• Undergraduate Programs
  • Graduate Programs
  • Concentrations
  • Extracurricular Opportunities
  • Research Topics
  • Research Groups
  • Academic Leadership
  • Graduate Students
  • Administrative Staff
  • Alumni Press Releases
  • Get Involved
  • Giving Opportunities
  • Newsletters
  • Recruit Students
  • Academic Support
  • Community Outreach
  • Experience and Employment
  • Mental Health Resources
  • Student Organizations

Doctor of Philosophy in Applied Physics

Welcome to Cornell University: Any person, any study.

A Flexible, Interdisciplinary Curriculum

The Ph.D. program in the graduate field of Applied Physics is a research-oriented doctoral program tailored to individual interests. The program combines a core physics curriculum with research and study in one of several areas that deal either with the application of physics to a technical discipline or with the interface between physics and another area of science. Students who have majored in physics, in another physical science (for example, chemistry), or in an engineering field are eligible for the program.

The program is designed so that students can evaluate the many different research opportunities available before deciding on an area of specialization. Although most students join the research group of a faculty member in the graduate field of applied physics students may also join a group outside applied physics—a reflection of the tremendous flexibility offered to our graduate students—and begin their thesis research by the end of the first academic year. Most students complete the program under their original faculty supervisor, but if a student should decide to change research groups, the decision is subject only to the agreement of a new thesis supervisor.

Students in applied physics may pursue thesis research in any one of several broad areas, including nanoscience, condensed matter physics and materials science, optical physics, quantum electronics and photonics, biological physics, astrophysics and plasma physics, or atomic, molecular, and chemical physics.

There are 19 faculty members in AEP as well as nearly thirty other faculty members representing ten different departments outside the school which comprise the applied physics field faculty. This large faculty, engaged in many research projects with federal, state, or corporate sponsors, makes it possible for applied physics students to choose thesis research topics from many different areas. While each student becomes an individual investigator responsible for an independent research project, interactive and collaborative research programs and shared research facilities are hallmarks of advanced study at Cornell. The majority of the faculty members in the field participate in one or more of Cornell’s numerous research centers and programs, and most graduate students in applied physics make extensive use of the research facilities maintained by these centers.

Special Committee

Students entering the Applied Physics program begin by taking courses that will meet core requirements. During the first year of study, students choose a major area within applied physics for study and thesis research and a minor area of study that is outside the field of physics or applied physics. Students then choose a special committee of three or four faculty members who will supervise their graduate program and monitor the progress of their thesis research. Ultimately, this faculty committee also approves a student’s thesis. Generally, the chair of the committee is the supervisor of the student’s thesis project, the second member is from the student’s major area of study in applied physics, and the third member represents the minor area of study (as does the optional fourth member). With guidance from this faculty committee, the student plans an individualized course of study that will fulfill the core curriculum and minor subject requirements and will provide the groundwork for full-time thesis research in a particular area of specialization.

  • Research Areas

Graduates with doctorates in applied physics pursue careers in academic institutions, corporate and national laboratories, and research institutes. In recent years: 

""

/images/cornell/logo35pt_cornell_white.svg" alt="cornell university physics phd"> Cornell University --> Graduate School

Applied physics ph.d. (ithaca), field of study.

Applied Physics

Program Description

The Applied Physics program combines a core physics curriculum with research and study in areas that also includes the application of physics to the broader scientific and engineering communities. Students in applied physics may pursue research in any one of several broad areas, including nanoscience, advanced materials, condensed matter physics; renewable energy; quantum information and photonics; biological physics; astrophysics and plasma physics.

The Ph.D. program in the graduate field of Applied Physics (AP) is a flexible, research-oriented doctoral program tailored to individual interests. AP combines a core physics curriculum with research and study usually in one of the areas discussed above. Graduate students can engage in a wide range of cross-disciplinary research activities, bringing their expertise as an applied physicist to bear, often in a collaborative environment. Instead of a qualifying exam, students are expected take classes in a common core of physics subjects, being quantum mechanics, electrodynamics, statistical mechanics, and advanced laboratory techniques.

Additional details about the applied physics graduate programs are on the website .

Contact Information

212 Clark Hall Cornell University Ithaca, NY  14853

Concentrations by Subject

  • applied physics

Visit the Graduate School's Tuition Rates page.

Application Requirements and Deadlines

Fall: Dec 15

Requirements Summary:

Applicants should have undergraduate preparation in physics or another physical science or in an engineering field with a strong emphasis on mathematics and modern physics. The GRE general and subject exams are not used in our evaluation process and should not be submitted.

  • all Graduate School Requirements , including the  English Language Proficiency Requirement  for all applicants
  • three recommendations

Learning Outcomes

In the Applied Physics Ph.D. program, our philosophy is “learn physics, speak engineering”. This implies that graduates will have mastery of the fundamental physics knowledge, can synthesize knowledge from different areas, and take the course-based knowledge to the next level, where, with guidance from their mentors and peers, they will have learned to apply the knowledge to solve problems of practical interest. We therefore aim at an interdisciplinary education and broad course base. In addition to becoming a world expert in the area of their dissertation topics, the candidates will be prepared for a career as a professional scientist/engineer, with all the flexibility that that implies.

Applied physicists must learn how to communicate using written, spoken and presentation skills. The candidates will acquire and improve these skills as part of our course work and exams. For example, Physics 6510, our Advanced Laboratory course has a requirement to write lab reports in standard journal (Physical Review Letters) format as well as make an oral presentation to faculty and peers in a timed format. Our A- and B-exams also require comprehensive skills in written and oral presentation. These formative skills are essential for the practicing Applied physicist.

It is essential that applied physicists are aware of ethical issues pertaining to the conduct and dissemination of research, in collaborative research endeavors as well as instances that may arise concerned with the teaching arena. Opportunities to participate in training concerned with ethical issues will be provided and must be completed by all students before their A-exams. The successful completion of the Responsible Conduct of Research unit online is required of all students.

Proficiencies

A candidate for a Ph.D. in Applied Physics is expected to demonstrate (a) broad knowledge in the fundamental areas of physics and in-depth knowledge at highly advanced level in at least one sub-discipline of Applied Physics, (b) breadth of interdisciplinary training, and (c) the ability to synthesize and create knowledge by making an original and substantial contribution to an area of Applied Physics in an appropriate timeframe.

Proficiencies that are required to be demonstrated by the candidate:

Learning outcome 1: Demonstrate broad knowledge in the fundamental areas of Applied Physics, advanced knowledge in a sub-discipline, and interdisciplinary training.

  • Proficiency in basic physics
  • Advanced knowledge in an area of applied physics
  • Breadth of interdisciplinary training

Learning outcome 2: Demonstrate the ability to acquire skills to perform independent advanced research.

  • Demonstrate ability to identify and seek out resources and information; apply these to guide research plan development
  • Demonstrate the ability to master and/or innovate research methodologies, and techniques
  • Demonstrate oral and written communication skills

Learning outcome 3: Make an original and substantial contribution to the discipline.

  • Demonstrate independent thinking and creativity
  • Develop and execute original research plan(s)
  • Generate publishable advances in an area of applied physics

Learning outcome 4: Demonstrate a commitment to advancing scholarship.

  • Maintain familiarity with advances in the field
  • Demonstrate commitment to personal professional development through engagement in professional societies, conference participations and publications
  • Show commitment to learning, collaborative inquiry, and mentoring

Learning outcome 5: Demonstrate professional skills.

  • Understand and maintain ethical standards in the field
  • Listen, give, and receive feedback effectively

Narrow Your Search

Return to Field of Study listing

Clear Filters

Table of Contents

cornell university physics phd

Department Faculty

Image of Julia Thom-Levy

Julia Thom-Levy

Professor Department Chair

Academic Interests:

  • Experimental Elementary Particle Physics

Image of Matthias Liepe

Matthias Liepe

Professor Director of Graduate Studies

  • Accelerator Physics

Image of Michael Niemack

Michael Niemack

Professor of Physics and Astronomy Director of Undergraduate Studies

  • Astrophysics, General Relativity and Cosmology

Image of Jim Alexander

Jim Alexander

Image of Tomás Arias

Tomás Arias

Professor, Stephen H. Weiss Presidential Fellow

  • Theoretical Condensed-Matter Physics

Image of Ivan Bazarov

Ivan Bazarov

Image of Eberhard Bodenschatz

Eberhard Bodenschatz

Adjunct Professor

  • Biological Physics
  • Experimental Condensed Matter Physics

Image of Debanjan Chowdhury

Debanjan Chowdhury

Joyce A. Yelencsics Rosevear ‘65 and Frederick M. Rosevear ‘64 Assistant Professor

Image of Itai Cohen

Abigail Crites

Assistant Professor & Fred Young Faculty Fellow

Image of Csaba Csaki

Csaba Csaki

John A. Newman Professor of Physical Sciences

  • Theoretical Elementary Particle Physics

Image of Nils Deppe

Assistant Professor

Image of Jennet Dickinson

Jennet Dickinson

Image of Eric Dufresne

Eric Dufresne

Image of Veit Elser

Eanna Flanagan

Edward L. Nichols Professor of Physics and Professor of Astronomy

Image of Carl Franck

Carl Franck

Associate Professor

Image of Lawrence Gibbons

Lawrence Gibbons

Image of Paul Ginsparg

Paul Ginsparg

Image of Yuval Grossman

Yuval Grossman

Image of Thomas Hartman

Thomas Hartman

Image of Georg Hoffstaetter de Torquat

Georg Hoffstaetter de Torquat

Image of Natasha Holmes

Natasha Holmes

Ann S. Bowers Associate Professor

  • Physics Education Research

Image of Chao-Ming Jian

Chao-Ming Jian

Image of Eun-Ah Kim

Michael Lawler

Image of Andre Leclair

Andre Leclair

Image of Xiaomeng Liu

Xiaomeng Liu

Image of Kin Fai Mak

Kin Fai Mak

Josephson Family Professor in the College of Arts and Sciences

Image of Jared Maxson

Jared Maxson

Image of Liam McAllister

Liam McAllister

Image of Erich Mueller

Erich Mueller

Image of Christopher Myers

Christopher Myers

Image of Matthias Neubert

Matthias Neubert

Image of Katja Nowack

Katja Nowack

Image of Jeevak Parpia

Jeevak Parpia

Image of Ritchie Patterson

Ritchie Patterson

Helen T. Edwards Professor of Physics

Image of Maxim Perelstein

Maxim Perelstein

Image of Daniel Ralph

Daniel Ralph

F.R. Newman Professor of Physics

Image of Brad Ramshaw

Brad Ramshaw

Image of Anders Ryd

James Sethna

James Gilbert White Professor of Physical Sciences

Image of Jie Shan

James A. Weeks Professor of Physical Sciences Director of the Laboratory of Atomic and Solid State Physics Stephen H. Weiss Presidential Fellow

Image of Eric Siggia

Eric Siggia

Image of Robert Thorne

Robert Thorne

Image of Cyrus Umrigar

Cyrus Umrigar

Image of Jane Wang

Michelle Wang

James Gilbert White Distinguished Professor of the Physical Sciences, Howard Hughes Medical Institute Investigator

Image of Ira Wasserman

Ira Wasserman

Kenneth A. Wallace Professor of Astronomy, Professor of Physics

Image of Hannsjörg Weber

Hannsjörg Weber

Assistant Research Professor

Image of Peter Wittich

Peter Wittich

Professor and Director, Laboratory of Elementary Particle Physics

IMAGES

  1. Graduate Program

    cornell university physics phd

  2. Cornell University. Department of Physics

    cornell university physics phd

  3. Cornell University Department of Physics

    cornell university physics phd

  4. McMahon Lab in the School of Applied and Engineering Physics at Cornell

    cornell university physics phd

  5. Cornell Physics CEDI

    cornell university physics phd

  6. Freshman Brochure

    cornell university physics phd

VIDEO

  1. Cornell University Slideshow

  2. Quantum criticality and emergent phenomena in fermionic systems 1-Yao

  3. FULL Day in the Life of a Cornell PhD Student

  4. PhD Admission 2024 // Calcutta University // West Bengal

  5. Introduction to symmetry protected and symmetry enriched topological order Part 1- Lukasz Fidkowski

  6. Active Learning Initiative: Robert Thorne

COMMENTS

  1. Graduate Program | Department of Physics - Cornell University

    The graduate physics program at Cornell is multidisciplinary, broad and congenial, and has access to superb facilities. About the program. The program is designed for the student who wants to become a professional physicist. It has two main components: Mastery of at least a core of advanced general physics.

  2. Prospective Graduate Students | Department of Physics

    The Cornell Graduate School has information about both university-sponsored and external fellowships for prospective and continuing graduate students. The school’s Graduate Fellowship Database is a searchable database of more than 500 external fellowships.

  3. The Department of Physics | Department of Physics

    Uniquely versatile undergraduate and graduate programs, an unrivaled breadth of research training, and Nobel Prize-winning work in world class facilities, defines the Department of Physics at Cornell University as a national and global leader in physics training and education.

  4. About the Graduate Program | Department of Physics

    The Ph.D. Program. The program is designed for the student who wants to become a professional physicist. It has two main components: Mastery of at least a core of advanced general physics.

  5. Fields of Study : Graduate School - Cornell University

    Learn about the theoretical and experimental physics research and study opportunities at Cornell University. Find out the application requirements, deadlines, tuition, and learning outcomes for the Ph.D. program in physics.

  6. Course of Study | Department of Physics - Cornell University

    As a graduate student you are expected to pass three examinations on the way to earning a Ph.D. The first is a qualifying (Q) examination, an oral examination that serves as a check on your progress and as a diagnostic of possible weaknesses that need attention.

  7. Academics | Department of Physics - Cornell University

    Our combination of first-class research facilities and congenial atmosphere provide our students with the best environment to learn theoretical and experimental physics. At Cornell there is no need to limit yourself to coursework within our department.

  8. Doctor of Philosophy in Applied Physics - Cornell University

    Learn about the research-oriented doctoral program in applied physics, which combines a core physics curriculum with study in one of several areas of application or interface. Explore the flexible curriculum, the faculty, the special committee, and the career options for applied physics Ph.D. graduates.

  9. Fields of Study : Graduate School - Cornell University

    Learn about the flexible, research-oriented doctoral program in Applied Physics at Cornell University. Explore the areas of study, application requirements, learning outcomes, and contact information.

  10. Department Faculty | Department of Physics - Cornell University

    John A. Newman Professor of Physical Sciences. Academic Interests: Theoretical Elementary Particle Physics.