the science of biology, 6th ed. Sinauer, Sunderland, MA.

Chapter in a Book

Naes, A. 1986. Intrinsic value: will the defenders of nature please rise? In Soulé, M.E., editor. Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, MA. pp. 504-515.

Process of Science Companion: Science Communication Copyright © 2017 by University of Wisconsin-Madison Biology Core Curriculum (Biocore) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

The Structure of a Scientific Paper

Cite this chapter.

scientific research structure

  • David M. Schultz  

6620 Accesses

1 Citations

Organization is essential for a well-written scientific document. The readers must know where to quickly find the information they seek, from the cover page to the reference list. This chapter explains the parts of a typical scientific document, how to structure these parts into a well-organized document, and how to write each part to effectively communicate the science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Unable to display preview.  Download preview PDF.

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2009 David M. Schultz

About this chapter

Schultz, D.M. (2009). The Structure of a Scientific Paper. In: Eloquent Science. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-03-4_4

Download citation

DOI : https://doi.org/10.1007/978-1-935704-03-4_4

Publisher Name : American Meteorological Society, Boston, MA

Print ISBN : 978-1-878220-91-2

Online ISBN : 978-1-935704-03-4

eBook Packages : Earth and Environmental Science Earth and Environmental Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

Societies and partnerships

American Meteorological Society

  • Find a journal
  • Track your research
  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Structuring the Research Paper

Formal research structure.

These are the primary purposes for formal research:

enter the discourse, or conversation, of other writers and scholars in your field

learn how others in your field use primary and secondary resources

find and understand raw data and information

Top view of textured wooden desk prepared for work and exploration - wooden pegs, domino, cubes and puzzles with blank notepads,  paper and colourful pencils lying on it.

For the formal academic research assignment, consider an organizational pattern typically used for primary academic research.  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Usually, research papers flow from the general to the specific and back to the general in their organization. The introduction uses a general-to-specific movement in its organization, establishing the thesis and setting the context for the conversation. The methods and results sections are more detailed and specific, providing support for the generalizations made in the introduction. The discussion section moves toward an increasingly more general discussion of the subject, leading to the conclusions and recommendations, which then generalize the conversation again.

Sections of a Formal Structure

The introduction section.

Many students will find that writing a structured  introduction  gets them started and gives them the focus needed to significantly improve their entire paper. 

Introductions usually have three parts:

presentation of the problem statement, the topic, or the research inquiry

purpose and focus of your paper

summary or overview of the writer’s position or arguments

In the first part of the introduction—the presentation of the problem or the research inquiry—state the problem or express it so that the question is implied. Then, sketch the background on the problem and review the literature on it to give your readers a context that shows them how your research inquiry fits into the conversation currently ongoing in your subject area. 

In the second part of the introduction, state your purpose and focus. Here, you may even present your actual thesis. Sometimes your purpose statement can take the place of the thesis by letting your reader know your intentions. 

The third part of the introduction, the summary or overview of the paper, briefly leads readers through the discussion, forecasting the main ideas and giving readers a blueprint for the paper. 

The following example provides a blueprint for a well-organized introduction.

Example of an Introduction

Entrepreneurial Marketing: The Critical Difference

In an article in the Harvard Business Review, John A. Welsh and Jerry F. White remind us that “a small business is not a little big business.” An entrepreneur is not a multinational conglomerate but a profit-seeking individual. To survive, he must have a different outlook and must apply different principles to his endeavors than does the president of a large or even medium-sized corporation. Not only does the scale of small and big businesses differ, but small businesses also suffer from what the Harvard Business Review article calls “resource poverty.” This is a problem and opportunity that requires an entirely different approach to marketing. Where large ad budgets are not necessary or feasible, where expensive ad production squanders limited capital, where every marketing dollar must do the work of two dollars, if not five dollars or even ten, where a person’s company, capital, and material well-being are all on the line—that is, where guerrilla marketing can save the day and secure the bottom line (Levinson, 1984, p. 9).

By reviewing the introductions to research articles in the discipline in which you are writing your research paper, you can get an idea of what is considered the norm for that discipline. Study several of these before you begin your paper so that you know what may be expected. If you are unsure of the kind of introduction your paper needs, ask your professor for more information.  The introduction is normally written in present tense.

THE METHODS SECTION

The methods section of your research paper should describe in detail what methodology and special materials if any, you used to think through or perform your research. You should include any materials you used or designed for yourself, such as questionnaires or interview questions, to generate data or information for your research paper. You want to include any methodologies that are specific to your particular field of study, such as lab procedures for a lab experiment or data-gathering instruments for field research. The methods section is usually written in the past tense.

THE RESULTS SECTION

How you present the results of your research depends on what kind of research you did, your subject matter, and your readers’ expectations. 

Quantitative information —data that can be measured—can be presented systematically and economically in tables, charts, and graphs. Quantitative information includes quantities and comparisons of sets of data. 

Qualitative information , which includes brief descriptions, explanations, or instructions, can also be presented in prose tables. This kind of descriptive or explanatory information, however, is often presented in essay-like prose or even lists.

There are specific conventions for creating tables, charts, and graphs and organizing the information they contain. In general, you should use them only when you are sure they will enlighten your readers rather than confuse them. In the accompanying explanation and discussion, always refer to the graphic by number and explain specifically what you are referring to; you can also provide a caption for the graphic. The rule of thumb for presenting a graphic is first to introduce it by name, show it, and then interpret it. The results section is usually written in the past tense.

THE DISCUSSION SECTION

Your discussion section should generalize what you have learned from your research. One way to generalize is to explain the consequences or meaning of your results and then make your points that support and refer back to the statements you made in your introduction. Your discussion should be organized so that it relates directly to your thesis. You want to avoid introducing new ideas here or discussing tangential issues not directly related to the exploration and discovery of your thesis. The discussion section, along with the introduction, is usually written in the present tense.

THE CONCLUSIONS AND RECOMMENDATIONS SECTION

Your conclusion ties your research to your thesis, binding together all the main ideas in your thinking and writing. By presenting the logical outcome of your research and thinking, your conclusion answers your research inquiry for your reader. Your conclusions should relate directly to the ideas presented in your introduction section and should not present any new ideas.

You may be asked to present your recommendations separately in your research assignment. If so, you will want to add some elements to your conclusion section. For example, you may be asked to recommend a course of action, make a prediction, propose a solution to a problem, offer a judgment, or speculate on the implications and consequences of your ideas. The conclusions and recommendations section is usually written in the present tense.

Key Takeaways

  • For the formal academic research assignment, consider an organizational pattern typically used for primary academic research. 
  •  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

:

| | |

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All scientific papers have the same general format. They are divided into distinct sections and each section contains a specific type of information. The number and the headings of sections may vary among journals, but for the most part a basic structure is maintained. Typically, scientific papers are comprised of the following parts:

Let's examine the content in each section of a scientific paper, and discuss why each section may be useful to you as a reader.

. The title will help you to determine if an article is or for your project. . Abstracts provide you with a complete, but very succinct of the paper.

. You will find information and a statement of the author's in the introduction.

. The methods section will help you determine exactly the authors performed the experiment.
. The results section contains the collected during experimention. . The discussion section will explain the their data and how they connect it to other work.

The acknowledgments tell you what people or institutions (in addition to the authors) to the work. . This section provides the cited throughout the paper.

Enago Academy

Structure of a Research Paper: Tips to Improve Your Manuscript

' src=

You’ve spent months or years conducting your academic research. Now it’s time to write your journal article. For some, this can become a daunting task because writing is not their forte. It might become difficult to even start writing. However, once you organize your thoughts and begin writing them down, the overall task will become easier.

We provide some helpful tips for you here.

Organize Your Thoughts

Perhaps one of the most important tasks before you even begin to write is to get organized. By this point, your data is compiled and analyzed. You most likely also have many pages of “notes”. These must also be organized. Fortunately, this is much easier to do than in the past with hand-written notes. Presuming that these tasks are completed, what’s next?

Related: Ready with your title and looking forward to manuscript submission ? Check these journal selection guidelines  now!

When suggesting that you organize your thoughts, we mean to take a look at what you have compiled. Ask yourself what you are trying to convey to the reader. What is the most important message from your research? How will your results affect others? Is more research necessary?

Write your answers down and keep them where you can see them while writing. This will help you focus on your goals.

Aim for Clarity

Your paper should be presented as clearly as possible. You want your readers to understand your research. You also do not want them to stop reading because the text is too technical.

Keep in mind that your published research will be available in academic journals all over the world. This means that people of different languages will read it. Moreover, even with scientists, this could present a language barrier. According to a recent article , always remember the following points as you write:

  • Clarity : Cleary define terms; avoid nonrelevant information.
  • Simplicity : Keep sentence structure simple and direct.
  • Accuracy : Represent all data and illustrations accurately.

For example, consider the following sentence:

“Chemical x had an effect on metabolism.”

This is an ambiguous statement. It does not tell the reader much. State the results instead:

“Chemical x increased fat metabolism by 20 percent.”

All scientific research also provide significance of findings, usually presented as defined “P” values. Be sure to explain these findings using descriptive terms. For example, rather than using the words “ significant effect ,” use a more descriptive term, such as “ significant increase .”

For more tips, please also see “Tips and Techniques for Scientific Writing”. In addition, it is very important to have your paper edited by a native English speaking professional editor. There are many editing services available for academic manuscripts and publication support services.

Research Paper Structure

With the above in mind, you can now focus on structure. Scientific papers are organized into specific sections and each has a goal. We have listed them here.

  • Your title is the most important part of your paper. It draws the reader in and tells them what you are presenting. Moreover, if you think about the titles of papers that you might browse in a day and which papers you actually read, you’ll agree.
  • The title should be clear and interesting otherwise the reader will not continue reading.
  • Authors’ names and affiliations are on the title page.
  • The abstract is a summary of your research. It is nearly as important as the title because the reader will be able to quickly read through it.
  • Most journals, the abstract can become divided into very short sections to guide the reader through the summaries.
  • Keep the sentences short and focused.
  • Avoid acronyms and citations.
  • Include background information on the subject and your objectives here.
  • Describe the materials used and include the names and locations of the manufacturers.
  • For any animal studies, include where you obtained the animals and a statement of humane treatment.
  • Clearly and succinctly explain your methods so that it can be duplicated.
  • Criteria for inclusion and exclusion in the study and statistical analyses should be included.
  • Discuss your findings here.
  • Be careful to not make definitive statements .
  • Your results suggest that something is or is not true.
  • This is true even when your results prove your hypothesis.
  • Discuss what your results mean in this section.
  • Discuss any study limitations. Suggest additional studies.
  • Acknowledge all contributors.
  • All citations in the text must have a corresponding reference.
  • Check your author guidelines for format protocols.
  • In most cases, your tables and figures appear at the end of your paper or in a separate file.
  • The titles (legends) usually become listed after the reference section.
  • Be sure that you define each acronym and abbreviation in each table and figure.

Manuscript

Helpful Rules

In their article entitled, “Ten simple rules for structuring papers,” in PLOS Computational Biology , authors Mensh and Kording provided 10 helpful tips as follows:

  • Focus on a central contribution.
  • Write for those who do not know your work.
  • Use the “context-content-conclusion” approach.
  • Avoid superfluous information and use parallel structures.
  • Summarize your research in the abstract.
  • Explain the importance of your research in the introduction.
  • Explain your results in a logical sequence and support them with figures and tables.
  • Discuss any data gaps and limitations.
  • Allocate your time for the most important sections.
  • Get feedback from colleagues.

Some of these rules have been briefly discussed above; however, the study done by the authors does provide detailed explanations on all of them.

Helpful Sites

Visit the following links for more helpful information:

  • “ Some writing tips for scientific papers ”
  • “ How to Structure Your Dissertation ”
  • “ Conciseness in Academic Writing: How to Prune Sentences ”
  • “ How to Optimize Sentence Length in Academic Writing ”

So, do you follow any additional tips when structuring your research paper ? Share them with us in the comments below!

' src=

Thanks for sharing this post. Great information provided. I really appreciate your writing. I like the way you put across your ideas.

Enago, is a good sources of academics presentation and interpretation tools in research writing

Rate this article Cancel Reply

Your email address will not be published.

scientific research structure

Enago Academy's Most Popular Articles

scientific research structure

  • Old Webinars
  • Webinar Mobile App

Improving Research Manuscripts Using AI-Powered Insights: Enago reports for effective research communication

Language Quality Importance in Academia AI in Evaluating Language Quality Enago Language Reports Live Demo…

Beyond spellcheck- How Copyediting guarantees an error-free submission

  • Reporting Research

Beyond Spellcheck: How copyediting guarantees error-free submission

Submitting a manuscript is a complex and often an emotional experience for researchers. Whether it’s…

How to Find the Right Journal and Fix Your Manuscript Before Submission

Selection of right journal Meets journal standards Plagiarism free manuscripts Rated from reviewer's POV

scientific research structure

  • Manuscripts & Grants

Research Aims and Objectives: The dynamic duo for successful research

Picture yourself on a road trip without a destination in mind — driving aimlessly, not…

scientific research structure

How Academic Editors Can Enhance the Quality of Your Manuscript

Avoiding desk rejection Detecting language errors Conveying your ideas clearly Following technical requirements

Top 4 Guidelines for Health and Clinical Research Report

Top 10 Questions for a Complete Literature Review

scientific research structure

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Industry News
  • Publishing Research
  • AI in Academia
  • Promoting Research
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

scientific research structure

In your opinion, what is the most effective way to improve integrity in the peer review process?

University Library

How to Read a Scientific Paper: Structure of an Article

  • Structure of an Article
  • Online Tutorials

STOP:  Reading a scientific article is not like reading a book, trying to plow right through is often overwhelming. Some of the research might be new to you or beyond your level of expertise. However, reading scientific articles is good practice to learn how to identify the important points and conclusions made by the authors and critically evaluate those ideas as well.

INSTEAD : Articles are meant to be skimmed and perused first. For example: look at the abstract, see if it interests you, jump to the discussion and conclusions, what did the authors learn? Do you want to know more then pop back to the methods and see how they did it or look at the results and see if the discussion accurately captures the findings. 

The Abstract of an article is a short summary of the article's contents. Often it includes the focus, results, and conclusions of the study. Since the abstract does not contain all the information found in the article, it's best to view it as a tool for deciding if you should investigate the article further. An article's abstract will always be freely available to view. 

Questions to ask while reading the abstract :

  • Does this interest me?
  • Is this related to my area of research?

Introduction and Literature Review

The Introduction of an article explains the idea being investigated, and gives background information if necessary. The introduction should also indicate why the study done in this particular article is unique, or how it adds to the overall discussion. The latter part of the introduction will also contain a literature review, this is a brief summary of related research that occurred before this article was written and that this article seeks to expand on.

Questions to ask while reading the introduction :

  • What is the author's goal in writing this article?
  • What area is the article building on?
  • How is this research unique?
  • Will this article tell me anything new?

Materials and Methods

The Materials and Methods of an article tells you how the study was performed. It should include the specific steps of the experiment or study, so as to be repeatable. 

Questions to ask while reading materials and methods : 

  • Is all the information present in order to repeat the experiment or study carried out?
  • Are the steps the authors took clearly explained?

The Results of an article should give an unbiased account of what the study's findings were, with data included. 

Sometimes the Results and Discussion section (described next) are combined.

Questions to ask while reading the results:

  • Are the results presented in a factual and unbiased way?
  • Is data provided to complement the findings?
  • Is the data clear and understandable?

The Discussion of an article tells you what the researchers felt was significant about the results. This section contains an analysis of the data, and may point to facts and figures.

Questions to ask while reading the discussion:  

  • Is the argument made by the authors supported by the data present in the results?
  • After reading the discussion do you find that more data should have been provided in the results?
  • Are there weaknesses in their argument?

The Conclusion of an article gives you the final thoughts of the researchers. It may reiterate what they noted in the discussion, or may be combined with the discussion. It may provide limitations present in the study or give recommendations for further research. This is the chance for the authors to clearly and succinctly state the ultimate finding or purpose of the article.

Questions to ask while reading the conclusion:

  • Is the conclusion valid?
  • Based on what you have read, what other research should be explored next?

The References of an article lists the works used in the research and writing of the article. Any articles mentioned in the introduction should be present here, as should any studies that were modeled in the materials and methods.

Question to ask while reviewing the references:

  • What other articles should I read?
  • What other authors are respected in this field?
  • What journals are frequently cited in this area?

Suggested Further Reading

Dean, R. (2013). How to read a paper and appraise the evidence . In Practice , 35(5) , 282-285.

Pain, Elisabeth. “ How to (Seriously) Read a Scientific Paper .” Science , 21 Mar. 2016.

Ruben, Adam. “ How to Read a Scientific Paper .” Science , 20 Jan. 2016.

  • << Previous: Home
  • Next: Online Tutorials >>
  • Last Updated: Sep 20, 2023 1:36 PM
  • URL: https://guides.library.illinois.edu/HowToReadAScientificPaper

Research-Methodology

Research Structure

Research structure is basically an outline of your paper. In your dissertation you are expected to provide the research structure towards the end of introduction chapter. The components of research structure are illustrated in table below:

 

 

Introduction

Introduction of research problem
Discussion of research background
Research aims and objectives
Rationale for the study
Research structure
 

Literature review

Definitions of main terms
Explanation of secondary data search strategy
Critical analysis of major models, theoretical frameworks and thoughts
 

 

Methodology

Research process
Research philosophy
Research design
Data collection methods and their application
Sampling
Findings Primary data presentation
Brief discussions
Discussions and analysis In-depth discussions and analysis of primary data
Comparisons of primary data to secondary data findings
 

Conclusions

Discussion of achievement of research aim and objectives
Limitations of research
Scope for future studies

Components of each chapter in research structure

The following is a sample of a research structure:

Chapter One communicates the purpose and focus of the study and explains the outline of the research. This chapter includes a brief explanation of the research background , and provides rationale for the selection of the research area . Moreover, the first chapter contains explanation of the research aim and objectives , and explains research structure.

Chapter Two constitutes a literature review, and accordingly, contains analysis of models and theoretical frameworks that have been previously introduced to the research area. This chapter contains definitions of main terms and explains search strategy for the secondary data . Viewpoints of other authors regarding the research area in general and research problem in particular have been presented in a logical manner in this chapter.

Chapter Three addresses methodology. The chapter explains the research process and addresses the issues of research philosophy . Moreover, methodology chapter contains explanation of research design , and the choice and implementation of data collection methods . Sampling aspect of the study and discussions of ethical considerations are also included in this chapter.

Chapter Four contains presentation of the primary data collected through questionnaires/interviews/focus groups/observation/etc. Presentation of primary data findings have been facilitated through bar charts/pie charts. Brief discussions have been included to explain each chart.

Chapter Five constitutes discussions and analyses. This chapter plays a critical role in the achievement of research aim and objectives. Findings of the literature review have been compared to primary data findings in this chapter. Also, in-depth discussions have been provided in relation to each individual research objective.

Chapter Six concludes the work and summarises the level of achievement of research aim and objectives. The chapter comprises acknowledgement of limitations of the study and highlights scope for future studies in the same research area.

Your dissertation has also to contain title page, acknowledgements, abstract, table of contents at the beginning. Furthermore, you need to add references, bibliography and appendices sections at the end of your dissertation.

Research Structure

John Dudovskiy

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of zeb

A Guide to Writing a Scientific Paper: A Focus on High School Through Graduate Level Student Research

Renee a. hesselbach.

1 NIEHS Children's Environmental Health Sciences Core Center, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin.

David H. Petering

2 Department of Chemistry and Biochemistry, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin.

Craig A. Berg

3 Curriculum and Instruction, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin.

Henry Tomasiewicz

Daniel weber.

This article presents a detailed guide for high school through graduate level instructors that leads students to write effective and well-organized scientific papers. Interesting research emerges from the ability to ask questions, define problems, design experiments, analyze and interpret data, and make critical connections. This process is incomplete, unless new results are communicated to others because science fundamentally requires peer review and criticism to validate or discard proposed new knowledge. Thus, a concise and clearly written research paper is a critical step in the scientific process and is important for young researchers as they are mastering how to express scientific concepts and understanding. Moreover, learning to write a research paper provides a tool to improve science literacy as indicated in the National Research Council's National Science Education Standards (1996), and A Framework for K–12 Science Education (2011), the underlying foundation for the Next Generation Science Standards currently being developed. Background information explains the importance of peer review and communicating results, along with details of each critical component, the Abstract, Introduction, Methods, Results , and Discussion . Specific steps essential to helping students write clear and coherent research papers that follow a logical format, use effective communication, and develop scientific inquiry are described.

Introduction

A key part of the scientific process is communication of original results to others so that one's discoveries are passed along to the scientific community and the public for awareness and scrutiny. 1 – 3 Communication to other scientists ensures that new findings become part of a growing body of publicly available knowledge that informs how we understand the world around us. 2 It is also what fuels further research as other scientists incorporate novel findings into their thinking and experiments.

Depending upon the researcher's position, intent, and needs, communication can take different forms. The gold standard is writing scientific papers that describe original research in such a way that other scientists will be able to repeat it or to use it as a basis for their studies. 1 For some, it is expected that such articles will be published in scientific journals after they have been peer reviewed and accepted for publication. Scientists must submit their articles for examination by other scientists familiar with the area of research, who decide whether the work was conducted properly and whether the results add to the knowledge base and are conveyed well enough to merit publication. 2 If a manuscript passes the scrutiny of peer-review, it has the potential to be published. 1 For others, such as for high school or undergraduate students, publishing a research paper may not be the ultimate goal. However, regardless of whether an article is to be submitted for publication, peer review is an important step in this process. For student researchers, writing a well-organized research paper is a key step in learning how to express understanding, make critical connections, summarize data, and effectively communicate results, which are important goals for improving science literacy of the National Research Council's National Science Education Standards, 4 and A Framework for K–12 Science Education, 5 and the Next Generation Science Standards 6 currently being developed and described in The NSTA Reader's Guide to A Framework for K–12 Science Education. 7 Table 1 depicts the key skills students should develop as part of the Science as Inquiry Content Standard. Table 2 illustrates the central goals of A Framework for K–12 Science Education Scientific and Engineering Practices Dimension.

Key Skills of the Science as Inquiry National Science Education Content Standard

Identify questions and concepts that guide scientific investigation
Design and conduct scientific investigations
Use technology and mathematics to improve investigations and communications
Formulate and revise scientific explanations and models using logic and evidence
Recognize and analyze alternative explanations and models
Communicate and defend a scientific argument

National Research Council (1996).

Important Practices of A Framework for K–12 Science Education Scientific and Engineering Practices Dimension

Asking questions and defining problems
Developing and using models
Planning and carrying out investigations
Analyzing and interpreting data
Using mathematics and computational thinking
Constructing explanations and designing solutions
Engaging in argument from evidence
Obtaining, evaluating, and communicating information

National Research Council (2011).

Scientific papers based on experimentation typically include five predominant sections: Abstract, Introduction, Methods, Results, and Discussion . This structure is a widely accepted approach to writing a research paper, and has specific sections that parallel the scientific method. Following this structure allows the scientist to tell a clear, coherent story in a logical format, essential to effective communication. 1 , 2 In addition, using a standardized format allows the reader to find specific information quickly and easily. While readers may not have time to read the entire research paper, the predictable format allows them to focus on specific sections such as the Abstract , Introduction , and Discussion sections. Therefore, it is critical that information be placed in the appropriate and logical section of the report. 3

Guidelines for Writing a Primary Research Article

The Title sends an important message to the reader about the purpose of the paper. For example, Ethanol Effects on the Developing Zebrafish: Neurobehavior and Skeletal Morphogenesis 8 tells the reader key information about the content of the research paper. Also, an appropriate and descriptive title captures the attention of the reader. When composing the Title , students should include either the aim or conclusion of the research, the subject, and possibly the independent or dependent variables. Often, the title is created after the body of the article has been written, so that it accurately reflects the purpose and content of the article. 1 , 3

The Abstract provides a short, concise summary of the research described in the body of the article and should be able to stand alone. It provides readers with a quick overview that helps them decide whether the article may be interesting to read. Included in the Abstract are the purpose or primary objectives of the experiment and why they are important, a brief description of the methods and approach used, key findings and the significance of the results, and how this work is different from the work of others. It is important to note that the Abstract briefly explains the implications of the findings, but does not evaluate the conclusions. 1 , 3 Just as with the Title , this section needs to be written carefully and succinctly. Often this section is written last to ensure it accurately reflects the content of the paper. Generally, the optimal length of the Abstract is one paragraph between 200 and 300 words, and does not contain references or abbreviations.

All new research can be categorized by field (e.g., biology, chemistry, physics, geology) and by area within the field (e.g., biology: evolution, ecology, cell biology, anatomy, environmental health). Many areas already contain a large volume of published research. The role of the Introduction is to place the new research within the context of previous studies in the particular field and area, thereby introducing the audience to the research and motivating the audience to continue reading. 1

Usually, the writer begins by describing what is known in the area that directly relates to the subject of the article's research. Clearly, this must be done judiciously; usually there is not room to describe every bit of information that is known. Each statement needs one or more references from the scientific literature that supports its validity. Students must be reminded to cite all references to eliminate the risk of plagiarism. 2 Out of this context, the author then explains what is not known and, therefore, what the article's research seeks to find out. In doing so, the scientist provides the rationale for the research and further develops why this research is important. The final statement in the Introduction should be a clearly worded hypothesis or thesis statement, as well as a brief summary of the findings as they relate to the stated hypothesis. Keep in mind that the details of the experimental findings are presented in the Results section and are aimed at filling the void in our knowledge base that has been pointed out in the Introduction .

Materials and Methods

Research utilizes various accepted methods to obtain the results that are to be shared with others in the scientific community. The quality of the results, therefore, depends completely upon the quality of the methods that are employed and the care with which they are applied. The reader will refer to the Methods section: (a) to become confident that the experiments have been properly done, (b) as the guide for repeating the experiments, and (c) to learn how to do new methods.

It is particularly important to keep in mind item (b). Since science deals with the objective properties of the physical and biological world, it is a basic axiom that these properties are independent of the scientist who reported them. Everyone should be able to measure or observe the same properties within error, if they do the same experiment using the same materials and procedures. In science, one does the same experiment by exactly repeating the experiment that has been described in the Methods section. Therefore, someone can only repeat an experiment accurately if all the relevant details of the experimental methods are clearly described. 1 , 3

The following information is important to include under illustrative headings, and is generally presented in narrative form. A detailed list of all the materials used in the experiments and, if important, their source should be described. These include biological agents (e.g., zebrafish, brine shrimp), chemicals and their concentrations (e.g., 0.20 mg/mL nicotine), and physical equipment (e.g., four 10-gallon aquariums, one light timer, one 10-well falcon dish). The reader needs to know as much as necessary about each of the materials; however, it is important not to include extraneous information. For example, consider an experiment involving zebrafish. The type and characteristics of the zebrafish used must be clearly described so another scientist could accurately replicate the experiment, such as 4–6-month-old male and female zebrafish, the type of zebrafish used (e.g., Golden), and where they were obtained (e.g., the NIEHS Children's Environmental Health Sciences Core Center in the WATER Institute of the University of Wisconsin—Milwaukee). In addition to describing the physical set-up of the experiment, it may be helpful to include photographs or diagrams in the report to further illustrate the experimental design.

A thorough description of each procedure done in the reported experiment, and justification as to why a particular method was chosen to most effectively answer the research question should also be included. For example, if the scientist was using zebrafish to study developmental effects of nicotine, the reader needs to know details about how and when the zebrafish were exposed to the nicotine (e.g., maternal exposure, embryo injection of nicotine, exposure of developing embryo to nicotine in the water for a particular length of time during development), duration of the exposure (e.g., a certain concentration for 10 minutes at the two-cell stage, then the embryos were washed), how many were exposed, and why that method was chosen. The reader would also need to know the concentrations to which the zebrafish were exposed, how the scientist observed the effects of the chemical exposure (e.g., microscopic changes in structure, changes in swimming behavior), relevant safety and toxicity concerns, how outcomes were measured, and how the scientist determined whether the data/results were significantly different in experimental and unexposed control animals (statistical methods).

Students must take great care and effort to write a good Methods section because it is an essential component of the effective communication of scientific findings.

The Results section describes in detail the actual experiments that were undertaken in a clear and well-organized narrative. The information found in the Methods section serves as background for understanding these descriptions and does not need to be repeated. For each different experiment, the author may wish to provide a subtitle and, in addition, one or more introductory sentences that explains the reason for doing the experiment. In a sense, this information is an extension of the Introduction in that it makes the argument to the reader why it is important to do the experiment. The Introduction is more general; this text is more specific.

Once the reader understands the focus of the experiment, the writer should restate the hypothesis to be tested or the information sought in the experiment. For example, “Atrazine is routinely used as a crop pesticide. It is important to understand whether it affects organisms that are normally found in soil. We decided to use worms as a test organism because they are important members of the soil community. Because atrazine damages nerve cells, we hypothesized that exposure to atrazine will inhibit the ability of worms to do locomotor activities. In the first experiment, we tested the effect of the chemical on burrowing action.”

Then, the experiments to be done are described and the results entered. In reporting on experimental design, it is important to identify the dependent and independent variables clearly, as well as the controls. The results must be shown in a way that can be reproduced by the reader, but do not include more details than needed for an effective analysis. Generally, meaningful and significant data are gathered together into tables and figures that summarize relevant information, and appropriate statistical analyses are completed based on the data gathered. Besides presenting each of these data sources, the author also provides a written narrative of the contents of the figures and tables, as well as an analysis of the statistical significance. In the narrative, the writer also connects the results to the aims of the experiment as described above. Did the results support the initial hypothesis? Do they provide the information that was sought? Were there problems in the experiment that compromised the results? Be careful not to include an interpretation of the results; that is reserved for the Discussion section.

The writer then moves on to the next experiment. Again, the first paragraph is developed as above, except this experiment is seen in the context of the first experiment. In other words, a story is being developed. So, one commonly refers to the results of the first experiment as part of the basis for undertaking the second experiment. “In the first experiment we observed that atrazine altered burrowing activity. In order to understand how that might occur, we decided to study its impact on the basic biology of locomotion. Our hypothesis was that atrazine affected neuromuscular junctions. So, we did the following experiment..”

The Results section includes a focused critical analysis of each experiment undertaken. A hallmark of the scientist is a deep skepticism about results and conclusions. “Convince me! And then convince me again with even better experiments.” That is the constant challenge. Without this basic attitude of doubt and willingness to criticize one's own work, scientists do not get to the level of concern about experimental methods and results that is needed to ensure that the best experiments are being done and the most reproducible results are being acquired. Thus, it is important for students to state any limitations or weaknesses in their research approach and explain assumptions made upfront in this section so the validity of the research can be assessed.

The Discussion section is the where the author takes an overall view of the work presented in the article. First, the main results from the various experiments are gathered in one place to highlight the significant results so the reader can see how they fit together and successfully test the original hypotheses of the experiment. Logical connections and trends in the data are presented, as are discussions of error and other possible explanations for the findings, including an analysis of whether the experimental design was adequate. Remember, results should not be restated in the Discussion section, except insofar as it is absolutely necessary to make a point.

Second, the task is to help the reader link the present work with the larger body of knowledge that was portrayed in the Introduction . How do the results advance the field, and what are the implications? What does the research results mean? What is the relevance? 1 , 3

Lastly, the author may suggest further work that needs to be done based on the new knowledge gained from the research.

Supporting Documentation and Writing Skills

Tables and figures are included to support the content of the research paper. These provide the reader with a graphic display of information presented. Tables and figures must have illustrative and descriptive titles, legends, interval markers, and axis labels, as appropriate; should be numbered in the order that they appear in the report; and include explanations of any unusual abbreviations.

The final section of the scientific article is the Reference section. When citing sources, it is important to follow an accepted standardized format, such as CSE (Council of Science Editors), APA (American Psychological Association), MLA (Modern Language Association), or CMS (Chicago Manual of Style). References should be listed in alphabetical order and original authors cited. All sources cited in the text must be included in the Reference section. 1

When writing a scientific paper, the importance of writing concisely and accurately to clearly communicate the message should be emphasized to students. 1 – 3 Students should avoid slang and repetition, as well as abbreviations that may not be well known. 1 If an abbreviation must be used, identify the word with the abbreviation in parentheses the first time the term is used. Using appropriate and correct grammar and spelling throughout are essential elements of a well-written report. 1 , 3 Finally, when the article has been organized and formatted properly, students are encouraged to peer review to obtain constructive criticism and then to revise the manuscript appropriately. Good scientific writing, like any kind of writing, is a process that requires careful editing and revision. 1

A key dimension of NRC's A Framework for K–12 Science Education , Scientific and Engineering Practices, and the developing Next Generation Science Standards emphasizes the importance of students being able to ask questions, define problems, design experiments, analyze and interpret data, draw conclusions, and communicate results. 5 , 6 In the Science Education Partnership Award (SEPA) program at the University of Wisconsin—Milwaukee, we found the guidelines presented in this article useful for high school science students because this group of students (and probably most undergraduates) often lack in understanding of, and skills to develop and write, the various components of an effective scientific paper. Students routinely need to focus more on the data collected and analyze what the results indicated in relation to the research question/hypothesis, as well as develop a detailed discussion of what they learned. Consequently, teaching students how to effectively organize and write a research report is a critical component when engaging students in scientific inquiry.

Acknowledgments

This article was supported by a Science Education Partnership Award (SEPA) grant (Award Number R25RR026299) from the National Institute of Environmental Health Sciences of the National Institutes of Health. The SEPA program at the University of Wisconsin—Milwaukee is part of the Children's Environmental Health Sciences Core Center, Community Outreach and Education Core, funded by the National Institute of Environmental Health Sciences (Award Number P30ES004184). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Institute of Environmental Health Sciences.

Disclosure Statement

No competing financial interests exist.

Facility for Rare Isotope Beams

At michigan state university, user community focuses on the future of the field and fostering a diverse and equitable workforce.

The 2024 Low Energy Community Meeting (LECM) took place 7-9 August on the campus of the University of Tennessee Knoxville. LECM brings together members of the worldwide low-energy nuclear physics community to interact and discuss future plans, initiatives, and instruments. Over the course of the three days, 250 participants attended the meeting from 65 institutions and eight countries.

The LECM organizing committee includes representatives from FRIB, Argonne National Laboratory (ANL), the Association for Research at University Nuclear Accelerators (ARUNA), the Argonne Tandem Linac Accelerator System (ATLAS), the Center for Nuclear Astrophysics across Messengers (CeNAM), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), the FRIB Theory Alliance (FRIB-TA), and the FRIB Users Organization Executive Committee. FRIB hosted the meeting last year, and ORNL hosted this year. Texas A&M University will host next year.

LECM included plenary sessions, four working group sessions, and four workshops: Modular Neutron Array (MoNA) collaboration, Fission studies with rare isotope beams, early careers, and public engagement. 

The LECM plenary sessions featured presentations from the FRIB Achievement Awards for Early Career Researchers; a presentation on diversity and inclusion; Kairos Power’s Hermes demonstration reactor; and comments from representatives from the Department of Energy and the National Science Foundation. The meeting highlighted the status at major user facilities—FRIB, ATLAS, and ARUNA.

The 2024 LECM affirmation and resolutions stated:

Affirmation: Our community affirms in the strongest possible terms its commitment to foster a diverse and equitable workforce and to support and respect diversity in all its forms. Individually and collectively we commit to ensuring an inclusive and accessible environment for all and taking action if these values are not being upheld.

Resolution 1: The highest priority for low-energy nuclear physics and nuclear astrophysics research is to maintain U.S. world leadership in nuclear science by capitalizing on recent investments. To this end, we strongly support: 

  • Robust theoretical and experimental research programs and the development and retention of a diverse and equitable workforce; 
  • The optimal operation of the FRIB and ATLAS national user facilities;
  • Investments in the ARUNA facilities, and key national laboratory facilities; 
  • The FRIB Theory Alliance and all its initiatives.

All are critical to fully realize the scientific potential of the field and foster future breakthroughs.

Resolution 2: The science case for an energy upgrade of FRIB to 400 MeV/u is compelling. FRIB400 greatly expands the opportunities in the field. We strongly endorse starting the upgrade during the upcoming Long Range Plan period to harness its significant discovery potential. We support instrument developments, including the FDS and ISLA, now that GRETA and HRS are underway. These community devices are important to realize the full scope of scientific opportunities

Resolution 3: Computing is essential to advance all fields of nuclear science. We strongly support enhancing opportunities in computational nuclear science to accelerate discoveries and maintain U.S. leadership by: 

  • Strengthening programs and partnerships to ensure the efficient utilization of new high-performance computing (HPC) hardware and new capabilities and approaches offered by artificial intelligence/machine learning (AI/ML) and quantum computing (QC); 
  • Establishing programs that support the education, training of, and professional pathways for a diverse and multidisciplinary workforce with cross-disciplinary collaborations in HPC, AI/ML, and QC; 
  • Expanding access to dedicated hardware and resources for HPC and new emerging computational technologies, as well as capacity computing essential for many research efforts.

Resolution 4: Research centers are important for low-energy nuclear science. They facilitate strong national and international communications and collaborations across disciplines and across theory and experiment. Interdisciplinary centers are particularly essential for nuclear astrophysics to seize new scientific opportunities in this area. We strongly endorse a nuclear astrophysics center that builds on the success of JINA, fulfills this vital role, and propels innovation in the multi-messenger era.

Resolution 5: Nuclear data play an essential role in all facets of nuclear science. Access to reliable, complete and up-to-date nuclear structure and reaction data is crucial for the fundamental nuclear physics research enterprise, as well as for the successes of applied missions in the areas of defense and security, nuclear energy, space exploration, isotope production, and medical applications. It is thus imperative to maintain an effective US role in the stewardship of nuclear data. 

  • We endorse support for the compilation, evaluation, dissemination and preservation of nuclear data and efforts to build a diverse, equitable and inclusive workforce that maintains reliable and up-to-date nuclear databases through national and international partnerships. 
  • We recommend prioritizing opportunities that enhance the prompt availability and quality of nuclear data and its utility for propelling scientific progress in nuclear structure, reactions and astrophysics and other fundamental physics research programs.
  • We endorse identifying interagency-supported crosscutting opportunities for nuclear data with other programs, that enrich the utility of nuclear data in both science and society.

The community also presented a statement on isotopes and applications:

Applied Nuclear Science offers many tangible benefits to the United States and to the world. The Low Energy Nuclear Physics Community recognizes the societal importance of applied research, and strongly encourages support for this exciting and growing field with funding and beam time allocations that enable critical discovery science that will improve our lives and make us all safer.

Rare isotopes are necessary for research and innovation and must be available.  

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Publication Library
  • EMOTR EOC of the Future Recommendations

Emergency Management of Tomorrow Research: Emergency Operations Center of the Future Recommendations

The Department of Homeland Security (DHS) Science and Technology Directorate (S&T) partnered with Pacific Northwest National Laboratory (PNNL) to  conduct research on strengthening and reimagining the future emergency response structure.

PNNL conducted a landscape assessment of the current state of emergency operations centers (EOCs) and identified core EOC of the Future concepts. The team explored these EOC of the Future concepts through use cases and tabletop exercises, utilizing operational stakeholders to evaluate the potential impacts of emerging technologies on emergency management operations. This report summarizes all of these inputs, outputs, and exercises into a series of recommendations for a next-generation EOC to inform future research, development, and investment.

Attachment Ext. Size Date
PDF 1.72 MB 08/29/2024
  • Artificial Intelligence (AI)
  • Emergency Management
  • Emergency Planning
  • Science and Technology

Here’s how you know

  • U.S. Department of Health and Human Services
  • National Institutes of Health

Meditation and Mindfulness: Effectiveness and Safety

meditation_thinkstockphotos-505023182_square.jpg

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} What are meditation and mindfulness?

Meditation has a history that goes back thousands of years, and many meditative techniques began in Eastern traditions. The term “meditation” refers to a variety of practices that focus on mind and body integration and are used to calm the mind and enhance overall well-being. Some types of meditation involve maintaining mental focus on a particular sensation, such as breathing, a sound, a visual image, or a mantra, which is a repeated word or phrase. Other forms of meditation include the practice of mindfulness, which involves maintaining attention or awareness on the present moment without making judgments.

Programs that teach meditation or mindfulness may combine the practices with other activities. For example, mindfulness-based stress reduction is a program that teaches mindful meditation, but it also includes discussion sessions and other strategies to help people apply what they have learned to stressful experiences. Mindfulness-based cognitive therapy integrates mindfulness practices with aspects of cognitive behavioral therapy.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Are meditation and mindfulness practices safe?

Meditation and mindfulness practices usually are considered to have few risks. However, few studies have examined these practices for potentially harmful effects, so it isn’t possible to make definite statements about safety. 

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} More

A 2020 review examined 83 studies (a total of 6,703 participants) and found that 55 of those studies reported negative experiences related to meditation practices. The researchers concluded that about 8 percent of participants had a negative effect from practicing meditation, which is similar to the percentage reported for psychological therapies. The most commonly reported negative effects were anxiety and depression. In an analysis limited to 3 studies (521 participants) of mindfulness-based stress reduction programs, investigators found that the mindfulness practices were not more harmful than receiving no treatment.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} How popular are meditation and mindfulness?

According to the National Health Interview Survey, an annual nationally representative survey, the percentage of U.S. adults who practiced meditation more than doubled between 2002 and 2022, from 7.5 to 17.3 percent. Of seven complementary health approaches for which data were collected in the 2022 survey, meditation was the most popular, beating out yoga (used by 15.8 percent of adults), chiropractic care (11.0 percent), massage therapy (10.9 percent), guided imagery/progressive muscle relaxation (6.4 percent), acupuncture (2.2 percent), and naturopathy (1.3 percent).

For children aged 4 to 17 years, data are available for 2017; in that year, 5.4 percent of U.S. children used meditation. 

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Why do people practice mindfulness meditation?

In a 2012 U.S. survey, 1.9 percent of 34,525 adults reported that they had practiced mindfulness meditation in the past 12 months. Among those responders who practiced mindfulness meditation exclusively, 73 percent reported that they meditated for their general wellness and to prevent diseases, and most of them (approximately 92 percent) reported that they meditated to relax or reduce stress. In more than half of the responses, a desire for better sleep was a reason for practicing mindfulness meditation.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} What are the health benefits of meditation and mindfulness?

Meditation and mindfulness practices may have a variety of health benefits and may help people improve the quality of their lives. Recent studies have investigated if meditation or mindfulness helps people manage anxiety, stress, depression, pain, or symptoms related to withdrawal from nicotine, alcohol, or opioids. 

Other studies have looked at the effects of meditation or mindfulness on weight control or sleep quality. 

However, much of the research on these topics has been preliminary or not scientifically rigorous. Because the studies examined many different types of meditation and mindfulness practices, and the effects of those practices are hard to measure, results from the studies have been difficult to analyze and may have been interpreted too optimistically.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Stress, Anxiety, and Depression

  • A 2018 NCCIH-supported analysis of 142 groups of participants with diagnosed psychiatric disorders such as anxiety or depression examined mindfulness meditation approaches compared with no treatment and with established evidence-based treatments such as cognitive behavioral therapy and antidepressant medications. The analysis included more than 12,000 participants, and the researchers found that for treating anxiety and depression, mindfulness-based approaches were better than no treatment at all, and they worked as well as the evidence-based therapies.
  • A 2021 analysis of 23 studies (1,815 participants) examined mindfulness-based practices used as treatment for adults with diagnosed anxiety disorders. The studies included in the analysis compared the mindfulness-based interventions (alone or in combination with usual treatments) with other treatments such cognitive behavioral therapy, psychoeducation, and relaxation. The analysis showed mixed results for the short-term effectiveness of the different mindfulness-based approaches. Overall, they were more effective than the usual treatments at reducing the severity of anxiety and depression symptoms, but only some types of mindfulness approaches were as effective as cognitive behavioral therapy. However, these results should be interpreted with caution because the risk of bias for all of the studies was unclear. Also, the few studies that followed up with participants for periods longer than 2 months found no long-term effects of the mindfulness-based practices.
  • A 2019 analysis of 23 studies that included a total of 1,373 college and university students looked at the effects of yoga, mindfulness, and meditation practices on symptoms of stress, anxiety, and depression. Although the results showed that all the practices had some effect, most of the studies included in the review were of poor quality and had a high risk of bias.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} High Blood Pressure

Few high-quality studies have examined the effects of meditation and mindfulness on blood pressure. According to a 2017 statement from the American Heart Association, the practice of meditation may have a possible benefit, but its specific effects on blood pressure have not been determined.

  • A 2020 review of 14 studies (including more than 1,100 participants) examined the effects of mindfulness practices on the blood pressure of people who had health conditions such as hypertension, diabetes, or cancer. The analysis showed that for people with these health conditions, practicing mindfulness-based stress reduction was associated with a significant reduction in blood pressure.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Pain

Studies examining the effects of mindfulness or meditation on acute and chronic pain have produced mixed results.

  • A 2020 report by the Agency for Healthcare Research and Quality concluded that mindfulness-based stress reduction was associated with short-term (less than 6 months) improvement in low-back pain but not fibromyalgia pain.
  • A 2020 NCCIH-supported analysis of five studies of adults using opioids for acute or chronic pain (with a total of 514 participants) found that meditation practices were strongly associated with pain reduction.
  • Acute pain, such as pain from surgery, traumatic injuries, or childbirth, occurs suddenly and lasts only a short time. A 2020 analysis of 19 studies examined the effects of mindfulness-based therapies for acute pain and found no evidence of reduced pain severity. However, the same analysis found some evidence that the therapies could improve a person’s tolerance for pain.
  • A 2017 analysis of 30 studies (2,561 participants) found that mindfulness meditation was more effective at decreasing chronic pain than several other forms of treatment. However, the studies examined were of low quality.
  • A 2019 comparison of treatments for chronic pain did an overall analysis of 11 studies (697 participants) that evaluated cognitive behavioral therapy, which is the usual psychological intervention for chronic pain; 4 studies (280 participants) that evaluated mindfulness-based stress reduction; and 1 study (341 participants) of both therapies. The comparison found that both approaches were more effective at reducing pain intensity than no treatment, but there was no evidence of any important difference between the two approaches.
  • A 2019 review found that mindfulness-based approaches did not reduce the frequency, length, or pain intensity of headaches. However, the authors of this review noted that their results are likely imprecise because only five studies (a total of 185 participants) were included in the analysis, and any conclusions made from the analysis should be considered preliminary.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Insomnia and Sleep Quality

Mindfulness meditation practices may help reduce insomnia and improve sleep quality.

  • A 2019 analysis of 18 studies (1,654 total participants) found that mindfulness meditation practices improved sleep quality more than education-based treatments. However, the effects of mindfulness meditation approaches on sleep quality were no different than those of evidence-based treatments such as cognitive behavioral therapy and exercise.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Substance Use Disorder

Several clinical trials have investigated if mindfulness-based approaches such as mindfulness-based relapse prevention (MBRP) might help people recover from substance use disorders. These approaches have been used to help people increase their awareness of the thoughts and feelings that trigger cravings and learn ways to reduce their automatic reactions to those cravings.

  • A 2018 review of 37 studies (3,531 total participants) evaluated the effectiveness of several mindfulness-based approaches to substance use disorder treatment and found that they significantly decreased participants’ craving levels. The mindfulness-based practices were slightly better than other therapies at promoting abstinence from substance use.
  • A 2017 analysis specifically focused on MBRP examined 9 studies (901 total participants) of this approach. The analysis concluded that MBRP was not more effective at preventing substance use relapses than other treatments such as health education and cognitive behavioral therapy. However, MBRP did slightly reduce cravings and symptoms of withdrawal associated with alcohol use disorders.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Post-Traumatic Stress Disorder

Studies have suggested that meditation and mindfulness may help reduce symptoms of post-traumatic stress disorder (PTSD).

  • A 2018 review supported by NCCIH examined the effects of meditation (in 2 studies, 179 total participants) and other mindfulness-based practices (in 6 studies, 332 total participants) on symptoms of PTSD. Study participants included veterans, nurses, and people who experienced interpersonal violence. Six of the eight studies reported that participants had a reduction of PTSD symptoms after receiving some form of mindfulness-based treatment.
  • A 2018 clinical trial funded by the U.S. Department of Defense compared the effectiveness of meditation, health education, and prolonged exposure therapy, a widely accepted treatment for PTSD recommended by the American Psychological Association. Prolonged exposure therapy helps people reduce their PTSD symptoms by teaching them to gradually remember traumatic memories, feelings, and situations. The study included 203 veterans with PTSD as a result of their active military service. The results of the study showed that meditation was as effective as prolonged exposure therapy at reducing PTSD symptoms and depression, and it was more effective than PTSD health education. The veterans who used meditation also showed improvement in mood and overall quality of life.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Cancer

Mindfulness-based approaches may improve the mental health of people with cancer.

  • A 2019 analysis of 29 studies (3,274 total participants) of mindfulness-based practices showed that use of mindfulness practices among people with cancer significantly reduced psychological distress, fatigue, sleep disturbance, pain, and symptoms of anxiety and depression. However, most of the participants were women with breast cancer, so the effects may not be similar for other populations or other types of cancer.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Weight Control and Eating Behavior

Studies have suggested possible benefits of meditation and mindfulness programs for losing weight and managing eating behaviors.

  • A 2017 review of 15 studies (560 total participants) looked at the effects of mindfulness-based practices on the mental and physical health of adults with obesity or who were overweight. The review found that these practices were very effective methods for managing eating behaviors but less effective at helping people lose weight. Mindfulness-based approaches also helped participants manage symptoms of anxiety and depression.
  • A 2018 analysis of 19 studies (1,160 total participants) found that mindfulness programs helped people lose weight and manage eating-related behaviors such as binge, emotional, and restrained eating. The results of the analysis showed that treatment programs, such as mindfulness-based stress reduction and mindfulness-based cognitive therapy, that combine formal meditation and mindfulness practices with informal mindfulness exercises were especially effective methods for losing weight and managing eating.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Attention-Deficit Hyperactivity Disorder

Several studies have been done on using meditation and mindfulness practices to improve symptoms of attention-deficit hyperactivity disorder (ADHD). However, the studies have not been of high quality and the results have been mixed, so evidence that meditation or mindfulness approaches will help people manage symptoms of ADHD is not conclusive.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} How do meditation and mindfulness work?

Some research suggests that meditation and mindfulness practices may affect the functioning or structure of the brain. Studies have used various methods of measuring brain activity to look for measurable differences in the brains of people engaged in mindfulness-based practices. Other studies have theorized that training in meditation and mindfulness practices can change brain activity. However, the results of these studies are difficult to interpret, and the practical implications are not clear.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} NCCIH-Funded Research

NCCIH supports a variety of meditation and mindfulness studies, including:

  • An evaluation of how the brain responds to the use of mindfulness meditation as part of a combined treatment for migraine pain.
  • A study of the effectiveness of mindfulness therapy and medication (buprenorphine) as a treatment for opioid use disorder.
  • A study of a mindfulness training program designed to help law enforcement officers improve their mental health by managing stress and increasing resilience.

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Tips To Consider

  • Don’t use meditation or mindfulness to replace conventional care or as a reason to postpone seeing a health care provider about a medical problem.
  • Ask about the training and experience of the instructor of the meditation or mindfulness practice you are considering.
  • Take charge of your health—talk with your health care providers about any complementary health approaches you use. Together, you can make shared, well-informed decisions

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} For More Information

Nccih clearinghouse.

The NCCIH Clearinghouse provides information on NCCIH and complementary and integrative health approaches, including publications and searches of Federal databases of scientific and medical literature. The Clearinghouse does not provide medical advice, treatment recommendations, or referrals to practitioners.

Toll-free in the U.S.: 1-888-644-6226

Telecommunications relay service (TRS): 7-1-1

Website: https://www.nccih.nih.gov

Email: [email protected] (link sends email)

Know the Science

NCCIH and the National Institutes of Health (NIH) provide tools to help you understand the basics and terminology of scientific research so you can make well-informed decisions about your health. Know the Science features a variety of materials, including interactive modules, quizzes, and videos, as well as links to informative content from Federal resources designed to help consumers make sense of health information.

Explaining How Research Works (NIH)

Know the Science: How To Make Sense of a Scientific Journal Article

Understanding Clinical Studies (NIH)

A service of the National Library of Medicine, PubMed® contains publication information and (in most cases) brief summaries of articles from scientific and medical journals. For guidance from NCCIH on using PubMed, see How To Find Information About Complementary Health Approaches on PubMed .

Website: https://pubmed.ncbi.nlm.nih.gov/

NIH Clinical Research Trials and You

The National Institutes of Health (NIH) has created a website, NIH Clinical Research Trials and You, to help people learn about clinical trials, why they matter, and how to participate. The site includes questions and answers about clinical trials, guidance on how to find clinical trials through ClinicalTrials.gov and other resources, and stories about the personal experiences of clinical trial participants. Clinical trials are necessary to find better ways to prevent, diagnose, and treat diseases.

Website: https://www.nih.gov/health-information/nih-clinical-research-trials-you

Research Portfolio Online Reporting Tools Expenditures & Results (RePORTER)

RePORTER is a database of information on federally funded scientific and medical research projects being conducted at research institutions.

Website: https://reporter.nih.gov

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Key References

  • Anheyer D, Leach MJ, Klose P, et al.  Mindfulness-based stress reduction for treating chronic headache: a systematic review and meta-analysis . Cephalalgia . 2019;39(4):544-555.
  • Black LI, Barnes PM, Clarke TC, Stussman BA, Nahin RL.  Use of yoga, meditation, and chiropractors among U.S. children aged 4–17 years . NCHS Data Brief, no 324. Hyattsville, MD: National Center for Health Statistics. 2018.
  • Breedvelt JJF, Amanvermez Y, Harrer M, et al.  The effects of meditation, yoga, and mindfulness on depression, anxiety, and stress in tertiary education students: a meta-analysis . Frontiers in Psychiatry . 2019;10:193. 
  • Burke A, Lam CN, Stussman B, et al.  Prevalence and patterns of use of mantra, mindfulness and spiritual meditation among adults in the United States . BMC Complementary and Alternative Medicine. 2017;17(1):316.
  • Carrière K, Khoury B, Günak MM, et al.  Mindfulness‐based interventions for weight loss: a systematic review and meta‐analysis . Obesity Reviews . 2018;19(2):164-177. 
  • Cavicchioli M, Movalli M, Maffei C.  The clinical efficacy of mindfulness-based treatments for alcohol and drugs use disorders: a meta-analytic review of randomized and nonrandomized controlled trials . European Addiction Research . 2018;24(3):137-162.
  • Cillessen L, Johannsen M, Speckens AEM, et al.  Mindfulness‐based interventions for psychological and physical health outcomes in cancer patients and survivors: a systematic review and meta‐analysis of randomized controlled trials . Psychooncology . 2019;28(12):2257-2269.
  • Creswell JD.  Mindfulness interventions . Annual Review of Psychology. 2017;68:491-516.
  • Davidson RJ, Kaszniak AW.  Conceptual and methodological issues in research on mindfulness and meditation . American Psychologist. 2015;70(7):581-592.
  • Farias M, Maraldi E, Wallenkampf KC, et al.  Adverse events in meditation practices and meditation-based therapies: a systematic review . Acta Psychiatrica Scandinavica. 2020;142(5):374-393. 
  • Garland EL, Brintz CE, Hanley AW, et al.  Mind-body therapies for opioid-treated pain: a systematic review and meta-analysis . JAMA Internal Medicine . 2020;180(1):91-105.
  • Goldberg SB, Tucker RP, Greene PA, et al. Mindfulness-based interventions for psychiatric disorders: a systematic review and meta-analysis . Clinical Psychology Review . 2018;59:52-60.
  • Grant S, Colaiaco B, Motala A, et al.  Mindfulness-based relapse prevention for substance use disorders: a systematic review and meta-analysis . Journal of Addiction Medicine . 2017;11(5):386-396. 
  • Haller H, Breilmann P, Schröter M et al.  A systematic review and meta‑analysis of acceptance and mindfulness‑based interventions for DSM‑5 anxiety disorders . Scientific Reports . 2021;11(1):20385.
  • Hilton L, Hempel S, Ewing BA, et al.  Mindfulness meditation for chronic pain: systematic review and meta-analysis . Annals of Behavioral Medicine. 2017;51(2):199-213.
  • Hirshberg MJ, Goldberg SB, Rosenkranz M, et al.  Prevalence of harm in mindfulness-based stress reduction . Psychological Medicine. August 18, 2020. [Epub ahead of print]. 
  • Intarakamhang U, Macaskill A, Prasittichok P.  Mindfulness interventions reduce blood pressure in patients with non-communicable diseases: a systematic review and meta-analysis . Heliyon. 2020;6(4):e03834.
  • Khoo E-L, Small R, Cheng W, et al.  Comparative evaluation of group-based mindfulness-based stress reduction and cognitive behavioural therapy for the treatment and management of chronic pain: a systematic review and network meta-analysis . Evidence-Based Mental Health.  2019;22(1):26-35.
  • Levine GN, Lange RA, Bairey-Merz CN, et al.  Meditation and cardiovascular risk reduction: a scientific statement from the American Heart Association . Journal of the American Heart Association. 2017;6(10):e002218.
  • Nidich S, Mills PJ, Rainforth M, et al.  Non-trauma-focused meditation versus exposure therapy in veterans with post-traumatic stress disorder: a randomised controlled trial . Lancet Psychiatry . 2018;5(12):975-986.
  • Niles BL, Mori DL, Polizzi C, et al.  A systematic review of randomized trials of mind-body interventions for PTSD . Journal of Clinical Psychology . 2018;74(9):1485-1508.
  • Rogers JM, Ferrari M, Mosely K, et al.  Mindfulness-based interventions for adults who are overweight or obese: a meta-analysis of physical and psychological health outcomes . Obesity Reviews . 2017;18(1):51-67. 
  • Rosenkranz MA, Dunne JD, Davidson RJ.  The next generation of mindfulness-based intervention research: what have we learned and where are we headed? Current Opinion in Psychology. 2019;28:179-183.
  • Rusch HL, Rosario M, Levison LM, et al.  The effect of mindfulness meditation on sleep quality: a systematic review and meta-analysis of randomized controlled trials . Annals of the New York Academy of Sciences . 2019;1445(1):5-16. 
  • Schell LK, Monsef I, Wöckel A, et al. Mindfulness-based stress reduction for women diagnosed with breast cancer. Cochrane Database of Systematic Reviews. 2019;3(3):CD011518. Accessed at cochranelibrary.com on June 3, 2022.
  • Semple RJ, Droutman V, Reid BA.  Mindfulness goes to school: things learned (so far) from research and real-world experiences . Psychology in the Schools. 2017;54(1):29-52.
  • Shires A, Sharpe L, Davies JN, et al.  The efficacy of mindfulness-based interventions in acute pain: a systematic review and meta-analysis . Pain . 2020;161(8):1698-1707. 
  • Van Dam NT, van Vugt MK, Vago DR, et al.  Mind the hype: a critical evaluation and prescriptive agenda for research on mindfulness and meditation . Perspectives on Psychological Science. 2018;13(1):36-61. 

.header_greentext{color:green!important;font-size:24px!important;font-weight:500!important;}.header_bluetext{color:blue!important;font-size:18px!important;font-weight:500!important;}.header_redtext{color:red!important;font-size:28px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;font-size:28px!important;font-weight:500!important;}.header_purpletext{color:purple!important;font-size:31px!important;font-weight:500!important;}.header_yellowtext{color:yellow!important;font-size:20px!important;font-weight:500!important;}.header_blacktext{color:black!important;font-size:22px!important;font-weight:500!important;}.header_whitetext{color:white!important;font-size:22px!important;font-weight:500!important;}.header_darkred{color:#803d2f!important;}.Green_Header{color:green!important;font-size:24px!important;font-weight:500!important;}.Blue_Header{color:blue!important;font-size:18px!important;font-weight:500!important;}.Red_Header{color:red!important;font-size:28px!important;font-weight:500!important;}.Purple_Header{color:purple!important;font-size:31px!important;font-weight:500!important;}.Yellow_Header{color:yellow!important;font-size:20px!important;font-weight:500!important;}.Black_Header{color:black!important;font-size:22px!important;font-weight:500!important;}.White_Header{color:white!important;font-size:22px!important;font-weight:500!important;} Other References

  • American Academy of Pediatrics Section on Integrative Medicine. Mind-body therapies in children and youth. Pediatrics . 2016;138(3):e20161896.
  • Coronado-Montoya S, Levis AW, Kwakkenbos L, et al. Reporting of positive results in randomized controlled trials of mindfulness-based mental health interventions. PLoS One . 2016;11(4):e0153220.
  • Dakwar E, Levin FR. The emerging role of meditation in addressing psychiatric illness, with a focus on substance use disorders. Harvard Review of Psychiatry . 2009;17(4):254-267.
  • Goyal M, Singh S, Sibinga EMS, et al. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Internal Medicine. 2014;174(3):357-368.
  • Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research . Washington, DC: National Academies Press; 2011. 
  • Kabat-Zinn J, Massion AO, Kristeller J, et al. Effectiveness of a meditation-based stress reduction program in the treatment of anxiety disorders. American Journal of Psychiatry. 1992;149(7):936-943.
  • Ludwig DS, Kabat-Zinn J. Mindfulness in medicine. JAMA. 2008;300(11):1350-1352.
  • McKeering P, Hwang Y-S. A systematic review of mindfulness-based school interventions with early adolescents. Mindfulness . 2019;10:593-610.
  • Muratori P, Conversano C, Levantini V, et al. Exploring the efficacy of a mindfulness program for boys with attention-deficit hyperactivity disorder and oppositional defiant disorder. Journal of Attention Disorders . 2021;25(11):1544-1553.
  • Nahin RL, Rhee A, Stussman B. Use of complementary health approaches overall and for pain management by US adults. JAMA. 2024;331(7):613-615.
  • Poissant H, Mendrek A, Talbot N, et al. Behavioral and cognitive impacts of mindfulness-based interventions on adults with attention-deficit hyperactivity disorder: a systematic review. Behavioural Neurology . 2019;2019:5682050.
  • Skelly AC, Chou R, Dettori JR, et al. Noninvasive Nonpharmacological Treatment for Chronic Pain: A Systematic Review Update. Comparative Effectiveness Review no. 227. Rockville, MD: Agency for Healthcare Research and Quality; 2020. AHRQ publication no. 20-EHC009.
  • Stieger JR, Engel S, Jiang H, et al. Mindfulness improves brain–computer interface performance by increasing control over neural activity in the alpha band. Cerebral Cortex . 2021;31(1):426-438.
  • Teasdale JD, Segal ZV, Williams JMG, et al. Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. Journal of Consulting and Clinical Psychology . 2000;68(4):615-623.
  • Weng HY, Lewis-Peacock JA, Hecht FM, et al. Focus on the breath: brain decoding reveals internal states of attention during meditation. Frontiers in Human Neuroscience . 2020;14:336.
  • Yoshida K, Takeda K, Kasai T, et al. Focused attention meditation training modifies neural activity and attention: longitudinal EEG data in non-meditators. Social Cognitive and Affective Neuroscience . 2020;15(2):215-223.
  • Yuan JP, Connolly CG, Henje E, et al. Gray matter changes in adolescents participating in a meditation training. Frontiers in Human Neuroscience . 2020;14:319.
  • Zhang J, Díaz-Román A, Cortese S. Meditation-based therapies for attention-deficit/hyperactivity disorder in children, adolescents and adults: a systematic review and meta-analysis.  Evidence-Based Mental Health . 2018;21(3):87-94.

Acknowledgments

Thanks to Elizabeth Ginexi, Ph.D., Erin Burke Quinlan, Ph.D., and David Shurtleff, Ph.D., NCCIH, for their review of this 2022 publication.

This publication is not copyrighted and is in the public domain. Duplication is encouraged.

NCCIH has provided this material for your information. It is not intended to substitute for the medical expertise and advice of your health care provider(s). We encourage you to discuss any decisions about treatment or care with your health care provider. The mention of any product, service, or therapy is not an endorsement by NCCIH.

Related Topics

Pain: Considering Complementary Approaches (eBook)

For Consumers

8 Things to Know About Meditation and Mindfulness

For Health Care Providers

Use of Yoga, Meditation, and Chiropractic by Adults and Children

Mind and Body Approaches for Chronic Pain

Meditation - Systematic Reviews/Reviews/Meta-analyses (PubMed®)

Meditation - Randomized Controlled Trials (PubMed®)

Research Results

National Survey Reveals Increased Use of Yoga, Meditation, and Chiropractic Care Among U.S. Adults

National Survey Reveals Increased Use of Yoga and Meditation Among U.S. Children

Mindfulness-Based Stress Reduction, Cognitive-Behavioral Therapy Shown To Be Cost Effective for Chronic Low-Back Pain

scientific research structure

Energy & Environmental Science

Thermodynamically stable low-na o3 cathode materials driven by intrinsically high ionic potential discrepancy †.

ORCID logo

* Corresponding authors

a GRINM (Guangdong) Research Institute for Advanced Materials and Technology, Foshan, Guangdong, P.R. China E-mail: [email protected]

b University of Science and Technology Beijing, Beijing, P.R. China

c China Automotive Battery Research Institute Co., Ltd, Beijing, P.R. China

d School of Materials Science and Engineering, Hubei University, Wuhan, P.R. China

e Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, P.R. China E-mail: [email protected]

f Powder Metallurgy Research Institute, Central South University, Changsha, Hunan, P.R. China

g Nanjing University of Information Science & Technology, Nanjing, Jiangsu, P.R. China E-mail: [email protected]

h Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P.R. China E-mail: [email protected]

i General Research Institute for Nonferrous Metals, Beijing, P.R. China

The thermodynamically stable window for an O3-type layered sodium cathode material is largely determined by its Na stoichiometry; a spontaneous transition to the P-type structure occurs when it is relatively low. With such limitation, the capacity and stability of O3-structured materials become restricted and a potentially promising class of O3-type materials that garner the structural stability of P2-type materials is underexplored. This work discovers that a large ionic potential discrepancy within the transition metal layer acts as a driving force that pushes the Na-ions from prismatic coordination to octahedral coordination. Utilizing this strategy, we have explored a class of off-stoichiometric O3-type materials with exceptionally low Na-stoichiometry (generally forming P2-type structures with higher thermodynamic stability) yet having the structural parameter features of P-type materials. These materials demonstrate rapid O3–P3 phase transition while maintaining a stable solid solution reaction at high voltages, resulting in an impressive P-phase range of 81.4%, thus showing superior performance compared with conventional O3-type materials. This principle provides a great extension to the existing family of layered cathode materials for sodium-ion batteries.

Graphical abstract: Thermodynamically stable low-Na O3 cathode materials driven by intrinsically high ionic potential discrepancy

Supplementary files

  • Supplementary information PDF (4192K)

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Download citation, permissions.

scientific research structure

Thermodynamically stable low-Na O3 cathode materials driven by intrinsically high ionic potential discrepancy

M. Li, H. Zhuo, Y. Xu, Q. Jing, Y. Wu, Y. Gu, Z. Liao, K. Wang, M. Song, X. Li, J. Liang, C. Zhao, Y. Jiang, T. Wu, D. Geng, J. Hu, X. Sun and B. Xiao, Energy Environ. Sci. , 2024, Advance Article , DOI: 10.1039/D4EE02359E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page .

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page .

Read more about how to correctly acknowledge RSC content .

Social activity

Search articles by author.

This article has not yet been cited.

Advertisements

IMAGES

  1. Seminar: How to Write An Effective Research Paper

    scientific research structure

  2. Research structure diagram.

    scientific research structure

  3. Structure of the research model

    scientific research structure

  4. How To Structure a Research Paper Correctly

    scientific research structure

  5. Anatomy of a Scientific Research Paper

    scientific research structure

  6. Scientific paper structure: Quick and easy guide

    scientific research structure

VIDEO

  1. Day 2: Basics of Scientific Research Writing (Batch 18)

  2. Research methods features of science

  3. (هيكلية البحث العلمي الشاملة) The Comprehensive Scientific Research Structure

  4. “Genetic Engineering and Sacred Geometry: Unveiling the Blueprint of Life”

  5. Review of Chapter 1 of Kuhn's 'The Structure of Scientific Revolutions' with background music

  6. Research introduction structure

COMMENTS

  1. Structuring a scientific article

    How to Structure a Scientific Article. Many scientific articles include the following elements: I. Abstract: The abstract should briefly summarize the contents of your article. Be sure to include a quick overview of the focus, results and conclusion of your study. ... If others have performed research on the topic, include a literature review. III.

  2. Research Guides: Structure of a Research Paper : Home

    Reports of research studies usually follow the IMRAD format. IMRAD (Introduction, Methods, Results, [and] Discussion) is a mnemonic for the major components of a scientific paper. These elements are included in the overall structure outlined below.

  3. PDF The Structure of an Academic Paper

    yourself, or the research and writing of others. Analysis You should never present evidence without some form of analysis, or explaining the meaning of what you have shown us. Even if the quote, idea, or statistic seems to speak for itself, you must offer the reader your interpretation of how it supports your topic sentence.

  4. Writing for publication: Structure, form, content, and journal

    Most types of scientific research methods have set guidelines for their form and content. This means that researchers' study design will to a large extent dictate the type of paper they write, and the information they will need to include when writing up. ... The structure of a published article, particularly medical, healthcare and scientific ...

  5. How to write a first-class paper

    In each paragraph, the first sentence defines the context, the body contains the new idea and the final sentence offers a conclusion. For the whole paper, the introduction sets the context, the ...

  6. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  7. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  8. Structure of a Research Article

    How research presented in the article will solve the problem presented in research gap. Literature Review. presenting and evaluating previous scholarship on a topic. Sometimes, this is separate section of the article. Method & Results. How research was done, including analysis and measurements. Sometimes labeled as "Research Design" Data

  9. Scientific Papers

    Scientific papers are often structured chronologically, thus reflecting the progression of the research project. Still, effective papers typically break the chronology in several ways to present ...

  10. HOW TO WRITE A SCIENTIFIC ARTICLE

    Conducting scientific and clinical research is only the beginning of the scholarship of discovery. In order for the results of research to be accessible to other professionals and have a potential effect on the greater scientific community, it must be written and published. ... The headings and structure for an abstract are usually provided in ...

  11. The Structure of a Scientific Paper

    Abstract. Organization is essential for a well-written scientific document. The readers must know where to quickly find the information they seek, from the cover page to the reference list. This chapter explains the parts of a typical scientific document, how to structure these parts into a well-organized document, and how to write each part to ...

  12. Ten simple rules for structuring papers

    To serve this purpose, the abstract's structure is highly conserved. Each of the C-C-C elements is detailed below. The context must communicate to the reader what gap the paper will fill. The first sentence orients the reader by introducing the broader field in which the particular research is situated.

  13. Scientific paper structure: Quick and easy guide

    Scientific paper structure: Key parts. 1. Title and Abstract: Attract the reader's attention. A scientific paper usually starts with two key parts that help attract a reader's attention to your work: the title and abstract. These parts are designed to essentially be the advertisement for your paper.

  14. Writing a scientific article: A step-by-step guide for beginners

    List the main results, with means, odds ratios, p -values, etc for each group. List the result of the primary endpoint first, followed by secondary outcomes Ensure that you have given a result for every method you mentioned in the methods section There should be enough detail to back up your conclusion. Conclusion.

  15. Structure of a Scientific Research Paper

    3. Structure of a Scientific Research Paper. A primary way that scientists communicate with one another is through scientific papers. We will model our Biocore lab reports on the format most commonly used by scientific journals. Your lab reports should follow the guidelines described below unless the lab manual or your TA specifically tells you ...

  16. PDF How to Write a Good Scientific Paper: Structure and Organization

    organization of a science research article, the author is con-strained in many respects. But these constraints free the author and the reader to focus on the content, which often results in a better paper. 1 The Standard Structure of a Scientific Paper The vast majority of papers published in scientific journals today follow a fairly simple ...

  17. PDF THE STRUCTURE OF A SCIENTIFIC PAPER

    of the author and the nature of the research. Some scientific writ-ing books take a more conservative stance, saying that scientific documents should conform to a strict organizational structure. They argue that scientific documents are not literature, so the author's individual literary style should be suppressed.

  18. Structuring the Research Paper: Formal Research Structure

    Formal Research Structure. These are the primary purposes for formal research: enter the discourse, or conversation, of other writers and scholars in your field. learn how others in your field use primary and secondary resources. find and understand raw data and information. For the formal academic research assignment, consider an ...

  19. Sections of a Paper: Structure of a Scientific Paper

    The results section contains the data collected during experimention. The results section is the heart of a scientific paper. In this section, much of the important information may be in the form of tables or graphs. When reading this section, do not readily accept an author's statements about the results. Rather, carefully analyze the raw data ...

  20. Structure of a Research Paper: Tips to Improve Your Manuscript

    The structure of a research paper is critical for readers to understand the story behind the research study. Authors should follow these tips to improve their paper structure. ... All scientific research also provide significance of findings, usually presented as defined "P" values. Be sure to explain these findings using descriptive terms.

  21. How to Read a Scientific Paper: Structure of an Article

    STOP: Reading a scientific article is not like reading a book, trying to plow right through is often overwhelming. Some of the research might be new to you or beyond your level of expertise. However, reading scientific articles is good practice to learn how to identify the important points and conclusions made by the authors and critically evaluate those ideas as well.

  22. Research Structure

    Components of each chapter in research structure . The following is a sample of a research structure: Chapter One communicates the purpose and focus of the study and explains the outline of the research. This chapter includes a brief explanation of the research background, and provides rationale for the selection of the research area.Moreover, the first chapter contains explanation of the ...

  23. A Guide to Writing a Scientific Paper: A Focus on High School Through

    This structure is a widely accepted approach to writing a research paper, and has specific sections that parallel the scientific method. Following this structure allows the scientist to tell a clear, coherent story in a logical format, essential to effective communication. 1,2 In addition, using a standardized format allows the reader to find ...

  24. User community focuses on the future of the field and fostering a

    We recommend prioritizing opportunities that enhance the prompt availability and quality of nuclear data and its utility for propelling scientific progress in nuclear structure, reactions and astrophysics and other fundamental physics research programs.We endorse identifying interagency-supported crosscutting opportunities for nuclear data with ...

  25. Insight into konjac glucomannan-retarding deterioration of steamed

    The steamed bread sample was fractured into pieces (1 cm × 1 cm × 1 cm) to expose the interior structure after being frozen for 0 or 3 weeks (Qian et al., 2022). These fractured pieces were then dehydrated using a model LGJ-10D freeze dryer (Sihuan Scientific Instrument Co., Ltd., Beijing, China).

  26. EMOTR EOC of the Future Recommendations

    The Department of Homeland Security (DHS) Science and Technology Directorate (S&T) partnered with Pacific Northwest National Laboratory (PNNL) to conduct research on strengthening and reimagining the future emergency response structure.

  27. Synergetic Carbonyl and Heptagonal Structure for Single‐Molecule White

    Advanced Optical Materials is a unique journal for materials science research which focuses on all aspects of light-matter interactions. Abstract Recently, an ever-growing interest has been paid on organic single-molecule white light-emitting materials for effective white organic light-emitting diodes (WOLEDs).

  28. Meditation and Mindfulness: Effectiveness and Safety

    Some research suggests that meditation and mindfulness practices may affect the functioning or structure of the brain. Studies have used various methods of measuring brain activity to look for measurable differences in the brains of people engaged in mindfulness-based practices. ... RePORTER is a database of information on federally funded ...

  29. Researchers take inspiration from viruses to improve delivery of

    Structure of the Purdue nanocarrier system Thompson said nucleic acid-based therapies are revolutionizing biomedical research through their ability to control cellular functions at the genetic level.

  30. Thermodynamically stable low-Na O3 cathode materials driven by

    The thermodynamically stable window for an O3-type layered sodium cathode material is largely determined by its Na stoichiometry; a spontaneous transition to the P-type structure occurs when it is relatively low. With such limitation, the capacity and stability of O3-structured materials become restricted and a pot