PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

data analysis techniques in research

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

Data Analytics Course

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language:

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

  • Top 15 SAS Courses For Aspiring Data Analysts

SAS Courses

The top 15 SAS Courses for aspiring data scientists include- 1. SAS Professional Programmer Certificate, 2. SAS Advanced Programmer Certificate…

  • How To Become Data Analyst In 2023 

Data Analyst In 2023 

Data Analyst in 2023: In 2023, becoming a data analyst is not just a career choice but is also the…

  • Top 25 Big Data Interview Questions and Answers

data analysis examples in research

Big Data Interview Questions and Answers: In the fast-paced digital age, data multiplies rapidly. Big Data is the hidden hero,…

right adv

Related Articles

  • 10 Best Companies For Data Analysis Internships 2024
  • Finance Data Analysis: What is a Financial Data Analysis?
  • Data Analytics Meaning, Importance, Techniques, Examples
  • 5 BI Business Intelligence Tools You Must Know in 2024
  • What Is Business BI?
  • What Is Predictive Data Analytics, Definition, Tools, How Does It Work?
  • What Is Big Data Analytics? Definition, Benefits, and More

bottom banner

  • Privacy Policy

Research Method

Home » Data Analysis – Process, Methods and Types

Data Analysis – Process, Methods and Types

Table of Contents

Data Analysis

Data Analysis

Definition:

Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets. The ultimate aim of data analysis is to convert raw data into actionable insights that can inform business decisions, scientific research, and other endeavors.

Data Analysis Process

The following are step-by-step guides to the data analysis process:

Define the Problem

The first step in data analysis is to clearly define the problem or question that needs to be answered. This involves identifying the purpose of the analysis, the data required, and the intended outcome.

Collect the Data

The next step is to collect the relevant data from various sources. This may involve collecting data from surveys, databases, or other sources. It is important to ensure that the data collected is accurate, complete, and relevant to the problem being analyzed.

Clean and Organize the Data

Once the data has been collected, it needs to be cleaned and organized. This involves removing any errors or inconsistencies in the data, filling in missing values, and ensuring that the data is in a format that can be easily analyzed.

Analyze the Data

The next step is to analyze the data using various statistical and analytical techniques. This may involve identifying patterns in the data, conducting statistical tests, or using machine learning algorithms to identify trends and insights.

Interpret the Results

After analyzing the data, the next step is to interpret the results. This involves drawing conclusions based on the analysis and identifying any significant findings or trends.

Communicate the Findings

Once the results have been interpreted, they need to be communicated to stakeholders. This may involve creating reports, visualizations, or presentations to effectively communicate the findings and recommendations.

Take Action

The final step in the data analysis process is to take action based on the findings. This may involve implementing new policies or procedures, making strategic decisions, or taking other actions based on the insights gained from the analysis.

Types of Data Analysis

Types of Data Analysis are as follows:

Descriptive Analysis

This type of analysis involves summarizing and describing the main characteristics of a dataset, such as the mean, median, mode, standard deviation, and range.

Inferential Analysis

This type of analysis involves making inferences about a population based on a sample. Inferential analysis can help determine whether a certain relationship or pattern observed in a sample is likely to be present in the entire population.

Diagnostic Analysis

This type of analysis involves identifying and diagnosing problems or issues within a dataset. Diagnostic analysis can help identify outliers, errors, missing data, or other anomalies in the dataset.

Predictive Analysis

This type of analysis involves using statistical models and algorithms to predict future outcomes or trends based on historical data. Predictive analysis can help businesses and organizations make informed decisions about the future.

Prescriptive Analysis

This type of analysis involves recommending a course of action based on the results of previous analyses. Prescriptive analysis can help organizations make data-driven decisions about how to optimize their operations, products, or services.

Exploratory Analysis

This type of analysis involves exploring the relationships and patterns within a dataset to identify new insights and trends. Exploratory analysis is often used in the early stages of research or data analysis to generate hypotheses and identify areas for further investigation.

Data Analysis Methods

Data Analysis Methods are as follows:

Statistical Analysis

This method involves the use of mathematical models and statistical tools to analyze and interpret data. It includes measures of central tendency, correlation analysis, regression analysis, hypothesis testing, and more.

Machine Learning

This method involves the use of algorithms to identify patterns and relationships in data. It includes supervised and unsupervised learning, classification, clustering, and predictive modeling.

Data Mining

This method involves using statistical and machine learning techniques to extract information and insights from large and complex datasets.

Text Analysis

This method involves using natural language processing (NLP) techniques to analyze and interpret text data. It includes sentiment analysis, topic modeling, and entity recognition.

Network Analysis

This method involves analyzing the relationships and connections between entities in a network, such as social networks or computer networks. It includes social network analysis and graph theory.

Time Series Analysis

This method involves analyzing data collected over time to identify patterns and trends. It includes forecasting, decomposition, and smoothing techniques.

Spatial Analysis

This method involves analyzing geographic data to identify spatial patterns and relationships. It includes spatial statistics, spatial regression, and geospatial data visualization.

Data Visualization

This method involves using graphs, charts, and other visual representations to help communicate the findings of the analysis. It includes scatter plots, bar charts, heat maps, and interactive dashboards.

Qualitative Analysis

This method involves analyzing non-numeric data such as interviews, observations, and open-ended survey responses. It includes thematic analysis, content analysis, and grounded theory.

Multi-criteria Decision Analysis

This method involves analyzing multiple criteria and objectives to support decision-making. It includes techniques such as the analytical hierarchy process, TOPSIS, and ELECTRE.

Data Analysis Tools

There are various data analysis tools available that can help with different aspects of data analysis. Below is a list of some commonly used data analysis tools:

  • Microsoft Excel: A widely used spreadsheet program that allows for data organization, analysis, and visualization.
  • SQL : A programming language used to manage and manipulate relational databases.
  • R : An open-source programming language and software environment for statistical computing and graphics.
  • Python : A general-purpose programming language that is widely used in data analysis and machine learning.
  • Tableau : A data visualization software that allows for interactive and dynamic visualizations of data.
  • SAS : A statistical analysis software used for data management, analysis, and reporting.
  • SPSS : A statistical analysis software used for data analysis, reporting, and modeling.
  • Matlab : A numerical computing software that is widely used in scientific research and engineering.
  • RapidMiner : A data science platform that offers a wide range of data analysis and machine learning tools.

Applications of Data Analysis

Data analysis has numerous applications across various fields. Below are some examples of how data analysis is used in different fields:

  • Business : Data analysis is used to gain insights into customer behavior, market trends, and financial performance. This includes customer segmentation, sales forecasting, and market research.
  • Healthcare : Data analysis is used to identify patterns and trends in patient data, improve patient outcomes, and optimize healthcare operations. This includes clinical decision support, disease surveillance, and healthcare cost analysis.
  • Education : Data analysis is used to measure student performance, evaluate teaching effectiveness, and improve educational programs. This includes assessment analytics, learning analytics, and program evaluation.
  • Finance : Data analysis is used to monitor and evaluate financial performance, identify risks, and make investment decisions. This includes risk management, portfolio optimization, and fraud detection.
  • Government : Data analysis is used to inform policy-making, improve public services, and enhance public safety. This includes crime analysis, disaster response planning, and social welfare program evaluation.
  • Sports : Data analysis is used to gain insights into athlete performance, improve team strategy, and enhance fan engagement. This includes player evaluation, scouting analysis, and game strategy optimization.
  • Marketing : Data analysis is used to measure the effectiveness of marketing campaigns, understand customer behavior, and develop targeted marketing strategies. This includes customer segmentation, marketing attribution analysis, and social media analytics.
  • Environmental science : Data analysis is used to monitor and evaluate environmental conditions, assess the impact of human activities on the environment, and develop environmental policies. This includes climate modeling, ecological forecasting, and pollution monitoring.

When to Use Data Analysis

Data analysis is useful when you need to extract meaningful insights and information from large and complex datasets. It is a crucial step in the decision-making process, as it helps you understand the underlying patterns and relationships within the data, and identify potential areas for improvement or opportunities for growth.

Here are some specific scenarios where data analysis can be particularly helpful:

  • Problem-solving : When you encounter a problem or challenge, data analysis can help you identify the root cause and develop effective solutions.
  • Optimization : Data analysis can help you optimize processes, products, or services to increase efficiency, reduce costs, and improve overall performance.
  • Prediction: Data analysis can help you make predictions about future trends or outcomes, which can inform strategic planning and decision-making.
  • Performance evaluation : Data analysis can help you evaluate the performance of a process, product, or service to identify areas for improvement and potential opportunities for growth.
  • Risk assessment : Data analysis can help you assess and mitigate risks, whether it is financial, operational, or related to safety.
  • Market research : Data analysis can help you understand customer behavior and preferences, identify market trends, and develop effective marketing strategies.
  • Quality control: Data analysis can help you ensure product quality and customer satisfaction by identifying and addressing quality issues.

Purpose of Data Analysis

The primary purposes of data analysis can be summarized as follows:

  • To gain insights: Data analysis allows you to identify patterns and trends in data, which can provide valuable insights into the underlying factors that influence a particular phenomenon or process.
  • To inform decision-making: Data analysis can help you make informed decisions based on the information that is available. By analyzing data, you can identify potential risks, opportunities, and solutions to problems.
  • To improve performance: Data analysis can help you optimize processes, products, or services by identifying areas for improvement and potential opportunities for growth.
  • To measure progress: Data analysis can help you measure progress towards a specific goal or objective, allowing you to track performance over time and adjust your strategies accordingly.
  • To identify new opportunities: Data analysis can help you identify new opportunities for growth and innovation by identifying patterns and trends that may not have been visible before.

Examples of Data Analysis

Some Examples of Data Analysis are as follows:

  • Social Media Monitoring: Companies use data analysis to monitor social media activity in real-time to understand their brand reputation, identify potential customer issues, and track competitors. By analyzing social media data, businesses can make informed decisions on product development, marketing strategies, and customer service.
  • Financial Trading: Financial traders use data analysis to make real-time decisions about buying and selling stocks, bonds, and other financial instruments. By analyzing real-time market data, traders can identify trends and patterns that help them make informed investment decisions.
  • Traffic Monitoring : Cities use data analysis to monitor traffic patterns and make real-time decisions about traffic management. By analyzing data from traffic cameras, sensors, and other sources, cities can identify congestion hotspots and make changes to improve traffic flow.
  • Healthcare Monitoring: Healthcare providers use data analysis to monitor patient health in real-time. By analyzing data from wearable devices, electronic health records, and other sources, healthcare providers can identify potential health issues and provide timely interventions.
  • Online Advertising: Online advertisers use data analysis to make real-time decisions about advertising campaigns. By analyzing data on user behavior and ad performance, advertisers can make adjustments to their campaigns to improve their effectiveness.
  • Sports Analysis : Sports teams use data analysis to make real-time decisions about strategy and player performance. By analyzing data on player movement, ball position, and other variables, coaches can make informed decisions about substitutions, game strategy, and training regimens.
  • Energy Management : Energy companies use data analysis to monitor energy consumption in real-time. By analyzing data on energy usage patterns, companies can identify opportunities to reduce energy consumption and improve efficiency.

Characteristics of Data Analysis

Characteristics of Data Analysis are as follows:

  • Objective : Data analysis should be objective and based on empirical evidence, rather than subjective assumptions or opinions.
  • Systematic : Data analysis should follow a systematic approach, using established methods and procedures for collecting, cleaning, and analyzing data.
  • Accurate : Data analysis should produce accurate results, free from errors and bias. Data should be validated and verified to ensure its quality.
  • Relevant : Data analysis should be relevant to the research question or problem being addressed. It should focus on the data that is most useful for answering the research question or solving the problem.
  • Comprehensive : Data analysis should be comprehensive and consider all relevant factors that may affect the research question or problem.
  • Timely : Data analysis should be conducted in a timely manner, so that the results are available when they are needed.
  • Reproducible : Data analysis should be reproducible, meaning that other researchers should be able to replicate the analysis using the same data and methods.
  • Communicable : Data analysis should be communicated clearly and effectively to stakeholders and other interested parties. The results should be presented in a way that is understandable and useful for decision-making.

Advantages of Data Analysis

Advantages of Data Analysis are as follows:

  • Better decision-making: Data analysis helps in making informed decisions based on facts and evidence, rather than intuition or guesswork.
  • Improved efficiency: Data analysis can identify inefficiencies and bottlenecks in business processes, allowing organizations to optimize their operations and reduce costs.
  • Increased accuracy: Data analysis helps to reduce errors and bias, providing more accurate and reliable information.
  • Better customer service: Data analysis can help organizations understand their customers better, allowing them to provide better customer service and improve customer satisfaction.
  • Competitive advantage: Data analysis can provide organizations with insights into their competitors, allowing them to identify areas where they can gain a competitive advantage.
  • Identification of trends and patterns : Data analysis can identify trends and patterns in data that may not be immediately apparent, helping organizations to make predictions and plan for the future.
  • Improved risk management : Data analysis can help organizations identify potential risks and take proactive steps to mitigate them.
  • Innovation: Data analysis can inspire innovation and new ideas by revealing new opportunities or previously unknown correlations in data.

Limitations of Data Analysis

  • Data quality: The quality of data can impact the accuracy and reliability of analysis results. If data is incomplete, inconsistent, or outdated, the analysis may not provide meaningful insights.
  • Limited scope: Data analysis is limited by the scope of the data available. If data is incomplete or does not capture all relevant factors, the analysis may not provide a complete picture.
  • Human error : Data analysis is often conducted by humans, and errors can occur in data collection, cleaning, and analysis.
  • Cost : Data analysis can be expensive, requiring specialized tools, software, and expertise.
  • Time-consuming : Data analysis can be time-consuming, especially when working with large datasets or conducting complex analyses.
  • Overreliance on data: Data analysis should be complemented with human intuition and expertise. Overreliance on data can lead to a lack of creativity and innovation.
  • Privacy concerns: Data analysis can raise privacy concerns if personal or sensitive information is used without proper consent or security measures.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Problem

Research Problem – Examples, Types and Guide

Figures in Research Paper

Figures in Research Paper – Examples and Guide

Cluster Analysis

Cluster Analysis – Types, Methods and Examples

Research Report

Research Report – Example, Writing Guide and...

Discriminant Analysis

Discriminant Analysis – Methods, Types and...

Informed Consent in Research

Informed Consent in Research – Types, Templates...

8 Types of Data Analysis

The different types of data analysis include descriptive, diagnostic, exploratory, inferential, predictive, causal, mechanistic and prescriptive. Here’s what you need to know about each one.

Benedict Neo

Data analysis is an aspect of data science and  data analytics that is all about analyzing data for different kinds of purposes. The data analysis process involves inspecting, cleaning, transforming and  modeling data to draw useful insights from it.

Types of Data Analysis

  • Descriptive analysis
  • Diagnostic analysis
  • Exploratory analysis
  • Inferential analysis
  • Predictive analysis
  • Causal analysis
  • Mechanistic analysis
  • Prescriptive analysis

With its multiple facets, methodologies and techniques, data analysis is used in a variety of fields, including energy, healthcare and marketing, among others. As businesses thrive under the influence of technological advancements in data analytics, data analysis plays a huge role in decision-making , providing a better, faster and more effective system that minimizes risks and reduces human biases .

That said, there are different kinds of data analysis with different goals. We’ll examine each one below.

Two Camps of Data Analysis

Data analysis can be divided into two camps, according to the book R for Data Science :

  • Hypothesis Generation: This involves looking deeply at the data and combining your domain knowledge to generate  hypotheses about why the data behaves the way it does.
  • Hypothesis Confirmation: This involves using a precise mathematical model to generate falsifiable predictions with statistical sophistication to confirm your prior hypotheses.

More on Data Analysis: Data Analyst vs. Data Scientist: Similarities and Differences Explained

Data analysis can be separated and organized into types, arranged in an increasing order of complexity.  

1. Descriptive Analysis

The goal of descriptive analysis is to describe or summarize a set of data . Here’s what you need to know:

  • Descriptive analysis is the very first analysis performed in the data analysis process.
  • It generates simple summaries of samples and measurements.
  • It involves common, descriptive statistics like measures of central tendency, variability, frequency and position.

Descriptive Analysis Example

Take the Covid-19 statistics page on Google, for example. The line graph is a pure summary of the cases/deaths, a presentation and description of the population of a particular country infected by the virus.

Descriptive analysis is the first step in analysis where you summarize and describe the data you have using descriptive statistics, and the result is a simple presentation of your data.

2. Diagnostic Analysis  

Diagnostic analysis seeks to answer the question “Why did this happen?” by taking a more in-depth look at data to uncover subtle patterns. Here’s what you need to know:

  • Diagnostic analysis typically comes after descriptive analysis, taking initial findings and investigating why certain patterns in data happen. 
  • Diagnostic analysis may involve analyzing other related data sources, including past data, to reveal more insights into current data trends.  
  • Diagnostic analysis is ideal for further exploring patterns in data to explain anomalies .  

Diagnostic Analysis Example

A footwear store wants to review its  website traffic levels over the previous 12 months. Upon compiling and assessing the data, the company’s marketing team finds that June experienced above-average levels of traffic while July and August witnessed slightly lower levels of traffic. 

To find out why this difference occurred, the marketing team takes a deeper look. Team members break down the data to focus on specific categories of footwear. In the month of June, they discovered that pages featuring sandals and other beach-related footwear received a high number of views while these numbers dropped in July and August. 

Marketers may also review other factors like seasonal changes and company sales events to see if other variables could have contributed to this trend.    

3. Exploratory Analysis (EDA)

Exploratory analysis involves examining or  exploring data and finding relationships between variables that were previously unknown. Here’s what you need to know:

  • EDA helps you discover relationships between measures in your data, which are not evidence for the existence of the correlation, as denoted by the phrase, “ Correlation doesn’t imply causation .”
  • It’s useful for discovering new connections and forming hypotheses. It drives design planning and data collection .

Exploratory Analysis Example

Climate change is an increasingly important topic as the global temperature has gradually risen over the years. One example of an exploratory data analysis on climate change involves taking the rise in temperature over the years from 1950 to 2020 and the increase of human activities and industrialization to find relationships from the data. For example, you may increase the number of factories, cars on the road and airplane flights to see how that correlates with the rise in temperature.

Exploratory analysis explores data to find relationships between measures without identifying the cause. It’s most useful when formulating hypotheses. 

4. Inferential Analysis

Inferential analysis involves using a small sample of data to infer information about a larger population of data.

The goal of statistical modeling itself is all about using a small amount of information to extrapolate and generalize information to a larger group. Here’s what you need to know:

  • Inferential analysis involves using estimated data that is representative of a population and gives a measure of uncertainty or  standard deviation to your estimation.
  • The accuracy of inference depends heavily on your sampling scheme. If the sample isn’t representative of the population, the generalization will be inaccurate. This is known as the central limit theorem .

Inferential Analysis Example

A psychological study on the benefits of sleep might have a total of 500 people involved. When they followed up with the candidates, the candidates reported to have better overall attention spans and well-being with seven to nine hours of sleep, while those with less sleep and more sleep than the given range suffered from reduced attention spans and energy. This study drawn from 500 people was just a tiny portion of the 7 billion people in the world, and is thus an inference of the larger population.

Inferential analysis extrapolates and generalizes the information of the larger group with a smaller sample to generate analysis and predictions. 

5. Predictive Analysis

Predictive analysis involves using historical or current data to find patterns and make predictions about the future. Here’s what you need to know:

  • The accuracy of the predictions depends on the input variables.
  • Accuracy also depends on the types of models. A linear model might work well in some cases, and in other cases it might not.
  • Using a variable to predict another one doesn’t denote a causal relationship.

Predictive Analysis Example

The 2020 United States election is a popular topic and many prediction models are built to predict the winning candidate. FiveThirtyEight did this to forecast the 2016 and 2020 elections. Prediction analysis for an election would require input variables such as historical polling data, trends and current polling data in order to return a good prediction. Something as large as an election wouldn’t just be using a linear model, but a complex model with certain tunings to best serve its purpose.

6. Causal Analysis

Causal analysis looks at the cause and effect of relationships between variables and is focused on finding the cause of a correlation. This way, researchers can examine how a change in one variable affects another. Here’s what you need to know:

  • To find the cause, you have to question whether the observed correlations driving your conclusion are valid. Just looking at the surface data won’t help you discover the hidden mechanisms underlying the correlations.
  • Causal analysis is applied in randomized studies focused on identifying causation.
  • Causal analysis is the gold standard in data analysis and scientific studies where the cause of a phenomenon is to be extracted and singled out, like separating wheat from chaff.
  • Good data is hard to find and requires expensive research and studies. These studies are analyzed in aggregate (multiple groups), and the observed relationships are just average effects (mean) of the whole population. This means the results might not apply to everyone.

Causal Analysis Example  

Say you want to test out whether a new drug improves human strength and focus. To do that, you perform randomized control trials for the drug to test its effect. You compare the sample of candidates for your new drug against the candidates receiving a mock control drug through a few tests focused on strength and overall focus and attention. This will allow you to observe how the drug affects the outcome. 

7. Mechanistic Analysis

Mechanistic analysis is used to understand exact changes in variables that lead to other changes in other variables . In some ways, it is a predictive analysis, but it’s modified to tackle studies that require high precision and meticulous methodologies for physical or engineering science. Here’s what you need to know:

  • It’s applied in physical or engineering sciences, situations that require high  precision and little room for error, only noise in data is measurement error.
  • It’s designed to understand a biological or behavioral process, the pathophysiology of a disease or the mechanism of action of an intervention. 

Mechanistic Analysis Example

Say an experiment is done to simulate safe and effective nuclear fusion to power the world. A mechanistic analysis of the study would entail a precise balance of controlling and manipulating variables with highly accurate measures of both variables and the desired outcomes. It’s this intricate and meticulous modus operandi toward these big topics that allows for scientific breakthroughs and advancement of society.

8. Prescriptive Analysis  

Prescriptive analysis compiles insights from other previous data analyses and determines actions that teams or companies can take to prepare for predicted trends. Here’s what you need to know: 

  • Prescriptive analysis may come right after predictive analysis, but it may involve combining many different data analyses. 
  • Companies need advanced technology and plenty of resources to conduct prescriptive analysis. Artificial intelligence systems that process data and adjust automated tasks are an example of the technology required to perform prescriptive analysis.  

Prescriptive Analysis Example

Prescriptive analysis is pervasive in everyday life, driving the curated content users consume on social media. On platforms like TikTok and Instagram,  algorithms can apply prescriptive analysis to review past content a user has engaged with and the kinds of behaviors they exhibited with specific posts. Based on these factors, an  algorithm seeks out similar content that is likely to elicit the same response and  recommends it on a user’s personal feed. 

More on Data Explaining the Empirical Rule for Normal Distribution

When to Use the Different Types of Data Analysis  

  • Descriptive analysis summarizes the data at hand and presents your data in a comprehensible way.
  • Diagnostic analysis takes a more detailed look at data to reveal why certain patterns occur, making it a good method for explaining anomalies. 
  • Exploratory data analysis helps you discover correlations and relationships between variables in your data.
  • Inferential analysis is for generalizing the larger population with a smaller sample size of data.
  • Predictive analysis helps you make predictions about the future with data.
  • Causal analysis emphasizes finding the cause of a correlation between variables.
  • Mechanistic analysis is for measuring the exact changes in variables that lead to other changes in other variables.
  • Prescriptive analysis combines insights from different data analyses to develop a course of action teams and companies can take to capitalize on predicted outcomes. 

A few important tips to remember about data analysis include:

  • Correlation doesn’t imply causation.
  • EDA helps discover new connections and form hypotheses.
  • Accuracy of inference depends on the sampling scheme.
  • A good prediction depends on the right input variables.
  • A simple linear model with enough data usually does the trick.
  • Using a variable to predict another doesn’t denote causal relationships.
  • Good data is hard to find, and to produce it requires expensive research.
  • Results from studies are done in aggregate and are average effects and might not apply to everyone.​

Frequently Asked Questions

What is an example of data analysis.

A marketing team reviews a company’s web traffic over the past 12 months. To understand why sales rise and fall during certain months, the team breaks down the data to look at shoe type, seasonal patterns and sales events. Based on this in-depth analysis, the team can determine variables that influenced web traffic and make adjustments as needed.

How do you know which data analysis method to use?

Selecting a data analysis method depends on the goals of the analysis and the complexity of the task, among other factors. It’s best to assess the circumstances and consider the pros and cons of each type of data analysis before moving forward with a particular method.

Recent Data Science Articles

4 Types of Random Sampling Techniques Explained

data analysis examples in research

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

data analysis examples in research

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations .

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

data analysis examples in research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

77 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

MWASOMOLA, BROWN

Very useful, I have got the concept

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

lule victor

its nice work and excellent job ,you have made my work easier

Pedro Uwadum

Wow! So explicit. Well done.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

helpful professor logo

15 Data Analysis Examples

15 Data Analysis Examples

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

data analysis examples and definition, explained below

Data analysis is the process of inspecting, cleaning, transforming, and modeling data to discover useful information, derive conclusions, and support decision-making (Upton & Brawn, 2023).

It encompasses a variety of techniques from statistics, mathematics, and computer science to interpret complex data structures and extract meaningful insights (Bekes & Kezdi, 2021).

We use data analysis to generate useful insights from data that can help in our decision-making and strategic planning in various realms. For example:

  • It can help businesses to develop a better understanding of market trends and customer preferences to inform marketing strategies.
  • We can develop a modeled understanding of risks and prevent issues before they escalate into larger problems.
  • Data analysis may reveal hidden or not easily identifiable insights and trends, empowering you to enrich your knowledge base and anticipate future needs (Naeem et al., 2020; Upton & Brawn, 2023).

Below are some common ways that data analysis is conducted.

Data Analysis Examples

1. Sales Trend Analysis This type of data analysis involves assessing sales data over various periods to identify trends and patterns. For instance, a retail company might monitor its quarterly sales data to identify peak buying times or popular products (Bihani & Patil, 2014). Such analysis allows businesses to adjust their sales strategies, inventory management, and marketing efforts to align with customer demands and seasonal trends, thereby enhancing profitability and operational efficiency (Kohavi, Rothleder & Simoudis, 2002).

2. Customer Segmentation In this data analysis example, businesses compartmentalize their customer base into different groups based on specific criteria such as purchasing behavior, demographics, or preferences (Kohavi, Rothleder & Simoudis, 2002). For example, an online shopping platform might segment its customers into categories like frequent buyers, seasonal shoppers, or budget buyers. This analysis helps tailor marketing campaigns and product offerings to appeal to each group specifically, enabling improved customer engagement and business growth.

3. Social Media Sentiment Analysis This is a popular use of data analysis in the digital age. Companies harness big data from social media platforms to analyze public sentiment towards their products or brand. By examining comments, likes, shares, and other interactions, they can gauge overall satisfaction and identify areas for improvement. This kind of scrutiny can significantly impact a business’s online reputation management and influence its marketing and public relations strategies.

4. Forecasting and Predictive Analysis Businesses often use data analysis to predict future trends or outcomes. For instance, an airline company might analyze past data on seat bookings, flight timings, and passenger preferences to forecast future travel trends. This predictive analysis allows the airline to optimize its flight schedules, plan for peak travel periods, and set competitive ticket prices, ultimately contributing to improved customer satisfaction and increased revenues.

5. Operational Efficiency Analysis This form of data analysis is focused on optimizing internal processes within an organization. For example, a manufacturing company might analyze data regarding machine performance, maintenance schedules, and production output to identify bottlenecks or inefficiencies (Bihani & Patil, 2014). By addressing these issues, the company can streamline its operations, improve productivity, and reduce costs, signifying the importance of data analysis in achieving operational excellence.

6. Risk Assessment Analysis This type of data analysis helps businesses identify potential risks that could adversely impact their operations or profits. An insurance company, for instance, might analyze customer data and historical claim information to estimate future claim risks. This supports more accurate premium setting and helps in proactively managing any potential financial hazards, underscoring the role of data analysis in sound risk management.

7. Recruitment and Talent Management Analysis In this example of data analysis, human resources departments scrutinize data concerning employee performance, retention rates, and skill sets. For example, a technology firm might conduct analysis to identify the skills and experience most prevalent among its top-performing employees (Chang, Wang & Hawamdeh, 2019). This enables the company to attract and retain high-caliber talent, tailor training programs, and improve overall workforce effectiveness.

8. Supply Chain Optimization Analysis This form of data analysis aims to enhance the efficiency of a business’s supply chain. For instance, a grocery store might examine sales data, warehouse inventory levels, and supplier delivery times to ensure the right products are in stock at the right time (Chang, Wang & Hawamdeh, 2019). This can reduce warehousing costs, minimize stockouts or overstocks, and increase customer satisfaction, marking data analysis’s role in streamlining supply chains.

9. Web Analytics In this digital age, businesses invest in data analysis to optimize their online presence and functionality. An ecommerce business, for example, might analyze website traffic data, bounce rates, conversion rates, and user engagement metrics. This analysis can guide website redesign, enhance user experience, and boost conversion rates, reflecting the importance of data analysis in digital marketing and web optimization.

10. Medical and Healthcare Analysis Data analysis plays a crucial role in the healthcare sector. A hospital might analyze patient data, disease patterns, treatment outcomes, and so forth. This can support evidence-based treatment plans, inform research on healthcare trends, and contribute to policy development (Islam et al., 2018). It can also enhance patient care by identifying efficient treatment paths and reducing hospitalization time, underlining the significance of data analysis in the medical field.

11. Fraud Detection Analysis In the financial and banking sector, data analysis plays a paramount role in identifying and mitigating fraudulent activities. Banks might analyze transaction data, account activity, and user behavior trends to detect abnormal patterns indicative of fraud. By alerting the concerned authorities about the suspicious activity, such analysis can prevent financial losses and protect customer assets, illustrating data analysis’s importance in ensuring financial security.

12. Energy Consumption Analysis Utilities and energy companies often use data analysis to optimize their energy distribution and consumption. By evaluating data on customer usage patterns, peak demand times, and grid performance, companies can enhance energy efficiency, optimize their grid operations, and develop more customer-centric services. It shows how data analysis can contribute to a more sustainable and efficient use of resources.

13. Market Research Analysis Many businesses rely on data analysis to gauge market dynamics and consumer behaviors. A cosmetic brand, for example, might analyze sales data, consumer feedback, and competitor information. Such analysis can provide useful insights about consumer preferences, popular trends, and competitive strategies, facilitating the development of products that align with market demands, showcasing how data analysis can drive business innovation.

14. Quality Control Analysis Manufacturing industries often use data analysis in their quality control processes. They may monitor operational data, machine performance, and product fault reports. By identifying causes of defects or inefficiencies, these industries can improve product quality, enhance manufacturing processes, and reduce waste, demonstrating the decisive role of data analysis in maintaining high-quality standards.

15. Economic and Policy Analysis Government agencies and think tanks utilize data analysis to inform policy decisions and societal strategies. They might analyze data relating to employment rates, GDP, public health, or educational attainment. These insights can inform policy development, assess the impact of existing policies, and guide strategies for societal improvement. This reveals that data analysis is a key tool in managing social and economic progression.

For more General Examples of Analysis, See Here

Data analysis, encompassing activities such as trend spotting, risk assessment, predictive modeling, customer segmentation, and much more, proves to be an indispensable tool in various fields.

From optimizing operations and making informed decisions to understanding customer behavior and predicting future trends, its applications are diverse and far-reaching. Through meticulous examination of relevant data and astute interpretation of patterns, businesses and organizations can extract actionable insights, enhance their strategic planning, and bolster their competitive advantage.

Furthermore, with the current growth in digital technology, the potency of data analysis in enhancing operational efficiency, facilitating innovation, and driving economic growth cannot be overstated. Therefore, mastery of data analysis techniques and methodologies is critical for anyone seeking to harness the full potential of their data.

Ultimately, data analysis seeks to turn raw data into valuable knowledge, enabling organizations and individuals to thrive in today’s data-driven world.

Bekes, G., & Kezdi, G. (2021). Data Analysis for Business, Economics, and Policy . Cambridge University Press.

Bihani, P., & Patil, S. T. (2014). A comparative study of data analysis techniques.  International journal of emerging trends & technology in computer science ,  3 (2), 95-101.

Chang, H. C., Wang, C. Y., & Hawamdeh, S. (2019). Emerging trends in data analytics and knowledge management job market: extending KSA framework.  Journal of Knowledge Management ,  23 (4), 664-686. doi: https://doi.org/10.1108/JKM-02-2018-0088

Islam, M. S., Hasan, M. M., Wang, X., Germack, H. D., & Noor-E-Alam, M. (2018, May). A systematic review on healthcare analytics: application and theoretical perspective of data mining. In  Healthcare  (Vol. 6, No. 2, p. 54). doi: https://doi.org/10.3390/healthcare6020054

Kohavi, R., Rothleder, N. J., & Simoudis, E. (2002). Emerging trends in business analytics .  Communications of the ACM ,  45 (8), 45-48.

Naeem, M., Jamal, T., Diaz-Martinez, J., Butt, S. A., Montesano, N., Tariq, M. I., … & De-La-Hoz-Valdiris, E. (2022). Trends and future perspective challenges in big data. In  Advances in Intelligent Data Analysis and Applications: Proceeding of the Sixth Euro-China Conference on Intelligent Data Analysis and Applications, 15–18 October 2019, Arad, Romania  (pp. 309-325). Springer Singapore.

Upton, G., & Brawn, D. (2023). Data Analysis: A Gentle Introduction for Future Data Scientists . Oxford: Oxford University Press.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Business growth

Business tips

What is data analysis? Examples and how to get started

A hero image with an icon of a line graph / chart

Even with years of professional experience working with data, the term "data analysis" still sets off a panic button in my soul. And yes, when it comes to serious data analysis for your business, you'll eventually want data scientists on your side. But if you're just getting started, no panic attacks are required.

Table of contents:

Quick review: What is data analysis?

Data analysis is the process of examining, filtering, adapting, and modeling data to help solve problems. Data analysis helps determine what is and isn't working, so you can make the changes needed to achieve your business goals. 

Keep in mind that data analysis includes analyzing both quantitative data (e.g., profits and sales) and qualitative data (e.g., surveys and case studies) to paint the whole picture. Here are two simple examples (of a nuanced topic) to show you what I mean.

An example of quantitative data analysis is an online jewelry store owner using inventory data to forecast and improve reordering accuracy. The owner looks at their sales from the past six months and sees that, on average, they sold 210 gold pieces and 105 silver pieces per month, but they only had 100 gold pieces and 100 silver pieces in stock. By collecting and analyzing inventory data on these SKUs, they're forecasting to improve reordering accuracy. The next time they order inventory, they order twice as many gold pieces as silver to meet customer demand.

An example of qualitative data analysis is a fitness studio owner collecting customer feedback to improve class offerings. The studio owner sends out an open-ended survey asking customers what types of exercises they enjoy the most. The owner then performs qualitative content analysis to identify the most frequently suggested exercises and incorporates these into future workout classes.

Why is data analysis important?

Here's why it's worth implementing data analysis for your business:

Understand your target audience: You might think you know how to best target your audience, but are your assumptions backed by data? Data analysis can help answer questions like, "What demographics define my target audience?" or "What is my audience motivated by?"

Inform decisions: You don't need to toss and turn over a decision when the data points clearly to the answer. For instance, a restaurant could analyze which dishes on the menu are selling the most, helping them decide which ones to keep and which ones to change.

Adjust budgets: Similarly, data analysis can highlight areas in your business that are performing well and are worth investing more in, as well as areas that aren't generating enough revenue and should be cut. For example, a B2B software company might discover their product for enterprises is thriving while their small business solution lags behind. This discovery could prompt them to allocate more budget toward the enterprise product, resulting in better resource utilization.

Identify and solve problems: Let's say a cell phone manufacturer notices data showing a lot of customers returning a certain model. When they investigate, they find that model also happens to have the highest number of crashes. Once they identify and solve the technical issue, they can reduce the number of returns.

Types of data analysis (with examples)

There are five main types of data analysis—with increasingly scary-sounding names. Each one serves a different purpose, so take a look to see which makes the most sense for your situation. It's ok if you can't pronounce the one you choose. 

Types of data analysis including text analysis, statistical analysis, diagnostic analysis, predictive analysis, and prescriptive analysis.

Text analysis: What is happening?

Here are a few methods used to perform text analysis, to give you a sense of how it's different from a human reading through the text: 

Word frequency identifies the most frequently used words. For example, a restaurant monitors social media mentions and measures the frequency of positive and negative keywords like "delicious" or "expensive" to determine how customers feel about their experience. 

Language detection indicates the language of text. For example, a global software company may use language detection on support tickets to connect customers with the appropriate agent. 

Keyword extraction automatically identifies the most used terms. For example, instead of sifting through thousands of reviews, a popular brand uses a keyword extractor to summarize the words or phrases that are most relevant. 

Statistical analysis: What happened?

Statistical analysis pulls past data to identify meaningful trends. Two primary categories of statistical analysis exist: descriptive and inferential.

Descriptive analysis

Here are a few methods used to perform descriptive analysis: 

Measures of frequency identify how frequently an event occurs. For example, a popular coffee chain sends out a survey asking customers what their favorite holiday drink is and uses measures of frequency to determine how often a particular drink is selected. 

Measures of central tendency use mean, median, and mode to identify results. For example, a dating app company might use measures of central tendency to determine the average age of its users.

Measures of dispersion measure how data is distributed across a range. For example, HR may use measures of dispersion to determine what salary to offer in a given field. 

Inferential analysis

Inferential analysis uses a sample of data to draw conclusions about a much larger population. This type of analysis is used when the population you're interested in analyzing is very large. 

Here are a few methods used when performing inferential analysis: 

Hypothesis testing identifies which variables impact a particular topic. For example, a business uses hypothesis testing to determine if increased sales were the result of a specific marketing campaign. 

Regression analysis shows the effect of independent variables on a dependent variable. For example, a rental car company may use regression analysis to determine the relationship between wait times and number of bad reviews. 

Diagnostic analysis: Why did it happen?

Diagnostic analysis, also referred to as root cause analysis, uncovers the causes of certain events or results. 

Here are a few methods used to perform diagnostic analysis: 

Time-series analysis analyzes data collected over a period of time. A retail store may use time-series analysis to determine that sales increase between October and December every year. 

Correlation analysis determines the strength of the relationship between variables. For example, a local ice cream shop may determine that as the temperature in the area rises, so do ice cream sales. 

Predictive analysis: What is likely to happen?

Predictive analysis aims to anticipate future developments and events. By analyzing past data, companies can predict future scenarios and make strategic decisions.  

Here are a few methods used to perform predictive analysis: 

Decision trees map out possible courses of action and outcomes. For example, a business may use a decision tree when deciding whether to downsize or expand. 

Prescriptive analysis: What action should we take?

The highest level of analysis, prescriptive analysis, aims to find the best action plan. Typically, AI tools model different outcomes to predict the best approach. While these tools serve to provide insight, they don't replace human consideration, so always use your human brain before going with the conclusion of your prescriptive analysis. Otherwise, your GPS might drive you into a lake.

Here are a few methods used to perform prescriptive analysis: 

Algorithms are used in technology to perform specific tasks. For example, banks use prescriptive algorithms to monitor customers' spending and recommend that they deactivate their credit card if fraud is suspected. 

Data analysis process: How to get started

The actual analysis is just one step in a much bigger process of using data to move your business forward. Here's a quick look at all the steps you need to take to make sure you're making informed decisions. 

Circle chart with data decision, data collection, data cleaning, data analysis, data interpretation, and data visualization.

Data decision

As with almost any project, the first step is to determine what problem you're trying to solve through data analysis. 

Make sure you get specific here. For example, a food delivery service may want to understand why customers are canceling their subscriptions. But to enable the most effective data analysis, they should pose a more targeted question, such as "How can we reduce customer churn without raising costs?" 

Data collection

Next, collect the required data from both internal and external sources. 

Internal data comes from within your business (think CRM software, internal reports, and archives), and helps you understand your business and processes.

External data originates from outside of the company (surveys, questionnaires, public data) and helps you understand your industry and your customers. 

Data cleaning

Data can be seriously misleading if it's not clean. So before you analyze, make sure you review the data you collected.  Depending on the type of data you have, cleanup will look different, but it might include: 

Removing unnecessary information 

Addressing structural errors like misspellings

Deleting duplicates

Trimming whitespace

Human checking for accuracy 

Data analysis

Now that you've compiled and cleaned the data, use one or more of the above types of data analysis to find relationships, patterns, and trends. 

Data analysis tools can speed up the data analysis process and remove the risk of inevitable human error. Here are some examples.

Spreadsheets sort, filter, analyze, and visualize data. 

Structured query language (SQL) tools manage and extract data in relational databases. 

Data interpretation

After you analyze the data, you'll need to go back to the original question you posed and draw conclusions from your findings. Here are some common pitfalls to avoid:

Correlation vs. causation: Just because two variables are associated doesn't mean they're necessarily related or dependent on one another. 

Confirmation bias: This occurs when you interpret data in a way that confirms your own preconceived notions. To avoid this, have multiple people interpret the data. 

Small sample size: If your sample size is too small or doesn't represent the demographics of your customers, you may get misleading results. If you run into this, consider widening your sample size to give you a more accurate representation. 

Data visualization

Automate your data collection, frequently asked questions.

Need a quick summary or still have a few nagging data analysis questions? I'm here for you.

What are the five types of data analysis?

The five types of data analysis are text analysis, statistical analysis, diagnostic analysis, predictive analysis, and prescriptive analysis. Each type offers a unique lens for understanding data: text analysis provides insights into text-based content, statistical analysis focuses on numerical trends, diagnostic analysis looks into problem causes, predictive analysis deals with what may happen in the future, and prescriptive analysis gives actionable recommendations.

What is the data analysis process?

The data analysis process involves data decision, collection, cleaning, analysis, interpretation, and visualization. Every stage comes together to transform raw data into meaningful insights. Decision determines what data to collect, collection gathers the relevant information, cleaning ensures accuracy, analysis uncovers patterns, interpretation assigns meaning, and visualization presents the insights.

What is the main purpose of data analysis?

In business, the main purpose of data analysis is to uncover patterns, trends, and anomalies, and then use that information to make decisions, solve problems, and reach your business goals.

Related reading: 

This article was originally published in October 2022 and has since been updated with contributions from Cecilia Gillen. The most recent update was in September 2023.

Get productivity tips delivered straight to your inbox

We’ll email you 1-3 times per week—and never share your information.

Shea Stevens picture

Shea Stevens

Shea is a content writer currently living in Charlotte, North Carolina. After graduating with a degree in Marketing from East Carolina University, she joined the digital marketing industry focusing on content and social media. In her free time, you can find Shea visiting her local farmers market, attending a country music concert, or planning her next adventure.

  • Data & analytics
  • Small business

What is data extraction? And how to automate the process

Data extraction is the process of taking actionable information from larger, less structured sources to be further refined or analyzed. Here's how to do it.

Related articles

Header image for a blog post about streamlining project management with Zapier and AI

Project milestones for improved project management

Project milestones for improved project...

Hero image with an icon representing data visualization

14 data visualization examples to captivate your audience

14 data visualization examples to captivate...

Hero image with the arms and hands of two people looking over financial documents, with a calculator

61 best businesses to start with $10K or less

61 best businesses to start with $10K or...

Hero image with an icon representing a SWOT analysis

SWOT analysis: A how-to guide and template (that won't bore you to tears)

SWOT analysis: A how-to guide and template...

Improve your productivity automatically. Use Zapier to get your apps working together.

A Zap with the trigger 'When I get a new lead from Facebook,' and the action 'Notify my team in Slack'

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

data analysis examples in research

Home Market Research

Data Analysis: Definition, Types and Examples

Data analysis

Nowadays, data is collected at various stages of processes and transactions, which has the potential to improve the way we work significantly. However, to fully realize the value of data analysis, this data must be analyzed to gain valuable insights into improving products and services.

Data analysis consists aspect of making informed decisions in various industries. With the advancement of technology, it has become a dynamic and exciting field But what is it in simple words?

What is Data Analysis?

Data analysis is the science of examining data to conclude the information to make decisions or expand knowledge on various subjects. It consists of subjecting data to operations. This process happens to obtain precise conclusions to help us achieve our goals, such as operations that cannot be previously defined since data collection may reveal specific difficulties.

“A lot of this [data analysis] will help humans work smarter and faster because we have data on everything that happens.” –Daniel Burrus, business consultant and speaker on business and innovation issues.

Why is data analytics important?

Data analytics help businesses understand the target market faster, increase sales, reduce costs, increase revenue, and allow for better problem-solving. Data analysis is important for several reasons, as it plays a critical role in various aspects of modern businesses and organizations. Here are some key reasons why data analysis important is crucial:

Informed decision-making

Data analytics helps businesses make more informed and data-driven decisions. By analyzing data, organizations can gain insights into customer behavior, market trends, and operational performance, enabling them to make better choices that are supported by evidence rather than relying on intuition alone.

Identifying opportunities and challenges

Data analytics allows businesses to identify new opportunities for growth, product development, or market expansion. It also helps identify potential challenges and risks, allowing organizations to address them proactively.

Improving efficiency and productivity

Organizations can identify inefficiencies and bottlenecks by analyzing processes and performance data, leading to process optimization and improved productivity. This, in turn, can result in cost savings and better resource allocation.

Customer understanding and personalization

Data analytics enables businesses to understand their customers better, including their preferences, buying behaviors, and pain points. With this understanding, organizations can offer personalized products and services, enhancing customer satisfaction and loyalty.

Competitive advantage

Organizations that leverage data analytics effectively gain a competitive edge in today’s data-driven world. By analyzing data, businesses can identify unique insights and trends that better understand the market and their competitors, helping them stay ahead of the competition.

Performance tracking and evaluation

Data analytics allows organizations to track and measure their performance against key performance indicators (KPIs) and goals. This helps in evaluating the success of various strategies and initiatives, enabling continuous improvement.

Predictive analytics

Data analytics can be used for predictive modeling, helping organizations forecast future trends and outcomes. This is valuable for financial planning, demand forecasting, risk management, and proactive decision-making.

Data-driven innovation

Data analytics can fuel innovation by providing insights that lead to the development of new products, services, or business models. Innovations based on data analysis can lead to groundbreaking advancements and disruption in various industries.

Fraud detection and security

Data analytics can be used to detect anomalies and patterns indicative of fraudulent activities. It plays a crucial role in enhancing security and protecting businesses from financial losses and reputational risk .

Regulatory compliance

In many industries, regulations, and laws are mandatory. Data analytics can help organizations ensure that they meet these compliance requirements by tracking and auditing relevant data.

Types of data analysis

There are several types of data analysis, each with a specific purpose and method. Let’s talk about some significant types:

data analysis examples in research

Descriptive Analysis

Descriptive analysis is used to summarize and describe the main features of a dataset. It involves calculating measures of central tendency and dispersion to describe the data. The descriptive analysis provides a comprehensive overview of the data and insights into its properties and structure.

LEARN ABOUT: Descriptive Analysis

Inferential Analysis

The inferential analysis is used statistical analysis plan and testing to make inferences about the population parameters, such as the mean or proportion. This unit of analysis involves using models and hypothesis testing to make predictions and draw conclusions about the population.

LEARN ABOUT:   Statistical Analysis Methods

Predictive Analysis

Predictive analysis is used to predict future events or outcomes based on historical data and other relevant information. It involves using statistical models and machine learning algorithms to identify patterns in the data and make predictions about future outcomes.

Prescriptive Analysis

Prescriptive analysis is a decision-making analysis that uses mathematical modeling, optimization algorithms, and other data-driven techniques to identify the action for a given problem or situation. It combines mathematical models, data, and business constraints to find the best move or decision.

Text Analysis

Text analysis is a process of extracting meaningful information from unstructured text data. It involves a variety of techniques, including natural language processing (NLP), text mining, sentiment analysis, and topic modeling, to uncover insights and patterns in text data.

Diagnostic Analysis

The diagnostic analysis seeks to identify the root causes of specific events or outcomes. It is often used in troubleshooting problems or investigating anomalies in data.

LEARN ABOUT: Data Analytics Projects

Uses of data analysis

It is used in many industries regardless of the branch. It gives us the basis for making decisions or confirming a hypothesis.

A researcher or data analyst mainly performs data analysis to predict consumer behavior and help companies place their products and services in the market accordingly. For instance, sales data analysis can help you identify the product range not-so-popular in a specific demographic group. It can give you insights into tweaking your current marketing campaign to better connect with the target audience and address their needs. 

Human Resources

Organizations can use data analysis tools to offer a great experience to their employees and ensure an excellent work environment. They can also utilize the data to find out the best resources whose skill set matches the organizational goals.

Universities and academic institutions can perform the analysis to measure student performance and gather insights on how certain behaviors can further improve education.

Techniques for data analysis

It is essential to analyze raw data to understand it. We must resort to various data analysis techniques that depend on the type of information collected, so it is crucial to define the method before implementing it.

  • Qualitative data: Researchers collect qualitative data from the underlying emotions, body language, and expressions. Its foundation is the data interpretation of verbal responses. The most common ways of obtaining this information are through open-ended interviews, focus groups, and observation groups, where researchers generally analyze patterns in observations throughout the data collection phase.
  • Quantitative data: Quantitative data presents itself in numerical form. It focuses on tangible results.

Data analysis focuses on reaching a conclusion based solely on the researcher’s current knowledge. How you collect your data should relate to how you plan to analyze and use it. You also need to collect accurate and trustworthy information. 

Many data collection techniques exist, but experts’ most commonly used method is online surveys. It offers significant benefits, such as reducing time and money compared to traditional data collection methods .

Data analysis and data analytics are two interconnected but distinct processes in data science. Data analysis involves examining raw data using various techniques to uncover patterns, correlations, and insights. It’s about understanding historical data to make informed conclusions. On the other hand, data analytics goes a step further by utilizing those insights to predict future trends, prescribe actions, and guide decision-making.

At QuestionPro, we have an accurate tool that will help you professionally make better decisions.

Data Analysis Methods

The term data analysis technique has often been used interchangeably by professional researchers. Frequently people also throw out the previous analysis type. We’re hoping for this to be an important distinction between how and when data analyses are done. 

However, there are many different techniques that allow for data analysis. Here are some of the main common methods used for data analysis:

Descriptive Statistics

Descriptive statistics involves summarizing and describing the main features of a dataset, such as mean, median, mode, standard deviation, range, and percentiles. It provides a basic understanding of the data’s distribution and characteristics.

Inferential Statistics

Inferential statistics are used to make inferences and draw conclusions about a larger population based on a sample of data. It includes techniques like hypothesis testing, confidence intervals, and regression analysis.

Data Visualization

Data visualization is the graphical representation of data to help analysts and stakeholders understand patterns, trends, and insights. Common visualization techniques include bar charts, line graphs, scatter plots, heat maps, and pie charts.

Exploratory Data Analysis (EDA)

EDA involves analyzing and visualizing data to discover patterns, relationships, and potential outliers. It helps in gaining insights into the data before formal statistical testing.

Predictive Modeling

Predictive modeling uses algorithms and statistical techniques to build models that can make predictions about future outcomes based on historical data. Machine learning algorithms, such as decision trees, logistic regression, and neural networks, are commonly used for predictive modeling.

Time Series Analysis

Time series analysis is used to analyze data collected over time, such as stock prices, temperature readings, or sales data. It involves identifying trends and seasonality and forecasting future values.

Cluster Analysis

Cluster analysis is used to group similar data points together based on certain features or characteristics. It helps in identifying patterns and segmenting data into meaningful clusters.

Factor Analysis and Principal Component Analysis (PCA)

These techniques are used to reduce the dimensionality of data and identify underlying factors or components that explain the variance in the data.

Text Mining and Natural Language Processing (NLP)

Text mining and NLP techniques are used to analyze and extract information from unstructured text data, such as social media posts, customer reviews, or survey responses.

Qualitative Data Analysis

Qualitative data analysis involves interpreting non-numeric data, such as text, images, audio, or video. Techniques like content analysis, thematic analysis, and grounded theory are used to analyze qualitative data.

Quantitative Data Analysis

Quantitative analysis focuses on analyzing numerical data to discover relationships, trends, and patterns. This analysis often involves statistical methods.

Data Mining

Data mining involves discovering patterns, relationships, or insights from large datasets using various algorithms and techniques.

Regression Analysis

Regression analysis is used to model the relationship between a dependent variable and one or more independent variables. It helps understand how changes in one variable impact the other(s).

Step-by-step guide data analysis

With these five steps in your data analysis process, you will make better decisions for your business because data that has been well collected and analyzed support your choices.

LEARN ABOUT: Data Mining Techniques

steps to data analysis

Step 1: Define your questions

Start by selecting the right questions. Questions should be measurable, clear, and concise. Design your questions to qualify or disqualify possible solutions to your specific problem.

Step 2: Establish measurement priorities

This step divides into two sub-steps:

  • Decide what to measure: Analyze what kind of data you need.
  • Decide how to measure it: Thinking about how to measure your data is just as important, especially before the data collection phase, because your measurement process supports or discredits your thematic analysis later on.

Step 3: Collect data

With the question clearly defined and your measurement priorities established, now it’s time to collect your data. As you manage and organize your data, remember to keep these essential points in mind:

  • Before collecting new data, determine what information you could gather from existing databases or sources.
  • Determine a storage and file naming system to help all team members collaborate in advance. This process saves time and prevents team members from collecting the same information twice.
  • If you need to collect data through surveys, observation, or interviews, develop a questionnaire in advance to ensure consistency and save time.
  • Keep the collected data organized with a log of collection dates, and add any source notes as you go along.

Step 4: Analyze the data

Once you’ve collected the correct data to answer your Step 1 question, it’s time to conduct a deeper statistical analysis . Find relationships, identify trends, and sort and filter your data according to variables. You will find the exact data you need as you analyze the data.

Step 5: Interpret the results

After analyzing the data and possibly conducting further research, it is finally time to interpret the results. Ask yourself these key questions:

  • Does the data answer your original question? How?
  • Does the data help you defend any objections? How?
  • Are there any limitations to the conclusions, any angles you haven’t considered?

If the interpretation of data holds up under these questions and considerations, you have reached a productive conclusion. The only remaining step is to use the process results to decide how you will act.

Join us as we look into the most frequently used question types and how to analyze your findings effectively.

Make the right decisions by analyzing data the right way!

Data analysis advantages

Many industries use data to draw conclusions and decide on actions to implement. It is worth mentioning that science also uses to test or discard existing theories or models.

There’s more than one advantage to data analysis done right. Here are some examples:

data analysis advantages

  • Make faster and more informed business decisions backed by facts.
  • Identify performance issues that require action.
  • Gain a deeper understanding of customer requirements, which creates better business relationships.
  • Increase awareness of risks to implement preventive measures.
  • Visualize different dimensions of the data.
  • Gain competitive advantage.
  • A better understanding of the financial performance of the business.
  • Identify ways to reduce costs and thus increase profits.

These questions are examples of different types of data analysis. You can include them in your post-event surveys aimed at your customers:

  • Questions start with: Why? How? 

Example of qualitative data research analysis: Panels where a discussion is held, and consumers are interviewed about what they like or dislike about the place.

  • Data is collected by asking questions like: How many? Who? How often? Where?

Example of quantitative research analysis: Surveys focused on measuring sales, trends, reports, or perceptions.

Data analysis with QuestionPro

Data analysis is crucial in aiding organizations and individuals in making informed decisions by comprehensively understanding the data. If you’re in need of various data analysis techniques solutions, consider using QuestionPro. Our software allows you to collect data easily, create real-time reports, and analyze data. Practical business intelligence relies on the synergy between analytics and reporting , where analytics uncovers valuable insights, and reporting communicates these findings to stakeholders.

LEARN ABOUT: Average Order Value

Start a free trial or schedule a demo to see the full potential of our powerful tool. We’re here to help you every step of the way!

LEARN MORE         FREE TRIAL

MORE LIKE THIS

data analysis examples in research

Why You Should Attend XDAY 2024

Aug 30, 2024

Alchemer vs Qualtrics

Alchemer vs Qualtrics: Find out which one you should choose

target population

Target Population: What It Is + Strategies for Targeting

Aug 29, 2024

Microsoft Customer Voice vs QuestionPro

Microsoft Customer Voice vs QuestionPro: Choosing the Best

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

The 7 Most Useful Data Analysis Methods and Techniques

Data analytics is the process of analyzing raw data to draw out meaningful insights. These insights are then used to determine the best course of action.

When is the best time to roll out that marketing campaign? Is the current team structure as effective as it could be? Which customer segments are most likely to purchase your new product?

Ultimately, data analytics is a crucial driver of any successful business strategy. But how do data analysts actually turn raw data into something useful? There are a range of methods and techniques that data analysts use depending on the type of data in question and the kinds of insights they want to uncover.

You can get a hands-on introduction to data analytics in this free short course .

In this post, we’ll explore some of the most useful data analysis techniques. By the end, you’ll have a much clearer idea of how you can transform meaningless data into business intelligence. We’ll cover:

  • What is data analysis and why is it important?
  • What is the difference between qualitative and quantitative data?
  • Regression analysis
  • Monte Carlo simulation
  • Factor analysis
  • Cohort analysis
  • Cluster analysis
  • Time series analysis
  • Sentiment analysis
  • The data analysis process
  • The best tools for data analysis
  •  Key takeaways

The first six methods listed are used for quantitative data , while the last technique applies to qualitative data. We briefly explain the difference between quantitative and qualitative data in section two, but if you want to skip straight to a particular analysis technique, just use the clickable menu.

1. What is data analysis and why is it important?

Data analysis is, put simply, the process of discovering useful information by evaluating data. This is done through a process of inspecting, cleaning, transforming, and modeling data using analytical and statistical tools, which we will explore in detail further along in this article.

Why is data analysis important? Analyzing data effectively helps organizations make business decisions. Nowadays, data is collected by businesses constantly: through surveys, online tracking, online marketing analytics, collected subscription and registration data (think newsletters), social media monitoring, among other methods.

These data will appear as different structures, including—but not limited to—the following:

The concept of big data —data that is so large, fast, or complex, that it is difficult or impossible to process using traditional methods—gained momentum in the early 2000s. Then, Doug Laney, an industry analyst, articulated what is now known as the mainstream definition of big data as the three Vs: volume, velocity, and variety. 

  • Volume: As mentioned earlier, organizations are collecting data constantly. In the not-too-distant past it would have been a real issue to store, but nowadays storage is cheap and takes up little space.
  • Velocity: Received data needs to be handled in a timely manner. With the growth of the Internet of Things, this can mean these data are coming in constantly, and at an unprecedented speed.
  • Variety: The data being collected and stored by organizations comes in many forms, ranging from structured data—that is, more traditional, numerical data—to unstructured data—think emails, videos, audio, and so on. We’ll cover structured and unstructured data a little further on.

This is a form of data that provides information about other data, such as an image. In everyday life you’ll find this by, for example, right-clicking on a file in a folder and selecting “Get Info”, which will show you information such as file size and kind, date of creation, and so on.

Real-time data

This is data that is presented as soon as it is acquired. A good example of this is a stock market ticket, which provides information on the most-active stocks in real time.

Machine data

This is data that is produced wholly by machines, without human instruction. An example of this could be call logs automatically generated by your smartphone.

Quantitative and qualitative data

Quantitative data—otherwise known as structured data— may appear as a “traditional” database—that is, with rows and columns. Qualitative data—otherwise known as unstructured data—are the other types of data that don’t fit into rows and columns, which can include text, images, videos and more. We’ll discuss this further in the next section.

2. What is the difference between quantitative and qualitative data?

How you analyze your data depends on the type of data you’re dealing with— quantitative or qualitative . So what’s the difference?

Quantitative data is anything measurable , comprising specific quantities and numbers. Some examples of quantitative data include sales figures, email click-through rates, number of website visitors, and percentage revenue increase. Quantitative data analysis techniques focus on the statistical, mathematical, or numerical analysis of (usually large) datasets. This includes the manipulation of statistical data using computational techniques and algorithms. Quantitative analysis techniques are often used to explain certain phenomena or to make predictions.

Qualitative data cannot be measured objectively , and is therefore open to more subjective interpretation. Some examples of qualitative data include comments left in response to a survey question, things people have said during interviews, tweets and other social media posts, and the text included in product reviews. With qualitative data analysis, the focus is on making sense of unstructured data (such as written text, or transcripts of spoken conversations). Often, qualitative analysis will organize the data into themes—a process which, fortunately, can be automated.

Data analysts work with both quantitative and qualitative data , so it’s important to be familiar with a variety of analysis methods. Let’s take a look at some of the most useful techniques now.

3. Data analysis techniques

Now we’re familiar with some of the different types of data, let’s focus on the topic at hand: different methods for analyzing data. 

a. Regression analysis

Regression analysis is used to estimate the relationship between a set of variables. When conducting any type of regression analysis , you’re looking to see if there’s a correlation between a dependent variable (that’s the variable or outcome you want to measure or predict) and any number of independent variables (factors which may have an impact on the dependent variable). The aim of regression analysis is to estimate how one or more variables might impact the dependent variable, in order to identify trends and patterns. This is especially useful for making predictions and forecasting future trends.

Let’s imagine you work for an ecommerce company and you want to examine the relationship between: (a) how much money is spent on social media marketing, and (b) sales revenue. In this case, sales revenue is your dependent variable—it’s the factor you’re most interested in predicting and boosting. Social media spend is your independent variable; you want to determine whether or not it has an impact on sales and, ultimately, whether it’s worth increasing, decreasing, or keeping the same. Using regression analysis, you’d be able to see if there’s a relationship between the two variables. A positive correlation would imply that the more you spend on social media marketing, the more sales revenue you make. No correlation at all might suggest that social media marketing has no bearing on your sales. Understanding the relationship between these two variables would help you to make informed decisions about the social media budget going forward. However: It’s important to note that, on their own, regressions can only be used to determine whether or not there is a relationship between a set of variables—they don’t tell you anything about cause and effect. So, while a positive correlation between social media spend and sales revenue may suggest that one impacts the other, it’s impossible to draw definitive conclusions based on this analysis alone.

There are many different types of regression analysis, and the model you use depends on the type of data you have for the dependent variable. For example, your dependent variable might be continuous (i.e. something that can be measured on a continuous scale, such as sales revenue in USD), in which case you’d use a different type of regression analysis than if your dependent variable was categorical in nature (i.e. comprising values that can be categorised into a number of distinct groups based on a certain characteristic, such as customer location by continent). You can learn more about different types of dependent variables and how to choose the right regression analysis in this guide .

Regression analysis in action: Investigating the relationship between clothing brand Benetton’s advertising expenditure and sales

b. Monte Carlo simulation

When making decisions or taking certain actions, there are a range of different possible outcomes. If you take the bus, you might get stuck in traffic. If you walk, you might get caught in the rain or bump into your chatty neighbor, potentially delaying your journey. In everyday life, we tend to briefly weigh up the pros and cons before deciding which action to take; however, when the stakes are high, it’s essential to calculate, as thoroughly and accurately as possible, all the potential risks and rewards.

Monte Carlo simulation, otherwise known as the Monte Carlo method, is a computerized technique used to generate models of possible outcomes and their probability distributions. It essentially considers a range of possible outcomes and then calculates how likely it is that each particular outcome will be realized. The Monte Carlo method is used by data analysts to conduct advanced risk analysis, allowing them to better forecast what might happen in the future and make decisions accordingly.

So how does Monte Carlo simulation work, and what can it tell us? To run a Monte Carlo simulation, you’ll start with a mathematical model of your data—such as a spreadsheet. Within your spreadsheet, you’ll have one or several outputs that you’re interested in; profit, for example, or number of sales. You’ll also have a number of inputs; these are variables that may impact your output variable. If you’re looking at profit, relevant inputs might include the number of sales, total marketing spend, and employee salaries. If you knew the exact, definitive values of all your input variables, you’d quite easily be able to calculate what profit you’d be left with at the end. However, when these values are uncertain, a Monte Carlo simulation enables you to calculate all the possible options and their probabilities. What will your profit be if you make 100,000 sales and hire five new employees on a salary of $50,000 each? What is the likelihood of this outcome? What will your profit be if you only make 12,000 sales and hire five new employees? And so on. It does this by replacing all uncertain values with functions which generate random samples from distributions determined by you, and then running a series of calculations and recalculations to produce models of all the possible outcomes and their probability distributions. The Monte Carlo method is one of the most popular techniques for calculating the effect of unpredictable variables on a specific output variable, making it ideal for risk analysis.

Monte Carlo simulation in action: A case study using Monte Carlo simulation for risk analysis

 c. Factor analysis

Factor analysis is a technique used to reduce a large number of variables to a smaller number of factors. It works on the basis that multiple separate, observable variables correlate with each other because they are all associated with an underlying construct. This is useful not only because it condenses large datasets into smaller, more manageable samples, but also because it helps to uncover hidden patterns. This allows you to explore concepts that cannot be easily measured or observed—such as wealth, happiness, fitness, or, for a more business-relevant example, customer loyalty and satisfaction.

Let’s imagine you want to get to know your customers better, so you send out a rather long survey comprising one hundred questions. Some of the questions relate to how they feel about your company and product; for example, “Would you recommend us to a friend?” and “How would you rate the overall customer experience?” Other questions ask things like “What is your yearly household income?” and “How much are you willing to spend on skincare each month?”

Once your survey has been sent out and completed by lots of customers, you end up with a large dataset that essentially tells you one hundred different things about each customer (assuming each customer gives one hundred responses). Instead of looking at each of these responses (or variables) individually, you can use factor analysis to group them into factors that belong together—in other words, to relate them to a single underlying construct. In this example, factor analysis works by finding survey items that are strongly correlated. This is known as covariance . So, if there’s a strong positive correlation between household income and how much they’re willing to spend on skincare each month (i.e. as one increases, so does the other), these items may be grouped together. Together with other variables (survey responses), you may find that they can be reduced to a single factor such as “consumer purchasing power”. Likewise, if a customer experience rating of 10/10 correlates strongly with “yes” responses regarding how likely they are to recommend your product to a friend, these items may be reduced to a single factor such as “customer satisfaction”.

In the end, you have a smaller number of factors rather than hundreds of individual variables. These factors are then taken forward for further analysis, allowing you to learn more about your customers (or any other area you’re interested in exploring).

Factor analysis in action: Using factor analysis to explore customer behavior patterns in Tehran

d. Cohort analysis

Cohort analysis is a data analytics technique that groups users based on a shared characteristic , such as the date they signed up for a service or the product they purchased. Once users are grouped into cohorts, analysts can track their behavior over time to identify trends and patterns.

So what does this mean and why is it useful? Let’s break down the above definition further. A cohort is a group of people who share a common characteristic (or action) during a given time period. Students who enrolled at university in 2020 may be referred to as the 2020 cohort. Customers who purchased something from your online store via the app in the month of December may also be considered a cohort.

With cohort analysis, you’re dividing your customers or users into groups and looking at how these groups behave over time. So, rather than looking at a single, isolated snapshot of all your customers at a given moment in time (with each customer at a different point in their journey), you’re examining your customers’ behavior in the context of the customer lifecycle. As a result, you can start to identify patterns of behavior at various points in the customer journey—say, from their first ever visit to your website, through to email newsletter sign-up, to their first purchase, and so on. As such, cohort analysis is dynamic, allowing you to uncover valuable insights about the customer lifecycle.

This is useful because it allows companies to tailor their service to specific customer segments (or cohorts). Let’s imagine you run a 50% discount campaign in order to attract potential new customers to your website. Once you’ve attracted a group of new customers (a cohort), you’ll want to track whether they actually buy anything and, if they do, whether or not (and how frequently) they make a repeat purchase. With these insights, you’ll start to gain a much better understanding of when this particular cohort might benefit from another discount offer or retargeting ads on social media, for example. Ultimately, cohort analysis allows companies to optimize their service offerings (and marketing) to provide a more targeted, personalized experience. You can learn more about how to run cohort analysis using Google Analytics .

Cohort analysis in action: How Ticketmaster used cohort analysis to boost revenue

e. Cluster analysis

Cluster analysis is an exploratory technique that seeks to identify structures within a dataset. The goal of cluster analysis is to sort different data points into groups (or clusters) that are internally homogeneous and externally heterogeneous. This means that data points within a cluster are similar to each other, and dissimilar to data points in another cluster. Clustering is used to gain insight into how data is distributed in a given dataset, or as a preprocessing step for other algorithms.

There are many real-world applications of cluster analysis. In marketing, cluster analysis is commonly used to group a large customer base into distinct segments, allowing for a more targeted approach to advertising and communication. Insurance firms might use cluster analysis to investigate why certain locations are associated with a high number of insurance claims. Another common application is in geology, where experts will use cluster analysis to evaluate which cities are at greatest risk of earthquakes (and thus try to mitigate the risk with protective measures).

It’s important to note that, while cluster analysis may reveal structures within your data, it won’t explain why those structures exist. With that in mind, cluster analysis is a useful starting point for understanding your data and informing further analysis. Clustering algorithms are also used in machine learning—you can learn more about clustering in machine learning in our guide .

Cluster analysis in action: Using cluster analysis for customer segmentation—a telecoms case study example

f. Time series analysis

Time series analysis is a statistical technique used to identify trends and cycles over time. Time series data is a sequence of data points which measure the same variable at different points in time (for example, weekly sales figures or monthly email sign-ups). By looking at time-related trends, analysts are able to forecast how the variable of interest may fluctuate in the future.

When conducting time series analysis, the main patterns you’ll be looking out for in your data are:

  • Trends: Stable, linear increases or decreases over an extended time period.
  • Seasonality: Predictable fluctuations in the data due to seasonal factors over a short period of time. For example, you might see a peak in swimwear sales in summer around the same time every year.
  • Cyclic patterns: Unpredictable cycles where the data fluctuates. Cyclical trends are not due to seasonality, but rather, may occur as a result of economic or industry-related conditions.

As you can imagine, the ability to make informed predictions about the future has immense value for business. Time series analysis and forecasting is used across a variety of industries, most commonly for stock market analysis, economic forecasting, and sales forecasting. There are different types of time series models depending on the data you’re using and the outcomes you want to predict. These models are typically classified into three broad types: the autoregressive (AR) models, the integrated (I) models, and the moving average (MA) models. For an in-depth look at time series analysis, refer to our guide .

Time series analysis in action: Developing a time series model to predict jute yarn demand in Bangladesh

g. Sentiment analysis

When you think of data, your mind probably automatically goes to numbers and spreadsheets.

Many companies overlook the value of qualitative data, but in reality, there are untold insights to be gained from what people (especially customers) write and say about you. So how do you go about analyzing textual data?

One highly useful qualitative technique is sentiment analysis , a technique which belongs to the broader category of text analysis —the (usually automated) process of sorting and understanding textual data.

With sentiment analysis, the goal is to interpret and classify the emotions conveyed within textual data. From a business perspective, this allows you to ascertain how your customers feel about various aspects of your brand, product, or service.

There are several different types of sentiment analysis models, each with a slightly different focus. The three main types include:

Fine-grained sentiment analysis

If you want to focus on opinion polarity (i.e. positive, neutral, or negative) in depth, fine-grained sentiment analysis will allow you to do so.

For example, if you wanted to interpret star ratings given by customers, you might use fine-grained sentiment analysis to categorize the various ratings along a scale ranging from very positive to very negative.

Emotion detection

This model often uses complex machine learning algorithms to pick out various emotions from your textual data.

You might use an emotion detection model to identify words associated with happiness, anger, frustration, and excitement, giving you insight into how your customers feel when writing about you or your product on, say, a product review site.

Aspect-based sentiment analysis

This type of analysis allows you to identify what specific aspects the emotions or opinions relate to, such as a certain product feature or a new ad campaign.

If a customer writes that they “find the new Instagram advert so annoying”, your model should detect not only a negative sentiment, but also the object towards which it’s directed.

In a nutshell, sentiment analysis uses various Natural Language Processing (NLP) algorithms and systems which are trained to associate certain inputs (for example, certain words) with certain outputs.

For example, the input “annoying” would be recognized and tagged as “negative”. Sentiment analysis is crucial to understanding how your customers feel about you and your products, for identifying areas for improvement, and even for averting PR disasters in real-time!

Sentiment analysis in action: 5 Real-world sentiment analysis case studies

4. The data analysis process

In order to gain meaningful insights from data, data analysts will perform a rigorous step-by-step process. We go over this in detail in our step by step guide to the data analysis process —but, to briefly summarize, the data analysis process generally consists of the following phases:

Defining the question

The first step for any data analyst will be to define the objective of the analysis, sometimes called a ‘problem statement’. Essentially, you’re asking a question with regards to a business problem you’re trying to solve. Once you’ve defined this, you’ll then need to determine which data sources will help you answer this question.

Collecting the data

Now that you’ve defined your objective, the next step will be to set up a strategy for collecting and aggregating the appropriate data. Will you be using quantitative (numeric) or qualitative (descriptive) data? Do these data fit into first-party, second-party, or third-party data?

Learn more: Quantitative vs. Qualitative Data: What’s the Difference? 

Cleaning the data

Unfortunately, your collected data isn’t automatically ready for analysis—you’ll have to clean it first. As a data analyst, this phase of the process will take up the most time. During the data cleaning process, you will likely be:

  • Removing major errors, duplicates, and outliers
  • Removing unwanted data points
  • Structuring the data—that is, fixing typos, layout issues, etc.
  • Filling in major gaps in data

Analyzing the data

Now that we’ve finished cleaning the data, it’s time to analyze it! Many analysis methods have already been described in this article, and it’s up to you to decide which one will best suit the assigned objective. It may fall under one of the following categories:

  • Descriptive analysis , which identifies what has already happened
  • Diagnostic analysis , which focuses on understanding why something has happened
  • Predictive analysis , which identifies future trends based on historical data
  • Prescriptive analysis , which allows you to make recommendations for the future

Visualizing and sharing your findings

We’re almost at the end of the road! Analyses have been made, insights have been gleaned—all that remains to be done is to share this information with others. This is usually done with a data visualization tool, such as Google Charts, or Tableau.

Learn more: 13 of the Most Common Types of Data Visualization

To sum up the process, Will’s explained it all excellently in the following video:

5. The best tools for data analysis

As you can imagine, every phase of the data analysis process requires the data analyst to have a variety of tools under their belt that assist in gaining valuable insights from data. We cover these tools in greater detail in this article , but, in summary, here’s our best-of-the-best list, with links to each product:

The top 9 tools for data analysts

  • Microsoft Excel
  • Jupyter Notebook
  • Apache Spark
  • Microsoft Power BI

6. Key takeaways and further reading

As you can see, there are many different data analysis techniques at your disposal. In order to turn your raw data into actionable insights, it’s important to consider what kind of data you have (is it qualitative or quantitative?) as well as the kinds of insights that will be useful within the given context. In this post, we’ve introduced seven of the most useful data analysis techniques—but there are many more out there to be discovered!

So what now? If you haven’t already, we recommend reading the case studies for each analysis technique discussed in this post (you’ll find a link at the end of each section). For a more hands-on introduction to the kinds of methods and techniques that data analysts use, try out this free introductory data analytics short course. In the meantime, you might also want to read the following:

  • The Best Online Data Analytics Courses for 2024
  • What Is Time Series Data and How Is It Analyzed?
  • What is Spatial Analysis?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Do Thematic Analysis | Step-by-Step Guide & Examples

How to Do Thematic Analysis | Step-by-Step Guide & Examples

Published on September 6, 2019 by Jack Caulfield . Revised on June 22, 2023.

Thematic analysis is a method of analyzing qualitative data . It is usually applied to a set of texts, such as an interview or transcripts . The researcher closely examines the data to identify common themes – topics, ideas and patterns of meaning that come up repeatedly.

There are various approaches to conducting thematic analysis, but the most common form follows a six-step process: familiarization, coding, generating themes, reviewing themes, defining and naming themes, and writing up. Following this process can also help you avoid confirmation bias when formulating your analysis.

This process was originally developed for psychology research by Virginia Braun and Victoria Clarke . However, thematic analysis is a flexible method that can be adapted to many different kinds of research.

Table of contents

When to use thematic analysis, different approaches to thematic analysis, step 1: familiarization, step 2: coding, step 3: generating themes, step 4: reviewing themes, step 5: defining and naming themes, step 6: writing up, other interesting articles.

Thematic analysis is a good approach to research where you’re trying to find out something about people’s views, opinions, knowledge, experiences or values from a set of qualitative data – for example, interview transcripts , social media profiles, or survey responses .

Some types of research questions you might use thematic analysis to answer:

  • How do patients perceive doctors in a hospital setting?
  • What are young women’s experiences on dating sites?
  • What are non-experts’ ideas and opinions about climate change?
  • How is gender constructed in high school history teaching?

To answer any of these questions, you would collect data from a group of relevant participants and then analyze it. Thematic analysis allows you a lot of flexibility in interpreting the data, and allows you to approach large data sets more easily by sorting them into broad themes.

However, it also involves the risk of missing nuances in the data. Thematic analysis is often quite subjective and relies on the researcher’s judgement, so you have to reflect carefully on your own choices and interpretations.

Pay close attention to the data to ensure that you’re not picking up on things that are not there – or obscuring things that are.

Prevent plagiarism. Run a free check.

Once you’ve decided to use thematic analysis, there are different approaches to consider.

There’s the distinction between inductive and deductive approaches:

  • An inductive approach involves allowing the data to determine your themes.
  • A deductive approach involves coming to the data with some preconceived themes you expect to find reflected there, based on theory or existing knowledge.

Ask yourself: Does my theoretical framework give me a strong idea of what kind of themes I expect to find in the data (deductive), or am I planning to develop my own framework based on what I find (inductive)?

There’s also the distinction between a semantic and a latent approach:

  • A semantic approach involves analyzing the explicit content of the data.
  • A latent approach involves reading into the subtext and assumptions underlying the data.

Ask yourself: Am I interested in people’s stated opinions (semantic) or in what their statements reveal about their assumptions and social context (latent)?

After you’ve decided thematic analysis is the right method for analyzing your data, and you’ve thought about the approach you’re going to take, you can follow the six steps developed by Braun and Clarke .

The first step is to get to know our data. It’s important to get a thorough overview of all the data we collected before we start analyzing individual items.

This might involve transcribing audio , reading through the text and taking initial notes, and generally looking through the data to get familiar with it.

Next up, we need to code the data. Coding means highlighting sections of our text – usually phrases or sentences – and coming up with shorthand labels or “codes” to describe their content.

Let’s take a short example text. Say we’re researching perceptions of climate change among conservative voters aged 50 and up, and we have collected data through a series of interviews. An extract from one interview looks like this:

Coding qualitative data
Interview extract Codes
Personally, I’m not sure. I think the climate is changing, sure, but I don’t know why or how. People say you should trust the experts, but who’s to say they don’t have their own reasons for pushing this narrative? I’m not saying they’re wrong, I’m just saying there’s reasons not to 100% trust them. The facts keep changing – it used to be called global warming.

In this extract, we’ve highlighted various phrases in different colors corresponding to different codes. Each code describes the idea or feeling expressed in that part of the text.

At this stage, we want to be thorough: we go through the transcript of every interview and highlight everything that jumps out as relevant or potentially interesting. As well as highlighting all the phrases and sentences that match these codes, we can keep adding new codes as we go through the text.

After we’ve been through the text, we collate together all the data into groups identified by code. These codes allow us to gain a a condensed overview of the main points and common meanings that recur throughout the data.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Next, we look over the codes we’ve created, identify patterns among them, and start coming up with themes.

Themes are generally broader than codes. Most of the time, you’ll combine several codes into a single theme. In our example, we might start combining codes into themes like this:

Turning codes into themes
Codes Theme
Uncertainty
Distrust of experts
Misinformation

At this stage, we might decide that some of our codes are too vague or not relevant enough (for example, because they don’t appear very often in the data), so they can be discarded.

Other codes might become themes in their own right. In our example, we decided that the code “uncertainty” made sense as a theme, with some other codes incorporated into it.

Again, what we decide will vary according to what we’re trying to find out. We want to create potential themes that tell us something helpful about the data for our purposes.

Now we have to make sure that our themes are useful and accurate representations of the data. Here, we return to the data set and compare our themes against it. Are we missing anything? Are these themes really present in the data? What can we change to make our themes work better?

If we encounter problems with our themes, we might split them up, combine them, discard them or create new ones: whatever makes them more useful and accurate.

For example, we might decide upon looking through the data that “changing terminology” fits better under the “uncertainty” theme than under “distrust of experts,” since the data labelled with this code involves confusion, not necessarily distrust.

Now that you have a final list of themes, it’s time to name and define each of them.

Defining themes involves formulating exactly what we mean by each theme and figuring out how it helps us understand the data.

Naming themes involves coming up with a succinct and easily understandable name for each theme.

For example, we might look at “distrust of experts” and determine exactly who we mean by “experts” in this theme. We might decide that a better name for the theme is “distrust of authority” or “conspiracy thinking”.

Finally, we’ll write up our analysis of the data. Like all academic texts, writing up a thematic analysis requires an introduction to establish our research question, aims and approach.

We should also include a methodology section, describing how we collected the data (e.g. through semi-structured interviews or open-ended survey questions ) and explaining how we conducted the thematic analysis itself.

The results or findings section usually addresses each theme in turn. We describe how often the themes come up and what they mean, including examples from the data as evidence. Finally, our conclusion explains the main takeaways and shows how the analysis has answered our research question.

In our example, we might argue that conspiracy thinking about climate change is widespread among older conservative voters, point out the uncertainty with which many voters view the issue, and discuss the role of misinformation in respondents’ perceptions.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Measures of central tendency
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Discourse analysis
  • Cohort study
  • Peer review
  • Ethnography

Research bias

  • Implicit bias
  • Cognitive bias
  • Conformity bias
  • Hawthorne effect
  • Availability heuristic
  • Attrition bias
  • Social desirability bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Caulfield, J. (2023, June 22). How to Do Thematic Analysis | Step-by-Step Guide & Examples. Scribbr. Retrieved August 30, 2024, from https://www.scribbr.com/methodology/thematic-analysis/

Is this article helpful?

Jack Caulfield

Jack Caulfield

Other students also liked, what is qualitative research | methods & examples, inductive vs. deductive research approach | steps & examples, critical discourse analysis | definition, guide & examples, what is your plagiarism score.

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Statistical Methods and Data Analytics

Data Analysis Examples

The pages below contain examples (often hypothetical) illustrating the application of different statistical analysis techniques using different statistical packages. Each page provides a handful of examples of when the analysis might be used along with sample data, an example analysis and an explanation of the output, followed by references for more information. These pages merely introduce the essence of the technique and do not provide a comprehensive description of how to use it.

The combination of topics and packages reflect questions that are often asked in our statistical consulting. As such, this heavily reflects the demand from our clients at walk in consulting, not demand of readers from around the world. Many worthy topics will not be covered because they are not reflected in questions by our clients. Also, not all analysis techniques will be covered in all packages, again largely determined by client demand. If an analysis is not shown in a particular package,this does not imply that the package cannot do the analysis , it may simply mean that the analysis is not commonly done in that package by our clients.

Stata SAS SPSS Mplus R
Regression Models
Robust Regression
Models for Binary and Categorical Outcomes
Logistic Regression
Exact Logistic Regression
Multinomial Logistic Regression
Ordinal Logistic Regression
Probit Regression
Count Models
Poisson Regression
Negative Binomial Regression
Zero-inflated Poisson Regression
Zero-inflated Negative Binomial Regression
Zero-truncated Poisson
Zero-truncated Negative Binomial
Censored and Truncated Regression
Tobit Regression
Truncated Regression
Interval Regression
Multivariate Analysis
One-way MANOVA
Discriminant Function Analysis
Canonical Correlation Analysis
Multivariate Multiple Regression
Mixed Effects Models
Generalized Linear Mixed Models
Mixed Effects Logistic Regression
Other
Latent Class Analysis

Power Analyses

For grants and proposals, it is also useful to have power analyses corresponding to common data analyses. We have examples of some simple power analyses below.

Stata SAS SPSS Mplus R G*Power
Power Analysis / Sample Size
Correlations
Single-sample t-test
Paired-sample t-test
Independent-sample t-test
Two Independent Proportions
One-way ANOVA
Multiple Regression
Accuracy in Parameter Estimation

Your Name (required)

Your Email (must be a valid email for us to receive the report!)

Comment/Error Report (required)

How to cite this page

  • © 2024 UC REGENTS

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sage Choice
  • PMC11334375

Logo of sageopen

Methodologic and Data-Analysis Triangulation in Case Studies: A Scoping Review

Margarithe charlotte schlunegger.

1 Department of Health Professions, Applied Research & Development in Nursing, Bern University of Applied Sciences, Bern, Switzerland

2 Faculty of Health, School of Nursing Science, Witten/Herdecke University, Witten, Germany

Maya Zumstein-Shaha

Rebecca palm.

3 Department of Health Care Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany

Associated Data

Supplemental material, sj-docx-1-wjn-10.1177_01939459241263011 for Methodologic and Data-Analysis Triangulation in Case Studies: A Scoping Review by Margarithe Charlotte Schlunegger, Maya Zumstein-Shaha and Rebecca Palm in Western Journal of Nursing Research

We sought to explore the processes of methodologic and data-analysis triangulation in case studies using the example of research on nurse practitioners in primary health care.

Design and methods:

We conducted a scoping review within Arksey and O’Malley’s methodological framework, considering studies that defined a case study design and used 2 or more data sources, published in English or German before August 2023.

Data sources:

The databases searched were MEDLINE and CINAHL, supplemented with hand searching of relevant nursing journals. We also examined the reference list of all the included studies.

In total, 63 reports were assessed for eligibility. Ultimately, we included 8 articles. Five studies described within-method triangulation, whereas 3 provided information on between/across-method triangulation. No study reported within-method triangulation of 2 or more quantitative data-collection procedures. The data-collection procedures were interviews, observation, documentation/documents, service records, and questionnaires/assessments. The data-analysis triangulation involved various qualitative and quantitative methods of analysis. Details about comparing or contrasting results from different qualitative and mixed-methods data were lacking.

Conclusions:

Various processes for methodologic and data-analysis triangulation are described in this scoping review but lack detail, thus hampering standardization in case study research, potentially affecting research traceability. Triangulation is complicated by terminological confusion. To advance case study research in nursing, authors should reflect critically on the processes of triangulation and employ existing tools, like a protocol or mixed-methods matrix, for transparent reporting. The only existing reporting guideline should be complemented with directions on methodologic and data-analysis triangulation.

Case study research is defined as “an empirical method that investigates a contemporary phenomenon (the ‘case’) in depth and within its real-world context, especially when the boundaries between phenomenon and context may not be clearly evident. A case study relies on multiple sources of evidence, with data needing to converge in a triangulating fashion.” 1 (p15) This design is described as a stand-alone research approach equivalent to grounded theory and can entail single and multiple cases. 1 , 2 However, case study research should not be confused with single clinical case reports. “Case reports are familiar ways of sharing events of intervening with single patients with previously unreported features.” 3 (p107) As a methodology, case study research encompasses substantially more complexity than a typical clinical case report. 1 , 3

A particular characteristic of case study research is the use of various data sources, such as quantitative data originating from questionnaires as well as qualitative data emerging from interviews, observations, or documents. Therefore, a case study always draws on multiple sources of evidence, and the data must converge in a triangulating manner. 1 When using multiple data sources, a case or cases can be examined more convincingly and accurately, compensating for the weaknesses of the respective data sources. 1 Another characteristic is the interaction of various perspectives. This involves comparing or contrasting perspectives of people with different points of view, eg, patients, staff, or leaders. 4 Through triangulation, case studies contribute to the completeness of the research on complex topics, such as role implementation in clinical practice. 1 , 5 Triangulation involves a combination of researchers from various disciplines, of theories, of methods, and/or of data sources. By creating connections between these sources (ie, investigator, theories, methods, data sources, and/or data analysis), a new understanding of the phenomenon under study can be obtained. 6 , 7

This scoping review focuses on methodologic and data-analysis triangulation because concrete procedures are missing, eg, in reporting guidelines. Methodologic triangulation has been called methods, mixed methods, or multimethods. 6 It can encompass within-method triangulation and between/across-method triangulation. 7 “Researchers using within-method triangulation use at least 2 data-collection procedures from the same design approach.” 6 (p254) Within-method triangulation is either qualitative or quantitative but not both. Therefore, within-method triangulation can also be considered data source triangulation. 8 In contrast, “researchers using between/across-method triangulation employ both qualitative and quantitative data-collection methods in the same study.” 6 (p254) Hence, methodologic approaches are combined as well as various data sources. For this scoping review, the term “methodologic triangulation” is maintained to denote between/across-method triangulation. “Data-analysis triangulation is the combination of 2 or more methods of analyzing data.” 6 (p254)

Although much has been published on case studies, there is little consensus on the quality of the various data sources, the most appropriate methods, or the procedures for conducting methodologic and data-analysis triangulation. 5 According to the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) clearinghouse for reporting guidelines, one standard exists for organizational case studies. 9 Organizational case studies provide insights into organizational change in health care services. 9 Rodgers et al 9 pointed out that, although high-quality studies are being funded and published, they are sometimes poorly articulated and methodologically inadequate. In the reporting checklist by Rodgers et al, 9 a description of the data collection is included, but reporting directions on methodologic and data-analysis triangulation are missing. Therefore, the purpose of this study was to examine the process of methodologic and data-analysis triangulation in case studies. Accordingly, we conducted a scoping review to elicit descriptions of and directions for triangulation methods and analysis, drawing on case studies of nurse practitioners (NPs) in primary health care as an example. Case studies are recommended to evaluate the implementation of new roles in (primary) health care, such as that of NPs. 1 , 5 Case studies on new role implementation can generate a unique and in-depth understanding of specific roles (individual), teams (smaller groups), family practices or similar institutions (organization), and social and political processes in health care systems. 1 , 10 The integration of NPs into health care systems is at different stages of progress around the world. 11 Therefore, studies are needed to evaluate this process.

The methodological framework by Arksey and O’Malley 12 guided this scoping review. We examined the current scientific literature on the use of methodologic and data-analysis triangulation in case studies on NPs in primary health care. The review process included the following stages: (1) establishing the research question; (2) identifying relevant studies; (3) selecting the studies for inclusion; (4) charting the data; (5) collating, summarizing, and reporting the results; and (6) consulting experts in the field. 12 Stage 6 was not performed due to a lack of financial resources. The reporting of the review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Review) guideline by Tricco et al 13 (guidelines for reporting systematic reviews and meta-analyses [ Supplementary Table A ]). Scoping reviews are not eligible for registration in PROSPERO.

Stage 1: Establishing the Research Question

The aim of this scoping review was to examine the process of triangulating methods and analysis in case studies on NPs in primary health care to improve the reporting. We sought to answer the following question: How have methodologic and data-analysis triangulation been conducted in case studies on NPs in primary health care? To answer the research question, we examined the following elements of the selected studies: the research question, the study design, the case definition, the selected data sources, and the methodologic and data-analysis triangulation.

Stage 2: Identifying Relevant Studies

A systematic database search was performed in the MEDLINE (via PubMed) and CINAHL (via EBSCO) databases between July and September 2020 to identify relevant articles. The following terms were used as keyword search strategies: (“Advanced Practice Nursing” OR “nurse practitioners”) AND (“primary health care” OR “Primary Care Nursing”) AND (“case study” OR “case studies”). Searches were limited to English- and German-language articles. Hand searches were conducted in the journals Nursing Inquiry , BMJ Open , and BioMed Central ( BMC ). We also screened the reference lists of the studies included. The database search was updated in August 2023. The complete search strategy for all the databases is presented in Supplementary Table B .

Stage 3: Selecting the Studies

Inclusion and exclusion criteria.

We used the inclusion and exclusion criteria reported in Table 1 . We included studies of NPs who had at least a master’s degree in nursing according to the definition of the International Council of Nurses. 14 This scoping review considered studies that were conducted in primary health care practices in rural, urban, and suburban regions. We excluded reviews and study protocols in which no data collection had occurred. Articles were included without limitations on the time period or country of origin.

Inclusion and Exclusion Criteria.

CriteriaInclusionExclusion
Population- NPs with a master’s degree in nursing or higher - Nurses with a bachelor’s degree in nursing or lower
- Pre-registration nursing students
- No definition of master’s degree in nursing described in the publication
Interest- Description/definition of a case study design
- Two or more data sources
- Reviews
- Study protocols
- Summaries/comments/discussions
Context- Primary health care
- Family practices and home visits (including adult practices, internal medicine practices, community health centers)
- Nursing homes, hospital, hospice

Screening process

After the search, we collated and uploaded all the identified records into EndNote v.X8 (Clarivate Analytics, Philadelphia, Pennsylvania) and removed any duplicates. Two independent reviewers (MCS and SA) screened the titles and abstracts for assessment in line with the inclusion criteria. They retrieved and assessed the full texts of the selected studies while applying the inclusion criteria. Any disagreements about the eligibility of studies were resolved by discussion or, if no consensus could be reached, by involving experienced researchers (MZ-S and RP).

Stages 4 and 5: Charting the Data and Collating, Summarizing, and Reporting the Results

The first reviewer (MCS) extracted data from the selected publications. For this purpose, an extraction tool developed by the authors was used. This tool comprised the following criteria: author(s), year of publication, country, research question, design, case definition, data sources, and methodologic and data-analysis triangulation. First, we extracted and summarized information about the case study design. Second, we narratively summarized the way in which the data and methodological triangulation were described. Finally, we summarized the information on within-case or cross-case analysis. This process was performed using Microsoft Excel. One reviewer (MCS) extracted data, whereas another reviewer (SA) cross-checked the data extraction, making suggestions for additions or edits. Any disagreements between the reviewers were resolved through discussion.

A total of 149 records were identified in 2 databases. We removed 20 duplicates and screened 129 reports by title and abstract. A total of 46 reports were assessed for eligibility. Through hand searches, we identified 117 additional records. Of these, we excluded 98 reports after title and abstract screening. A total of 17 reports were assessed for eligibility. From the 2 databases and the hand search, 63 reports were assessed for eligibility. Ultimately, we included 8 articles for data extraction. No further articles were included after the reference list screening of the included studies. A PRISMA flow diagram of the study selection and inclusion process is presented in Figure 1 . As shown in Tables 2 and ​ and3, 3 , the articles included in this scoping review were published between 2010 and 2022 in Canada (n = 3), the United States (n = 2), Australia (n = 2), and Scotland (n = 1).

An external file that holds a picture, illustration, etc.
Object name is 10.1177_01939459241263011-fig1.jpg

PRISMA flow diagram.

Characteristics of Articles Included.

AuthorContandriopoulos et al Flinter Hogan et al Hungerford et al O’Rourke Roots and MacDonald Schadewaldt et al Strachan et al
CountryCanadaThe United StatesThe United StatesAustraliaCanadaCanadaAustraliaScotland
How or why research questionNo information on the research questionSeveral how or why research questionsWhat and how research questionNo information on the research questionSeveral how or why research questionsNo information on the research questionWhat research questionWhat and why research questions
Design and referenced author of methodological guidanceSix qualitative case studies
Robert K. Yin
Multiple-case studies design
Robert K. Yin
Multiple-case studies design
Robert E. Stake
Case study design
Robert K. Yin
Qualitative single-case study
Robert K. Yin
Robert E. Stake
Sharan Merriam
Single-case study design
Robert K. Yin
Sharan Merriam
Multiple-case studies design
Robert K. Yin
Robert E. Stake
Multiple-case studies design
Case definitionTeam of health professionals
(Small group)
Nurse practitioners
(Individuals)
Primary care practices (Organization)Community-based NP model of practice
(Organization)
NP-led practice
(Organization)
Primary care practices
(Organization)
No information on case definitionHealth board (Organization)

Overview of Within-Method, Between/Across-Method, and Data-Analysis Triangulation.

AuthorContandriopoulos et al Flinter Hogan et al Hungerford et al O’Rourke Roots and MacDonald Schadewaldt et al Strachan et al
Within-method triangulation (using within-method triangulation use at least 2 data-collection procedures from the same design approach)
:
 InterviewsXxxxx
 Observationsxx
 Public documentsxxx
 Electronic health recordsx
Between/across-method (using both qualitative and quantitative data-collection procedures in the same study)
:
:
 Interviewsxxx
 Observationsxx
 Public documentsxx
 Electronic health recordsx
:
 Self-assessmentx
 Service recordsx
 Questionnairesx
Data-analysis triangulation (combination of 2 or more methods of analyzing data)
:
:
 Deductivexxx
 Inductivexx
 Thematicxx
 Content
:
 Descriptive analysisxxx
:
:
 Deductivexxxx
 Inductivexx
 Thematicx
 Contentx

Research Question, Case Definition, and Case Study Design

The following sections describe the research question, case definition, and case study design. Case studies are most appropriate when asking “how” or “why” questions. 1 According to Yin, 1 how and why questions are explanatory and lead to the use of case studies, histories, and experiments as the preferred research methods. In 1 study from Canada, eg, the following research question was presented: “How and why did stakeholders participate in the system change process that led to the introduction of the first nurse practitioner-led Clinic in Ontario?” (p7) 19 Once the research question has been formulated, the case should be defined and, subsequently, the case study design chosen. 1 In typical case studies with mixed methods, the 2 types of data are gathered concurrently in a convergent design and the results merged to examine a case and/or compare multiple cases. 10

Research question

“How” or “why” questions were found in 4 studies. 16 , 17 , 19 , 22 Two studies additionally asked “what” questions. Three studies described an exploratory approach, and 1 study presented an explanatory approach. Of these 4 studies, 3 studies chose a qualitative approach 17 , 19 , 22 and 1 opted for mixed methods with a convergent design. 16

In the remaining studies, either the research questions were not clearly stated or no “how” or “why” questions were formulated. For example, “what” questions were found in 1 study. 21 No information was provided on exploratory, descriptive, and explanatory approaches. Schadewaldt et al 21 chose mixed methods with a convergent design.

Case definition and case study design

A total of 5 studies defined the case as an organizational unit. 17 , 18 - 20 , 22 Of the 8 articles, 4 reported multiple-case studies. 16 , 17 , 22 , 23 Another 2 publications involved single-case studies. 19 , 20 Moreover, 2 publications did not state the case study design explicitly.

Within-Method Triangulation

This section describes within-method triangulation, which involves employing at least 2 data-collection procedures within the same design approach. 6 , 7 This can also be called data source triangulation. 8 Next, we present the single data-collection procedures in detail. In 5 studies, information on within-method triangulation was found. 15 , 17 - 19 , 22 Studies describing a quantitative approach and the triangulation of 2 or more quantitative data-collection procedures could not be included in this scoping review.

Qualitative approach

Five studies used qualitative data-collection procedures. Two studies combined face-to-face interviews and documents. 15 , 19 One study mixed in-depth interviews with observations, 18 and 1 study combined face-to-face interviews and documentation. 22 One study contained face-to-face interviews, observations, and documentation. 17 The combination of different qualitative data-collection procedures was used to present the case context in an authentic and complex way, to elicit the perspectives of the participants, and to obtain a holistic description and explanation of the cases under study.

All 5 studies used qualitative interviews as the primary data-collection procedure. 15 , 17 - 19 , 22 Face-to-face, in-depth, and semi-structured interviews were conducted. The topics covered in the interviews included processes in the introduction of new care services and experiences of barriers and facilitators to collaborative work in general practices. Two studies did not specify the type of interviews conducted and did not report sample questions. 15 , 18

Observations

In 2 studies, qualitative observations were carried out. 17 , 18 During the observations, the physical design of the clinical patients’ rooms and office spaces was examined. 17 Hungerford et al 18 did not explain what information was collected during the observations. In both studies, the type of observation was not specified. Observations were generally recorded as field notes.

Public documents

In 3 studies, various qualitative public documents were studied. 15 , 19 , 22 These documents included role description, education curriculum, governance frameworks, websites, and newspapers with information about the implementation of the role and general practice. Only 1 study failed to specify the type of document and the collected data. 15

Electronic health records

In 1 study, qualitative documentation was investigated. 17 This included a review of dashboards (eg, provider productivity reports or provider quality dashboards in the electronic health record) and quality performance reports (eg, practice-wide or co-management team-wide performance reports).

Between/Across-Method Triangulation

This section describes the between/across methods, which involve employing both qualitative and quantitative data-collection procedures in the same study. 6 , 7 This procedure can also be denoted “methodologic triangulation.” 8 Subsequently, we present the individual data-collection procedures. In 3 studies, information on between/across triangulation was found. 16 , 20 , 21

Mixed methods

Three studies used qualitative and quantitative data-collection procedures. One study combined face-to-face interviews, documentation, and self-assessments. 16 One study employed semi-structured interviews, direct observation, documents, and service records, 20 and another study combined face-to-face interviews, non-participant observation, documents, and questionnaires. 23

All 3 studies used qualitative interviews as the primary data-collection procedure. 16 , 20 , 23 Face-to-face and semi-structured interviews were conducted. In the interviews, data were collected on the introduction of new care services and experiences of barriers to and facilitators of collaborative work in general practices.

Observation

In 2 studies, direct and non-participant qualitative observations were conducted. 20 , 23 During the observations, the interaction between health professionals or the organization and the clinical context was observed. Observations were generally recorded as field notes.

In 2 studies, various qualitative public documents were examined. 20 , 23 These documents included role description, newspapers, websites, and practice documents (eg, flyers). In the documents, information on the role implementation and role description of NPs was collected.

Individual journals

In 1 study, qualitative individual journals were studied. 16 These included reflective journals from NPs, who performed the role in primary health care.

Service records

Only 1 study involved quantitative service records. 20 These service records were obtained from the primary care practices and the respective health authorities. They were collected before and after the implementation of an NP role to identify changes in patients’ access to health care, the volume of patients served, and patients’ use of acute care services.

Questionnaires/Assessment

In 2 studies, quantitative questionnaires were used to gather information about the teams’ satisfaction with collaboration. 16 , 21 In 1 study, 3 validated scales were used. The scales measured experience, satisfaction, and belief in the benefits of collaboration. 21 Psychometric performance indicators of these scales were provided. However, the time points of data collection were not specified; similarly, whether the questionnaires were completed online or by hand was not mentioned. A competency self-assessment tool was used in another study. 16 The assessment comprised 70 items and included topics such as health promotion, protection, disease prevention and treatment, the NP-patient relationship, the teaching-coaching function, the professional role, managing and negotiating health care delivery systems, monitoring and ensuring the quality of health care practice, and cultural competence. Psychometric performance indicators were provided. The assessment was completed online with 2 measurement time points (pre self-assessment and post self-assessment).

Data-Analysis Triangulation

This section describes data-analysis triangulation, which involves the combination of 2 or more methods of analyzing data. 6 Subsequently, we present within-case analysis and cross-case analysis.

Mixed-methods analysis

Three studies combined qualitative and quantitative methods of analysis. 16 , 20 , 21 Two studies involved deductive and inductive qualitative analysis, and qualitative data were analyzed thematically. 20 , 21 One used deductive qualitative analysis. 16 The method of analysis was not specified in the studies. Quantitative data were analyzed using descriptive statistics in 3 studies. 16 , 20 , 23 The descriptive statistics comprised the calculation of the mean, median, and frequencies.

Qualitative methods of analysis

Two studies combined deductive and inductive qualitative analysis, 19 , 22 and 2 studies only used deductive qualitative analysis. 15 , 18 Qualitative data were analyzed thematically in 1 study, 22 and data were treated with content analysis in the other. 19 The method of analysis was not specified in the 2 studies.

Within-case analysis

In 7 studies, a within-case analysis was performed. 15 - 20 , 22 Six studies used qualitative data for the within-case analysis, and 1 study employed qualitative and quantitative data. Data were analyzed separately, consecutively, or in parallel. The themes generated from qualitative data were compared and then summarized. The individual cases were presented mostly as a narrative description. Quantitative data were integrated into the qualitative description with tables and graphs. Qualitative and quantitative data were also presented as a narrative description.

Cross-case analyses

Of the multiple-case studies, 5 carried out cross-case analyses. 15 - 17 , 20 , 22 Three studies described the cross-case analysis using qualitative data. Two studies reported a combination of qualitative and quantitative data for the cross-case analysis. In each multiple-case study, the individual cases were contrasted to identify the differences and similarities between the cases. One study did not specify whether a within-case or a cross-case analysis was conducted. 23

Confirmation or contradiction of data

This section describes confirmation or contradiction through qualitative and quantitative data. 1 , 4 Qualitative and quantitative data were reported separately, with little connection between them. As a result, the conclusions on neither the comparisons nor the contradictions could be clearly determined.

Confirmation or contradiction among qualitative data

In 3 studies, the consistency of the results of different types of qualitative data was highlighted. 16 , 19 , 21 In particular, documentation and interviews or interviews and observations were contrasted:

  • Confirmation between interviews and documentation: The data from these sources corroborated the existence of a common vision for an NP-led clinic. 19
  • Confirmation among interviews and observation: NPs experienced pressure to find and maintain their position within the existing system. Nurse practitioners and general practitioners performed complete episodes of care, each without collaborative interaction. 21
  • Contradiction among interviews and documentation: For example, interviewees mentioned that differentiating the scope of practice between NPs and physicians is difficult as there are too many areas of overlap. However, a clear description of the scope of practice for the 2 roles was provided. 21

Confirmation through a combination of qualitative and quantitative data

Both types of data showed that NPs and general practitioners wanted to have more time in common to discuss patient cases and engage in personal exchanges. 21 In addition, the qualitative and quantitative data confirmed the individual progression of NPs from less competent to more competent. 16 One study pointed out that qualitative and quantitative data obtained similar results for the cases. 20 For example, integrating NPs improved patient access by increasing appointment availability.

Contradiction through a combination of qualitative and quantitative data

Although questionnaire results indicated that NPs and general practitioners experienced high levels of collaboration and satisfaction with the collaborative relationship, the qualitative results drew a more ambivalent picture of NPs’ and general practitioners’ experiences with collaboration. 21

Research Question and Design

The studies included in this scoping review evidenced various research questions. The recommended formats (ie, how or why questions) were not applied consistently. Therefore, no case study design should be applied because the research question is the major guide for determining the research design. 2 Furthermore, case definitions and designs were applied variably. The lack of standardization is reflected in differences in the reporting of these case studies. Generally, case study research is viewed as allowing much more freedom and flexibility. 5 , 24 However, this flexibility and the lack of uniform specifications lead to confusion.

Methodologic Triangulation

Methodologic triangulation, as described in the literature, can be somewhat confusing as it can refer to either data-collection methods or research designs. 6 , 8 For example, methodologic triangulation can allude to qualitative and quantitative methods, indicating a paradigmatic connection. Methodologic triangulation can also point to qualitative and quantitative data-collection methods, analysis, and interpretation without specific philosophical stances. 6 , 8 Regarding “data-collection methods with no philosophical stances,” we would recommend using the wording “data source triangulation” instead. Thus, the demarcation between the method and the data-collection procedures will be clearer.

Within-Method and Between/Across-Method Triangulation

Yin 1 advocated the use of multiple sources of evidence so that a case or cases can be investigated more comprehensively and accurately. Most studies included multiple data-collection procedures. Five studies employed a variety of qualitative data-collection procedures, and 3 studies used qualitative and quantitative data-collection procedures (mixed methods). In contrast, no study contained 2 or more quantitative data-collection procedures. In particular, quantitative data-collection procedures—such as validated, reliable questionnaires, scales, or assessments—were not used exhaustively. The prerequisites for using multiple data-collection procedures are availability, the knowledge and skill of the researcher, and sufficient financial funds. 1 To meet these prerequisites, research teams consisting of members with different levels of training and experience are necessary. Multidisciplinary research teams need to be aware of the strengths and weaknesses of different data sources and collection procedures. 1

Qualitative methods of analysis and results

When using multiple data sources and analysis methods, it is necessary to present the results in a coherent manner. Although the importance of multiple data sources and analysis has been emphasized, 1 , 5 the description of triangulation has tended to be brief. Thus, traceability of the research process is not always ensured. The sparse description of the data-analysis triangulation procedure may be due to the limited number of words in publications or the complexity involved in merging the different data sources.

Only a few concrete recommendations regarding the operationalization of the data-analysis triangulation with the qualitative data process were found. 25 A total of 3 approaches have been proposed 25 : (1) the intuitive approach, in which researchers intuitively connect information from different data sources; (2) the procedural approach, in which each comparative or contrasting step in triangulation is documented to ensure transparency and replicability; and (3) the intersubjective approach, which necessitates a group of researchers agreeing on the steps in the triangulation process. For each case study, one of these 3 approaches needs to be selected, carefully carried out, and documented. Thus, in-depth examination of the data can take place. Farmer et al 25 concluded that most researchers take the intuitive approach; therefore, triangulation is not clearly articulated. This trend is also evident in our scoping review.

Mixed-methods analysis and results

Few studies in this scoping review used a combination of qualitative and quantitative analysis. However, creating a comprehensive stand-alone picture of a case from both qualitative and quantitative methods is challenging. Findings derived from different data types may not automatically coalesce into a coherent whole. 4 O’Cathain et al 26 described 3 techniques for combining the results of qualitative and quantitative methods: (1) developing a triangulation protocol; (2) following a thread by selecting a theme from 1 component and following it across the other components; and (3) developing a mixed-methods matrix.

The most detailed description of the conducting of triangulation is the triangulation protocol. The triangulation protocol takes place at the interpretation stage of the research process. 26 This protocol was developed for multiple qualitative data but can also be applied to a combination of qualitative and quantitative data. 25 , 26 It is possible to determine agreement, partial agreement, “silence,” or dissonance between the results of qualitative and quantitative data. The protocol is intended to bring together the various themes from the qualitative and quantitative results and identify overarching meta-themes. 25 , 26

The “following a thread” technique is used in the analysis stage of the research process. To begin, each data source is analyzed to identify the most important themes that need further investigation. Subsequently, the research team selects 1 theme from 1 data source and follows it up in the other data source, thereby creating a thread. The individual steps of this technique are not specified. 26 , 27

A mixed-methods matrix is used at the end of the analysis. 26 All the data collected on a defined case are examined together in 1 large matrix, paying attention to cases rather than variables or themes. In a mixed-methods matrix (eg, a table), the rows represent the cases for which both qualitative and quantitative data exist. The columns show the findings for each case. This technique allows the research team to look for congruency, surprises, and paradoxes among the findings as well as patterns across multiple cases. In our review, we identified only one of these 3 approaches in the study by Roots and MacDonald. 20 These authors mentioned that a causal network analysis was performed using a matrix. However, no further details were given, and reference was made to a later publication. We could not find this publication.

Case Studies in Nursing Research and Recommendations

Because it focused on the implementation of NPs in primary health care, the setting of this scoping review was narrow. However, triangulation is essential for research in this area. This type of research was found to provide a good basis for understanding methodologic and data-analysis triangulation. Despite the lack of traceability in the description of the data and methodological triangulation, we believe that case studies are an appropriate design for exploring new nursing roles in existing health care systems. This is evidenced by the fact that case study research is widely used in many social science disciplines as well as in professional practice. 1 To strengthen this research method and increase the traceability in the research process, we recommend using the reporting guideline and reporting checklist by Rodgers et al. 9 This reporting checklist needs to be complemented with methodologic and data-analysis triangulation. A procedural approach needs to be followed in which each comparative step of the triangulation is documented. 25 A triangulation protocol or a mixed-methods matrix can be used for this purpose. 26 If there is a word limit in a publication, the triangulation protocol or mixed-methods matrix needs to be identified. A schematic representation of methodologic and data-analysis triangulation in case studies can be found in Figure 2 .

An external file that holds a picture, illustration, etc.
Object name is 10.1177_01939459241263011-fig2.jpg

Schematic representation of methodologic and data-analysis triangulation in case studies (own work).

Limitations

This study suffered from several limitations that must be acknowledged. Given the nature of scoping reviews, we did not analyze the evidence reported in the studies. However, 2 reviewers independently reviewed all the full-text reports with respect to the inclusion criteria. The focus on the primary care setting with NPs (master’s degree) was very narrow, and only a few studies qualified. Thus, possible important methodological aspects that would have contributed to answering the questions were omitted. Studies describing the triangulation of 2 or more quantitative data-collection procedures could not be included in this scoping review due to the inclusion and exclusion criteria.

Conclusions

Given the various processes described for methodologic and data-analysis triangulation, we can conclude that triangulation in case studies is poorly standardized. Consequently, the traceability of the research process is not always given. Triangulation is complicated by the confusion of terminology. To advance case study research in nursing, we encourage authors to reflect critically on methodologic and data-analysis triangulation and use existing tools, such as the triangulation protocol or mixed-methods matrix and the reporting guideline checklist by Rodgers et al, 9 to ensure more transparent reporting.

Supplemental Material

Acknowledgments.

The authors thank Simona Aeschlimann for her support during the screening process.

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding: The author(s) received no financial support for the research, authorship, and/or publication of this article.

An external file that holds a picture, illustration, etc.
Object name is 10.1177_01939459241263011-img1.jpg

Supplemental Material: Supplemental material for this article is available online.

We Trust in Human Precision

20,000+ Professional Language Experts Ready to Help. Expertise in a variety of Niches.

API Solutions

  • API Pricing
  • Cost estimate
  • Customer loyalty program
  • Educational Discount
  • Non-Profit Discount
  • Green Initiative Discount1

Value-Driven Pricing

Unmatched expertise at affordable rates tailored for your needs. Our services empower you to boost your productivity.

PC editors choice

  • Special Discounts
  • Enterprise transcription solutions
  • Enterprise translation solutions
  • Transcription/Caption API
  • AI Transcription Proofreading API

Trusted by Global Leaders

GoTranscript is the chosen service for top media organizations, universities, and Fortune 50 companies.

GoTranscript

One of the Largest Online Transcription and Translation Agencies in the World. Founded in 2005.

Speaker 1: In this video, we're going to dive into the topic of qualitative coding, which you'll need to understand if you plan to undertake qualitative analysis for any dissertation, thesis, or research project. We'll explain what exactly qualitative coding is, the different coding approaches and methods, and how to go about coding your data step by step. So go ahead, grab a cup of coffee, grab a cup of tea, whatever works for you, and let's jump into it. Hey, welcome to Grad Coach TV, where we demystify and simplify the oftentimes intimidating world of academic research. My name's Emma, and today we're going to explore qualitative coding, an essential first step in qualitative analysis. If you'd like to learn more about qualitative analysis or research methodology in general, we've also got videos covering those topics, so be sure to check them out. I'll include the links below. If you're new to Grad Coach TV, hit that subscribe button for more videos covering all things research related. Also, if you're looking for hands-on help with your qualitative coding, check out our one-on-one coaching services, where we hold your hand through the coding process step by step. Alternatively, if you're looking to fast track your coding, we also offer a professional coding service, where our seasoned qualitative experts code your data for you, ensuring high-quality initial coding. If that sounds interesting to you, you can learn more and book a free consultation at gradcoach.com. All right, with that out of the way, let's get into it. To kick things off, let's start by understanding what a code is. At the simplest level, a code is a label that describes a piece of content. For example, in the sentence, pigeons attacked me and stole my sandwich, you could use pigeons as a code. This code would simply describe that the sentence involves pigeons. Of course, there are many ways you could code this, and this is just one approach. We'll explore the different ways in which you can code later in this video. So, qualitative coding is simply the process of creating and assigning codes to categorize data extracts. You'll then use these codes later down the road to derive themes and patterns for your actual qualitative analysis. For example, thematic analysis or content analysis. It's worth It's worth noting that coding and analysis can take place simultaneously. In fact, it's pretty much expected that you'll notice some themes emerge while you code. That said, it's important to note that coding does not necessarily involve identifying themes. Instead, it refers to the process of labeling and grouping similar types of data, which in turn will make generating themes and analyzing the data more manageable. You might be wondering then, why should I bother with coding at all? Why not just look for themes from the outset? Well, coding is a way of making sure your data is valid. In other words, it helps ensure that your analysis is undertaken systematically, and that other researchers can review it. In the world of research, we call this transparency. In other words, coding is the foundation of high quality analysis, which makes it an essential first step. Right, now that we've got a plain language definition of coding on the table, the next step is to understand what types of coding exist. Let's start with the two main approaches, deductive and inductive coding. With deductive coding, you as the researcher begin with a set of pre-established codes and apply them to your data set, for example, a set of interview transcripts. Inductive coding, on the other hand, works in reverse, as you start with a blank canvas and create your set of codes based on the data itself. In other words, the codes emerge from the data. Let's take a closer look at both of these approaches. With deductive coding, you'll make use of predetermined codes, also called a priori codes, which are developed before you interact with the present data. This usually involves drawing up a set of codes based on a research question or previous research from your literature review. You could also use an existing code set from the codebook of a previous study. For example, if you were studying the eating habits of college students, you might have a research question along the lines of, what foods do college students eat the most? As a result of this research question, you might develop a code set that includes codes such as sushi, pizza, and burgers. You'd then code your data set using only these codes, regardless of what you find in the data. On the upside, the deductive approach allows you to undertake your analysis with a very tightly focused lens and quickly identify relevant data, avoiding distractions and detours. The downside, of course, is that you could miss out on some very valuable insights as a result of this tight predetermined focus. Now let's look at the opposite approach, inductive coding. As I mentioned earlier, this type of coding involves jumping right into the data without predetermined codes and developing the codes based on what you find within the data. For example, if you were to analyze a set of open-ended interview question responses, you wouldn't necessarily know which direction the conversation would flow. If a conversation begins with a discussion of cats, it might go on to include other animals too. And so, you'd add these codes as you progress with your analysis. Simply put, with inductive coding, you go with the flow of the data. Inductive coding is great when you're researching something that isn't yet well understood because the coding derived from the data helps you explore the subject. Therefore, this approach to coding is usually adopted when researchers want to investigate new ideas or concepts or when they want to create new theories. So, as you can see, the inductive and deductive approaches represent two ends of a spectrum, but this doesn't mean that they're mutually exclusive. You can also take a hybrid approach where you utilize a mix of both. For example, if you've got a set of codes you've derived from a literature review or a previous study, in other words, a deductive approach, but you still don't have a rich enough code set to capture the depth of your qualitative data, you can combine deductive and inductive approaches, which we call a hybrid approach. To adopt a hybrid approach, you'll begin your analysis with a set of a priori codes, in other words, a deductive approach, and then add new codes, in other words, an inductive approach, as you work your way through the data. Essentially, the hybrid coding approach provides the best of both worlds, which is why it's pretty common to see this in research. All right, now that we've covered what qualitative coding is and the overarching approaches, let's dive into the actual coding process and look at how to undertake the coding. So, let's take a look at the actual coding process step by step. Whether you adopt an inductive or deductive approach, your coding will consist of two stages, initial coding and line-by-line coding. In the initial coding stage, the objective is to get a general overview of the data by reading through and understanding it. If you're using an inductive approach, this is also where you'll develop an initial set of codes. Then in the second stage, line-by-line coding, you'll delve deeper into the data and organize it into a formalized set of codes. Let's take a look at these stages of qualitative coding in more detail. Stage one, initial coding. The first step of the coding process is to identify the essence of the text and code it accordingly. While there are many qualitative analysis software options available, you can just as easily code text-based data using Microsoft Word's comments feature. In fact, if it's your first time coding, it's oftentimes best to just stick with Word as this eliminates the additional need to learn new software. Importantly, you should avoid the temptation of any sort of automated coding software or service. No matter what promises they make, automated software simply cannot compare to human-based coding as it can't understand the subtleties of language and context. Don't waste your time with this. In all likelihood, you'll just end up having to recode everything yourself anyway. Okay, so let's take a look at a practical example of the coding process. Assume you had the following interview data from two interviewees. In the initial stage of coding, you could assign the code of pets or animals. These are just initial fairly broad codes that you can and will develop and refine later. In the initial stage, broad rough codes are fine. They're just a starting point which you will build onto later when you undertake line-by-line coding. So, at this stage, you're probably wondering how to decide what codes to use, especially when there are so many ways to read and interpret any given sentence. Well, there are a few different coding methods you can adopt and the right method will depend on your research aims and research questions. In other words, the way you code will depend on what you're trying to achieve with your research. Five common methods utilized in the initial coding stage include in vivo coding, process coding, descriptive coding, structural coding, and value coding. These are not the only methods available, but they're a useful starting point. Let's take a look at each of them to understand how and when each method could be useful. Method number one, in vivo coding. When you use in vivo coding, you make use of a participant's own words rather than your interpretation of the data. In other words, you use direct quotes from participants as your codes. By doing this, you'll avoid trying to infer meaning by staying as close to the original phrases and words as possible. In vivo coding is particularly useful when your data are derived from participants who speak different languages or come from different cultures. In cases like these, it's often difficult to accurately infer meaning thanks to linguistic and or cultural differences. For example, English speakers typically view the future as in front of them and the past as behind them. However, this isn't the same in all cultures. Speakers of Aymara view the past as in front of them and the future as behind them. Why? Because the future is unknown. It must be out of sight or behind them. They know what happened in the past so their perspective is that it's positioned in front of them where they can see it. In a scenario like this one, it's not possible to derive the reason for viewing the past as in front and the future as behind without knowing the Aymara culture's perception of time. Therefore, in vivo coding is particularly useful as it avoids interpretation errors. While this case is a unique one, it illustrates the point that different languages and cultures can view the same things very differently, which would have major impacts on your data. Method number two, process coding. Next up, there's process coding, which makes use of action-based codes. Action-based codes are codes that indicate a movement or procedure. These actions are often indicated by gerunds, that is words ending in ing. For example, running, jumping, or singing. Process coding is useful as it allows you to code parts of data that aren't necessarily spoken but that are still important to understand the meaning of the text. For example, you may have action codes such as describing a panda, singing a song, or arguing with a relative. Another example would be if a participant were to say something like, I have no idea where she is. A sentence like this could be interpreted in many different ways depending on the context and movements of the participant. The participant could, for example, shrug their shoulders, which would indicate that they genuinely don't know where the girl is. Alternatively, they could wink, suggesting that they do actually know where the girl is. Simply put, process coding is useful as it allows you to, in a concise manner, identify occurrences in a set of data that are not necessarily spoken and to provide a dynamic account of events. Method number three, descriptive coding. Descriptive coding is a popular coding method that aims to summarize extracts by using a single word that encapsulates the general idea of the data. These words will typically describe the data in a highly condensed manner, which allows you as the researcher to quickly refer to the content. For example, a descriptive code could be food, when coding a video clip that involves a group of people discussing what they ate throughout the day, or cooking, when coding an image showing the steps of a recipe. Descriptive coding is very useful when dealing with data that appear in forms other than text. For example, video clips, sound recordings, or images. It's also particularly useful when you want to organize a large data set by topic area. This makes descriptive coding a popular choice for many research projects. Method number four, structural coding. True to its name, structural coding involves labeling and describing specific structural attributes of the data. Generally, it includes coding according to answers of the questions of who, what, where, and how, rather than the actual topics expressed in the data. For example, if you were coding a collection of dissertations, which would be quite a large data set, structural coding might be useful as you could code according to different sections within each of these documents. Coding what centric labels, such as hypotheses, literature review, and methodology, would help you to efficiently refer to sections and navigate without having to work through sections of data all over again. So, structural coding is useful when you want to access segments of data quickly, and it can help tremendously when you're dealing with large data sets. Structural coding can also be useful for data from open-ended survey questions. This data may initially be difficult to code as they lack the set structure of other forms of data, such as an interview with a strict closed set of questions to be answered. In this case, it would be useful to code sections of data that answer certain questions, such as who, what, where, and how. Method number five, values coding. Last but not least, values-based coding involves coding excerpts that relate to the participant's worldviews. Typically, this type of coding focuses on excerpts that provide insight regarding the values, attitudes, and beliefs of the participants. In practical terms, this means you'd be looking for instances where your participants say things like, I feel, I think that, I need, and it's important that, as these sorts of statements often provide insight into their values, attitudes, and beliefs. Values coding is therefore very useful when your research aims and research questions seek to explore cultural values and interpersonal experiences and actions, or when you're looking to learn about the human experience. All right, so we've looked at five popular methods that can be used in the initial coding stage. As I mentioned, this is not a comprehensive list, so if none of these sound relevant to your project, be sure to look up alternative coding methods to find the right fit for your research aims. The five methods we've discussed allow you to arrange your data so that it's easier to navigate during the next stage, line-by-line coding. While these methods can all be used individually, it's important to know that it's possible, and quite often beneficial, to combine them. For example, when conducting initial coding with interview data, you could begin by using structural coding to indicate who speaks when. Then, as a next step, you could apply descriptive coding so that you can navigate to and between conversation topics easily. As with all design choices, the right method or combination of methods depends on your research aims and research questions, so think carefully about what you're trying to achieve with your research. Then, select the method or methods that make sense in light of that. So, to recap, the aim of initial coding is to understand and familiarize yourself with your data, to develop an initial code set, if you're taking an inductive approach, and to take the first shot at coding your data. Once that's done, you can move on to the next stage, line-by-line coding. Let's do it. Line-by-line coding is pretty much exactly what it sounds like, reviewing your data line-by-line, digging deeper, refining your codes, and assigning additional codes to each line. With line-by-line coding, the objective is to pay close attention to your data, to refine and expand upon your coding, especially when it comes to adopting an inductive approach. For example, if you have a discussion of beverages and you previously just coded this as beverages, you could now go deeper and code more specifically, such as coffee, tea, and orange juice. The aim here is to scratch below the surface. This is the time to get detailed and specific so that you can capture as much richness from the data as possible. In the line-by-line coding process, it's useful to code as much data as possible, even if you don't think you're going to use it. As you go through this process, your coding will become more thorough and detailed, and you'll have a much better understanding of your data as a result of this. This will be incredibly valuable in the analysis phase, so don't cut corners here. Take your time to work through your data line-by-line and apply your mind to see how you refine your coding as much as possible. Keep in mind that coding is an iterative process, which means that you'll move back and forth between interviews or documents to apply the codes consistently throughout your data set. Be careful to clearly define each code and update previously coded excerpts if you adjust or update the definition of any code, or if you split any code into narrower codes. Line-by-line coding takes time, so don't rush it. Be patient and work through your data meticulously to ensure you develop a high-quality code set. Stage three, moving from coding to analysis. Once you've completed your initial and line-by-line coding, the next step is to start your actual qualitative analysis. Of course, the coding process itself will get you in analysis mode, and you'll probably already have some insights and ideas as a result of it, so you should always keep notes of your thoughts as you work through the coding process. When it comes to qualitative data analysis, there are many different methods you can use, including content analysis, thematic analysis, and discourse analysis. The analysis method you adopt will depend heavily on your research aims and research questions. We cover qualitative analysis methods on the Grad Coach blog, so we're not going to go down that rabbit hole here, but we'll discuss the important first steps that build the bridge from qualitative coding to qualitative analysis. So, how do you get started with your analysis? Well, each analysis will be different, but it's useful to ask yourself the following more general questions to get the wheels turning. What actions and interactions are shown in the data? What are the aims of these interactions and excerpts? How do participants interpret what is happening, and how do they speak about it? What does their language reveal? What are the assumptions made by the participants? What are the participants doing? Why do I want to learn about this? What am I trying to find out? As with initial coding and line-by-line coding, your qualitative analysis can follow certain steps. The first two steps will typically be code categorization and theme identification. Let's look at these two steps. Code categorization, which is the first step, is simply the process of reviewing everything you've coded and then creating categories that can be used to guide your future analysis. In other words, it's about bundling similar or related codes into categories to help organize your data effectively. Let's look at a practical example. If you were discussing different types of animals, your codes may include dogs, llamas, and lions. In the process of code categorization, you could label, in other words, categorize these three animals as mammals, whereas you could categorize flies, crickets, and beetles as insects. By creating these code categories, you will be making your data more organized, as well as enriching it so that you can see new connections between different groups of codes. Once you've categorized your codes, you can move on to the next step, which is to identify the themes in your data. Let's look at the theme identification step. From the coding and categorization processes, you'll naturally start noticing themes. Therefore, the next logical step is to identify and clearly articulate the themes in your data set. When you determine themes, you'll take what you've learned from the coding and categorization stages and synthesize it to develop themes. This is the part of the analysis process where you'll begin to draw meaning from your data and produce a narrative. The nature of this narrative will, of course, depend on your research aims, your research questions, and the analysis method you've chosen. For example, content analysis or thematic analysis. So, keep these factors front of mind as you scan for themes, as they'll help you stay aligned with the big picture. All right, now that we've covered both the what and the how of qualitative coding, I want to quickly share some general tips and suggestions to help you optimize your coding process. Let's rapid fire. One, before you begin coding, plan out the steps you'll take and the coding approach and method or methods you'll follow to avoid inconsistencies. Two, when adopting a deductive approach, it's best to use a codebook with detailed descriptions of each code right from the start of the coding process. This will ensure that you apply codes consistently based on their descriptions and will help you keep your work organized. Three, whether you adopt an inductive or deductive approach, keep track of the meanings of your codes and remember to revisit these as you go along. Four, while coding, keep your research aims, research questions, coding methods, and analysis method front of mind. This will help you to avoid directional drift, which happens when coding is not kept consistent. Five, if you're working in a research team with multiple coders, make sure that everyone has been trained and clearly understands how codes need to be assigned. If multiple coders are pulling in even slightly different directions, you will end up with a mess that needs to be redone. You don't want that. So keep these five tips in mind and you'll be on the fast track to coding success. And there you have it, qualitative coding in a nutshell. Remember, as with every design choice in your dissertation, thesis, or research project, your research aims and research questions will have a major influence on how you approach the coding. So keep these two elements front of mind every step of the way and make sure your coding approach and methods align well. If you enjoyed the video, hit the like button and leave a comment if you have any questions. Also, be sure to subscribe to the channel for more research-related content. If you need a helping hand with your qualitative coding or any part of your research project, remember to check out our private coaching service where we work with you on a one-on-one basis, chapter by chapter, to help you craft a winning piece of research. If that sounds interesting to you, book a free consultation with a friendly coach at gradcoach.com. As always, I'll include a link below. That's all for this episode of Grad Coach TV. Until next time, good luck.

techradar

Examining the Effect of Research Engagement on the Interest in Integrating Research into Future Career Paths Among Medical Graduates in China: An Instrumental Variable Analysis

  • Original Research
  • Published: 29 August 2024

Cite this article

data analysis examples in research

  • Guoyang Zhang   ORCID: orcid.org/0000-0002-2335-1984 1 ,
  • Xuanxuan Ma 3 , 5 &
  • Hongbin Wu   ORCID: orcid.org/0000-0002-4425-9845 4 , 5 , 6  

While the importance of physician research has been underscored, a shortage of qualified physicians engaged in research persists. Early exposure to research could potentially ignite medical students’ interest in research, thereby motivating them to pursue research-related careers.

The study aims to examine early research engagement and medical graduates’ interest in incorporating research into their future career paths.

This was a national cross-sectional survey administered in 2020, with 152,624 medical students from 119 medical schools in China completing it. We selected and resampled the graduates’ data, and the final sample included 17,451 respondents graduating from 101 medical schools.

For graduates engaged in research, 63.4% (3054) had the interest in integrating research into their future careers. Such interest in research did differ between medical graduates with and without research engagement by linear probability regression ( β , 0.50; 95%CI, 0.48 to 0.52), but did not differ in instrumental variable regression analysis ( β , 0.31; 95%CI, − 0.18 to 0.80). Furthermore, engaging in research significantly increased the top 50% of academically ranked graduates’ research interest in instrumental variable regression analysis ( β , 0.44; 95%CI, 0.01 to 0.86).

Conclusions

Contrary to expectations, research engagement does not necessarily enhance medical graduates’ interest in integrating research into their future careers. However, graduates with strong academic performance are more inclined to develop this research interest. In light of these findings, we propose recommendations for nurturing research interest within medical education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Data Availability

Data will be made available on request.

Cianciolo AT, et al. Physician-scientist or basic scientist? Exploring the nature of clinicians’ research engagement. Adv Health Sci Educ Theory Pract. 2021;26(2):353–67.

Article   Google Scholar  

Mokresh ME, et al. Knowledge, attitudes, and barriers toward research among medical students: a cross-sectional study in Turkey. Med Sci Educ. 2024;34(2):387–95.

Association of American Medical Colleges. Physician-scientists. 2023; https://www.aamc.org/what-we-do/mission-areas/medical-research/physician-scientist .

Schafer AI. The vanishing physician-scientist? Transl Res. 2010;155(1):1.

Paracha M, et al. Scholarly impact of student participation in radiation oncology research. Int J Radiat Oncol Biol Phys. 2018;101(4):779–83.

Amgad M, et al. Medical student research: an integrated mixed-methods systematic review and meta-analysis. PLoS One. 2015;10(6). https://doi.org/10.1371/journal.pone.0127470

Anderson DJ. Population and the environment: time for another contraception revolution. N Engl J Med. 2019;381(5):397–9.

Milewicz DM, et al. Rescuing the physician-scientist workforce: the time for action is now. J Clin Invest. 2015;125(10):3742–7.

Schroeder AR, et al. Outcomes of follow-up visits after bronchiolitis hospitalizations. JAMA Pediatr. 2018;172(3):296–7.

Ommering BWC, et al. Future physician-scientists: could we catch them young? Factors influencing intrinsic and extrinsic motivation for research among first-year medical students. Perspect Med Educ. 2018;7(4):248–55.

Goldacre M, et al. Junior doctors’ views about careers in academic medicine. Med Educ. 1999;33(5):318–26.

Rosenzweig EQ, et al Inside the STEM pipeline: changes in students’ biomedical career plans across the college years. Sci Adv 2021:7(18). https://doi.org/10.1126/sciadv.abe0985

Burgoyne LN, O’Flynn S, Boylan GB. Undergraduate medical research: the student perspective. Med Educ Online. 2010;15. https://doi.org/10.3402/meo.v15i0.5212

DiBiase RM, et al. A medical student scholarly concentrations program: scholarly self-efficacy and impact on future research activities. Med Educ Online. 2020;25(1):1786210.

Funston G, et al. Medical student perceptions of research and research-orientated careers: an international questionnaire study. Med Teach. 2016;38(10):1041–8.

Greenberg RB, et al. Medical student interest in academic medical careers: a multi-institutional study. Perspect Med Educ. 2013;2(5–6):298–316.

Ommering BWC, et al. Promoting positive perceptions of and motivation for research among undergraduate medical students to stimulate future research involvement: a grounded theory study. BMC Med Educ. 2020;20(1):204.

Adeboye W, et al. Predictors of self-reported research engagement and academic-career interest amongst medical students in the United Kingdom: a national cross-sectional survey. Postgrad Med J. 2023;99(1177):1189–96.

Colmenares C, Bierer SB, Graham LM. Impact of a 5-year research-oriented medical school curriculum on medical student research interest, scholarly output, and career intentions. Med Sci Educ. 2013;23(1):88–91.

Laskowitz DT, et al. Engaging students in dedicated research and scholarship during medical school: the long-term experiences at Duke and Stanford. Acad Med. 2010;85(3):419–28.

Stevenson MD, et al. Increasing scholarly activity productivity during residency: a systematic review. Acad Med. 2017;92(2):250–66.

Yuan HF, Xu WD, Hu HY. Young Chinese doctors and the pressure of publication. Lancet. 2013;381(9864). https://doi.org/10.1016/S0140-6736(13)60174-9

Philibert I, et al. Scholarly activity in the next accreditation system: moving from structure and process to outcomes. J Grad Med Educ. 2013;5(4):714–7.

Stone C, et al. Contemporary global perspectives of medical students on research during undergraduate medical education: a systematic literature review. Med Educ Online. 2018;23(1):1537430.

Hidi S, Renninger KA. The four-phase model of interest development. Educ Psychol. 2006;41(2):111–27.

Krapp A. An educational-psychological theory of interest and its relation to SDT. In: Deci EL, Ryan RM, editors. Handbook of self-determination research. Rochester (NY): University of Rochester Press; 2002. p. 405–27.

Google Scholar  

Schiefele U, Krapp A, Winteler A. Interest as a predictor of academic achievement: a meta-analysis of research. In: Renninger KA, Hidi S, Krapp A, editors. The role of interest in learning and development. Hillsdale (NJ): Lawrence Erlbaum Associates; 1992. p. 183–212.

Houlden RL, et al. Medical students’ perceptions of an undergraduate research elective. Med Teach. 2004;26(7):659–61.

Burge SK, Hill JH. The medical student summer research program in family medicine. Fam Med. 2014;46(1):45–8.

Cain L, Kramer G, Ferguson M. The Medical Student Summer Research Program at the University of Texas Medical Branch at Galveston: building research foundations. Med Educ Online. 2019;24(1):1581523.

Association of American Medical Colleges. Medical School Graduation Questionnaire: 2020 All Schools Summary Report. 2021. Available from: https://www.aamc.org/media/46851/download .

Center for Postsecondary Research in the Indiana University School of Education. NSSE Survey instruments. 2013. Available from: https://nsse.indiana.edu/nsse/survey-instruments/index.html .

Zhang G, et al. The association between medical student research engagement with learning outcomes. Med Educ Online. 2022;27(1):2100039.

National Centre for Health Professions Education Development. China Medical Students Survey 2020 All Schools Summary Report. 2020. Available from: https://medu.bjmu.edu.cn/cms/show.action?code=publish_4028801e6bb6cf11016be526c0dc0014&siteid=100000&newsid=50947b6c789248b39fca817dfb9ba3ee&channelid=0000000008 .

Schwarz MR, Wojtczak A, Zhou T. Medical education in China’s leading medical schools. Med Teach. 2004;26(3):215–22.

Zhu J, Li W, Chen L. Doctors in China: improving quality through modernisation of residency education. Lancet. 2016;388(10054):1922–9.

Horrace WC, Oaxaca RL. Results on the bias and inconsistency of ordinary least squares for the linear probability model. Econ Lett. 2006;90(3):321–7.

Ministry of Education. Accreditation Standards for Basic Medical Education in China. 2016. Available from: http://ime.bjmu.edu.cn/cgzs/197708.htm .

de Oliveira NA, et al. Student views of research training programmes in medical schools. Med Educ. 2011;45(7):748–55.

Wolfson RK, et al. The impact of a scholarly concentration program on student interest in career-long research: a longitudinal study. Acad Med. 2017;92(8):1196–203.

O’Sullivan PS, et al. Becoming an academic doctor: perceptions of scholarly careers. Med Educ. 2009;43(4):335–41.

Baig SA, et al. Reasons behind the increase in research activities among medical students of Karachi, Pakistan, a low-income country. Educ Health (Abingdon). 2013;26(2):117.

Siemens DR, et al. A survey on the attitudes towards research in medical school. BMC Med Educ. 2010;10(1):1–7.

Mina S, et al. Perceived influential factors toward participation in undergraduate research activities among medical students at Alfaisal University—College of Medicine: a Saudi Arabian perspective. Med Teach. 2016;38(sup1). https://doi.org/10.3109/0142159X.2016.1142508

Ommering BWC, Dekker FW. Medical students’ intrinsic versus extrinsic motivation to engage in research as preparation for residency. Perspect Med Educ. 2017;6(6):366–8.

Download references

The research project was funded by the National Natural Science Foundation of China (Grant No. 72174013) and the China Scholarship Council (File No. 202208310033). The funders had no role in the design and development of the study protocol or the decision to publish.

Author information

Authors and affiliations.

School of Health Professions Education, Maastricht University, Maastricht, the Netherlands

Guoyang Zhang

Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China

School of Public Health, Peking University, Beijing, People’s Republic of China

Xuanxuan Ma

Institute of Medical Education, Peking University, Beijing, People’s Republic of China

National Centre for Health Professions Education Development, Peking University, Beijing, People’s Republic of China

Xuanxuan Ma & Hongbin Wu

School of Medicine, The Fourth Affiliated Hospital of Zhejiang University, Yiwu, Zhejiang, People’s Republic of China

You can also search for this author in PubMed   Google Scholar

Contributions

HBW made substantial contributions to the study conception and design. HBW and GYZ conducted the data analyses and drafted the manuscript. HBW interpreted the results with the support from GYZ, LL, and XXM. XXM made editing contributions. All authors reviewed the final manuscript and have approved the final version.

Corresponding author

Correspondence to Hongbin Wu .

Ethics declarations

Conflict of interest.

The authors report there are no competing interests to declare.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Zhang, G., Li, L., Ma, X. et al. Examining the Effect of Research Engagement on the Interest in Integrating Research into Future Career Paths Among Medical Graduates in China: An Instrumental Variable Analysis. Med.Sci.Educ. (2024). https://doi.org/10.1007/s40670-024-02152-3

Download citation

Accepted : 21 August 2024

Published : 29 August 2024

DOI : https://doi.org/10.1007/s40670-024-02152-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Research engagement
  • Research interest
  • Medical graduates
  • Instrumental variable analysis
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. FREE 10+ Sample Data Analysis Templates in PDF

    data analysis examples in research

  2. Data Analysis in research methodology

    data analysis examples in research

  3. FREE 10+ Sample Data Analysis Templates in PDF

    data analysis examples in research

  4. Your Guide to Qualitative and Quantitative Data Analysis Methods

    data analysis examples in research

  5. What is Data Analysis in Research

    data analysis examples in research

  6. (PDF) Data analysis in qualitative research

    data analysis examples in research

VIDEO

  1. What is quantitative data analysis examples?/dipam education

  2. Webinar: Introduction to SHRP2 Naturalistic Driving Study Data and Management

  3. Data Analysis In Excel

  4. Python for Data Analysis 49. Data Analysis Examples-1: 資料分析範例-1 (recorded on 20190604)

  5. Python for Data Analysis 54. Data Analysis Examples-6: 資料分析範例-6 (recorded on 20190610)

  6. Data Analysis with R

COMMENTS

  1. Data Analysis in Research: Types & Methods

    Data analysis in research is an illustrative method of applying the right statistical or logical technique so that the raw data makes sense.

  2. What Is Data Analysis? (With Examples)

    Learn what data analysis is, how to do it, and why it's important for various fields and industries. Explore the data analysis process, the four types of data analysis, and the best courses to get started on Coursera.

  3. What is Data Analysis? An Expert Guide With Examples

    Learn what data analysis is, how it is done, and why it is important for various fields. Explore the different types of data analysis, such as descriptive, diagnostic, predictive, and prescriptive, and the techniques used to perform them.

  4. Qualitative Data Analysis Methods: Top 6 + Examples

    Learn the basics of qualitative data analysis (QDA) plus the most popular approaches, including content, discourse and narrative analysis.

  5. The Beginner's Guide to Statistical Analysis

    The Beginner's Guide to Statistical Analysis | 5 Steps & Examples Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations.

  6. Data Analysis Techniques In Research

    Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

  7. Qualitative Data Analysis: What is it, Methods + Examples

    Qualitative data analysis is a systematic process of examining non-numerical data to extract meaning, patterns, and insights. In contrast to quantitative analysis, which focuses on numbers and statistical metrics, the qualitative study focuses on the qualitative aspects of data, such as text, images, audio, and videos.

  8. A practical guide to data analysis in general literature reviews

    This article seeks to describe a systematic method of data analysis appropriate for undergraduate research theses, where the data consists of the results from available published research. We present a step-by-step guide with authentic examples and practical tips.

  9. Data Analysis

    Learn about the definition, process, types, methods, tools, and applications of data analysis in research. Find examples of data analysis in different fields such as business, healthcare, education, and finance.

  10. 8 Types of Data Analysis

    The different types of data analysis include descriptive, diagnostic, exploratory, inferential, predictive, causal, mechanistic and prescriptive.

  11. Quantitative Data Analysis 101

    Learn the basics of quantitative data analysis, including the most popular analysis methods and techniques, explained simply with examples.

  12. 15 Data Analysis Examples (2024)

    Data analysis is the process of inspecting, cleaning, transforming, and modeling data to discover useful information, derive conclusions, and support decision-making (Upton & Brawn, 2023). It encompasses a variety of techniques from statistics, mathematics, and

  13. What is data analysis? Examples and how to start

    Learn what data analysis is, why it's important, and how to perform five types of data analysis with examples. Zapier also offers tips and tools to automate your data analysis process.

  14. Data Analysis: Definition, Types and Examples

    Data analysis in research is an illustrative method of applying the right statistical or logical technique so that the raw data makes sense.

  15. What Is Data Analysis? (With Examples)

    Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions.

  16. The 7 Most Useful Data Analysis Methods and Techniques

    Turn raw data into useful, actionable insights. Learn about the top data analysis techniques in this guide, with examples.

  17. Basic statistical tools in research and data analysis

    Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, ...

  18. What Is Data Analysis? (With Examples)

    Learn what data analysis is and how to apply it to business or research problems. Discover the four types of data analysis (descriptive, diagnostic, predictive, and prescriptive) with examples and courses.

  19. How to Do Thematic Analysis

    Thematic analysis is a method of analyzing qualitative data (e.g. interviews). Follow these 6 steps to find and describe themes in your data.

  20. Data Analysis Examples

    Data Analysis Examples The pages below contain examples (often hypothetical) illustrating the application of different statistical analysis techniques using different statistical packages. Each page provides a handful of examples of when the analysis might be used along with sample data, an example analysis and an explanation of the output, followed by references for more information. These ...

  21. Learning to Do Qualitative Data Analysis: A Starting Point

    This question is particularly relevant to researchers new to the field and practice of qualitative research and instructors and mentors who regularly introduce students to qualitative research practices. In this article, we seek to offer what we view as a useful starting point for learning how to do qualitative analysis.

  22. What Is Data Analysis? (With Examples)

    Analyse the data. By manipulating the data using various data analysis techniques and tools, you can find trends, correlations, outliers, and variations that tell a story. During this stage, you might use data mining to discover patterns within databases or data visualisation software to help transform data into an easy-to-understand graphical ...

  23. Methodologic and Data-Analysis Triangulation in Case Studies: A Scoping

    When using multiple data sources and analysis methods, it is necessary to present the results in a coherent manner. Although the importance of multiple data sources and analysis has been emphasized, 1,5 the description of triangulation has tended to be brief. Thus, traceability of the research process is not always ensured.

  24. Mastering Qualitative Coding: A Step-by-Step Guide for Research

    Speaker 1: In this video, we're going to dive into the topic of qualitative coding, which you'll need to understand if you plan to undertake qualitative analysis for any dissertation, thesis, or research project. We'll explain what exactly qualitative coding is, the different coding approaches and methods, and how to go about coding your data step by step.

  25. Data Analytics: Definition, Uses, Examples, and More

    Data analytics is a multidisciplinary field that employs a wide range of analysis techniques, including math, statistics, and computer science, to draw insights from data sets. Data analytics is a broad term that includes everything from simply analyzing data to theorizing ways of collecting data and creating the frameworks needed to store it.

  26. Bi-directional relationships between physical activity and mental

    Objective: The aim of this research was to examine the bidirectional association between self-reported symptoms of mental disorder and physical activity among a large sample of Canadian secondary school students over time. Methods: Linked survey data were obtained from 28,567 grade 9 to 12 students across Canada participating in two waves of the COMPASS Study (2017-18; 2018-19).

  27. Examining the Effect of Research Engagement on the Interest ...

    The value of physician research has been made clear; however, there exists a shortage of physician researchers, including physician-scientists and clinical researchers [1,2,3,4,5,6].Physician-scientists are uniquely positioned to bridge the gap between laboratory-based research and clinical practice, translating scientific discoveries into innovative medical treatments [3,4,5,6], and clinical ...