helpful professor logo

15 Independent and Dependent Variable Examples

15 Independent and Dependent Variable Examples

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

15 Independent and Dependent Variable Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

one independent variable per experiment

An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).

By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

This can provide very valuable information when studying just about any subject.

Because the researcher controls the level of the independent variable, it can be determined if the independent variable has a causal effect on the dependent variable.

The term causation is vitally important. Scientists want to know what causes changes in the dependent variable. The only way to do that is to manipulate the independent variable and observe any changes in the dependent variable.

Definition of Independent and Dependent Variables

The independent variable and dependent variable are used in a very specific type of scientific study called the experiment .

Although there are many variations of the experiment, generally speaking, it involves either the presence or absence of the independent variable and the observation of what happens to the dependent variable.

The research participants are randomly assigned to either receive the independent variable (called the treatment condition), or not receive the independent variable (called the control condition).

Other variations of an experiment might include having multiple levels of the independent variable.

If the independent variable affects the dependent variable, then it should be possible to observe changes in the dependent variable based on the presence or absence of the independent variable.  

Of course, there are a lot of issues to consider when conducting an experiment, but these are the basic principles.

These concepts should not be confused with predictor and outcome variables .

Examples of Independent and Dependent Variables

1. gatorade and improved athletic performance.

A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

If they can back up that claim with hard scientific data, that would be great for sales.

So, the researcher goes to a nearby university and randomly selects both male and female athletes from several sports: track and field, volleyball, basketball, and football. Each athlete will run on a treadmill for one hour while their heart rate is tracked.

All of the athletes are given the exact same amount of liquid to consume 30-minutes before and during their run. Half are given Gatorade, and the other half are given water, but no one knows what they are given because both liquids have been colored.

In this example, the independent variable is Gatorade, and the dependent variable is heart rate.  

2. Chemotherapy and Cancer

A hospital is investigating the effectiveness of a new type of chemotherapy on cancer. The researchers identified 120 patients with relatively similar types of cancerous tumors in both size and stage of progression.

The patients are randomly assigned to one of three groups: one group receives no chemotherapy, one group receives a low dose of chemotherapy, and one group receives a high dose of chemotherapy.

Each group receives chemotherapy treatment three times a week for two months, except for the no-treatment group. At the end of two months, the doctors measure the size of each patient’s tumor.

In this study, despite the ethical issues (remember this is just a hypothetical example), the independent variable is chemotherapy, and the dependent variable is tumor size.

3. Interior Design Color and Eating Rate

A well-known fast-food corporation wants to know if the color of the interior of their restaurants will affect how fast people eat. Of course, they would prefer that consumers enter and exit quickly to increase sales volume and profit.

So, they rent space in a large shopping mall and create three different simulated restaurant interiors of different colors. One room is painted mostly white with red trim and seats; one room is painted mostly white with blue trim and seats; and one room is painted mostly white with off-white trim and seats.

Next, they randomly select shoppers on Saturdays and Sundays to eat for free in one of the three rooms. Each shopper is given a box of the same food and drink items and sent to one of the rooms. The researchers record how much time elapses from the moment they enter the room to the moment they leave.

The independent variable is the color of the room, and the dependent variable is the amount of time spent in the room eating.

4. Hair Color and Attraction

A large multinational cosmetics company wants to know if the color of a woman’s hair affects the level of perceived attractiveness in males. So, they use Photoshop to manipulate the same image of a female by altering the color of her hair: blonde, brunette, red, and brown.

Next, they randomly select university males to enter their testing facilities. Each participant sits in front of a computer screen and responds to questions on a survey. At the end of the survey, the screen shows one of the photos of the female.

At the same time, software on the computer that utilizes the computer’s camera is measuring each male’s pupil dilation. The researchers believe that larger dilation indicates greater perceived attractiveness.

The independent variable is hair color, and the dependent variable is pupil dilation.

5. Mozart and Math

After many claims that listening to Mozart will make you smarter, a group of education specialists decides to put it to the test. So, first, they go to a nearby school in a middle-class neighborhood.

During the first three months of the academic year, they randomly select some 5th-grade classrooms to listen to Mozart during their lessons and exams. Other 5 th grade classrooms will not listen to any music during their lessons and exams.

The researchers then compare the scores of the exams between the two groups of classrooms.

Although there are a lot of obvious limitations to this hypothetical, it is the first step.

The independent variable is Mozart, and the dependent variable is exam scores.

6. Essential Oils and Sleep

A company that specializes in essential oils wants to examine the effects of lavender on sleep quality. They hire a sleep research lab to conduct the study. The researchers at the lab have their usual test volunteers sleep in individual rooms every night for one week.

The conditions of each room are all exactly the same, except that half of the rooms have lavender released into the rooms and half do not. While the study participants are sleeping, their heart rates and amount of time spent in deep sleep are recorded with high-tech equipment.

At the end of the study, the researchers compare the total amount of time spent in deep sleep of the lavender-room participants with the no lavender-room participants.

The independent variable in this sleep study is lavender, and the dependent variable is the total amount of time spent in deep sleep.

7. Teaching Style and Learning

A group of teachers is interested in which teaching method will work best for developing critical thinking skills.

So, they train a group of teachers in three different teaching styles : teacher-centered, where the teacher tells the students all about critical thinking; student-centered, where the students practice critical thinking and receive teacher feedback; and AI-assisted teaching, where the teacher uses a special software program to teach critical thinking.

At the end of three months, all the students take the same test that assesses critical thinking skills. The teachers then compare the scores of each of the three groups of students.

The independent variable is the teaching method, and the dependent variable is performance on the critical thinking test.

8. Concrete Mix and Bridge Strength

A chemicals company has developed three different versions of their concrete mix. Each version contains a different blend of specially developed chemicals. The company wants to know which version is the strongest.

So, they create three bridge molds that are identical in every way. They fill each mold with one of the different concrete mixtures. Next, they test the strength of each bridge by placing progressively more weight on its center until the bridge collapses.

In this study, the independent variable is the concrete mixture, and the dependent variable is the amount of weight at collapse.

9. Recipe and Consumer Preferences

People in the pizza business know that the crust is key. Many companies, large and small, will keep their recipe a top secret. Before rolling out a new type of crust, the company decides to conduct some research on consumer preferences.

The company has prepared three versions of their crust that vary in crunchiness, they are: a little crunchy, very crunchy, and super crunchy. They already have a pool of consumers that fit their customer profile and they often use them for testing.

Each participant sits in a booth and takes a bite of one version of the crust. They then indicate how much they liked it by pressing one of 5 buttons: didn’t like at all, liked, somewhat liked, liked very much, loved it.

The independent variable is the level of crust crunchiness, and the dependent variable is how much it was liked.

10. Protein Supplements and Muscle Mass

A large food company is considering entering the health and nutrition sector. Their R&D food scientists have developed a protein supplement that is designed to help build muscle mass for people that work out regularly.

The company approaches several gyms near its headquarters. They enlist the cooperation of over 120 gym rats that work out 5 days a week. Their muscle mass is measured, and only those with a lower level are selected for the study, leaving a total of 80 study participants.

They randomly assign half of the participants to take the recommended dosage of their supplement every day for three months after each workout. The other half takes the same amount of something that looks the same but actually does nothing to the body.

At the end of three months, the muscle mass of all participants is measured.

The independent variable is the supplement, and the dependent variable is muscle mass.  

11. Air Bags and Skull Fractures

In the early days of airbags , automobile companies conducted a great deal of testing. At first, many people in the industry didn’t think airbags would be effective at all. Fortunately, there was a way to test this theory objectively.

In a representative example: Several crash cars were outfitted with an airbag, and an equal number were not. All crash cars were of the same make, year, and model. Then the crash experts rammed each car into a crash wall at the same speed. Sensors on the crash dummy skulls allowed for a scientific analysis of how much damage a human skull would incur.

The amount of skull damage of dummies in cars with airbags was then compared with those without airbags.

The independent variable was the airbag and the dependent variable was the amount of skull damage.

12. Vitamins and Health

Some people take vitamins every day. A group of health scientists decides to conduct a study to determine if taking vitamins improves health.

They randomly select 1,000 people that are relatively similar in terms of their physical health. The key word here is “similar.”

Because the scientists have an unlimited budget (and because this is a hypothetical example, all of the participants have the same meals delivered to their homes (breakfast, lunch, and dinner), every day for one year.

In addition, the scientists randomly assign half of the participants to take a set of vitamins, supplied by the researchers every day for 1 year. The other half do not take the vitamins.

At the end of one year, the health of all participants is assessed, using blood pressure and cholesterol level as the key measurements.

In this highly unrealistic study, the independent variable is vitamins, and the dependent variable is health, as measured by blood pressure and cholesterol levels.

13. Meditation and Stress

Does practicing meditation reduce stress? If you have ever wondered if this is true or not, then you are in luck because there is a way to know one way or the other.

All we have to do is find 90 people that are similar in age, stress levels, diet and exercise, and as many other factors as we can think of.

Next, we randomly assign each person to either practice meditation every day, three days a week, or not at all. After three months, we measure the stress levels of each person and compare the groups.

How should we measure stress? Well, there are a lot of ways. We could measure blood pressure, or the amount of the stress hormone cortisol in their blood, or by using a paper and pencil measure such as a questionnaire that asks them how much stress they feel.

In this study, the independent variable is meditation and the dependent variable is the amount of stress (however it is measured).

14. Video Games and Aggression

When video games started to become increasingly graphic, it was a huge concern in many countries in the world. Educators, social scientists, and parents were shocked at how graphic games were becoming.

Since then, there have been hundreds of studies conducted by psychologists and other researchers. A lot of those studies used an experimental design that involved males of various ages randomly assigned to play a graphic or non-graphic video game.

Afterward, their level of aggression was measured via a wide range of methods, including direct observations of their behavior, their actions when given the opportunity to be aggressive, or a variety of other measures.

So many studies have used so many different ways of measuring aggression.

In these experimental studies, the independent variable was graphic video games, and the dependent variable was observed level of aggression.

15. Vehicle Exhaust and Cognitive Performance

Car pollution is a concern for a lot of reasons. In addition to being bad for the environment, car exhaust may cause damage to the brain and impair cognitive performance.

One way to examine this possibility would be to conduct an animal study. The research would look something like this: laboratory rats would be raised in three different rooms that varied in the degree of car exhaust circulating in the room: no exhaust, little exhaust, or a lot of exhaust.

After a certain period of time, perhaps several months, the effects on cognitive performance could be measured.

One common way of assessing cognitive performance in laboratory rats is by measuring the amount of time it takes to run a maze successfully. It would also be possible to examine the physical effects of car exhaust on the brain by conducting an autopsy.

In this animal study, the independent variable would be car exhaust and the dependent variable would be amount of time to run a maze.

Read Next: Extraneous Variables Examples

The experiment is an incredibly valuable way to answer scientific questions regarding the cause and effect of certain variables. By manipulating the level of an independent variable and observing corresponding changes in a dependent variable, scientists can gain an understanding of many phenomena.

For example, scientists can learn if graphic video games make people more aggressive, if mediation reduces stress, if Gatorade improves athletic performance, and even if certain medical treatments can cure cancer.

The determination of causality is the key benefit of manipulating the independent variable and them observing changes in the dependent variable. Other research methodologies can reveal factors that are related to the dependent variable or associated with the dependent variable, but only when the independent variable is controlled by the researcher can causality be determined.

Ferguson, C. J. (2010). Blazing Angels or Resident Evil? Can graphic video games be a force for good? Review of General Psychology, 14 (2), 68-81. https://doi.org/10.1037/a0018941

Flannelly, L. T., Flannelly, K. J., & Jankowski, K. R. (2014). Independent, dependent, and other variables in healthcare and chaplaincy research. Journal of Health Care Chaplaincy , 20 (4), 161–170. https://doi.org/10.1080/08854726.2014.959374

Manocha, R., Black, D., Sarris, J., & Stough, C.(2011). A randomized, controlled trial of meditation for work stress, anxiety and depressed mood in full-time workers. Evidence-Based Complementary and Alternative Medicine , vol. 2011, Article ID 960583. https://doi.org/10.1155/2011/960583

Rumrill, P. D., Jr. (2004). Non-manipulation quantitative designs. Work (Reading, Mass.) , 22 (3), 255–260.

Taylor, J. M., & Rowe, B. J. (2012). The “Mozart Effect” and the mathematical connection, Journal of College Reading and Learning, 42 (2), 51-66.  https://doi.org/10.1080/10790195.2012.10850354

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

science education resource

  • Activities, Experiments, Online Games, Visual Aids
  • Activities, Experiments, and Investigations
  • Experimental Design and the Scientific Method

Experimental Design - Independent, Dependent, and Controlled Variables

To view these resources with no ads, please login or subscribe to help support our content development. school subscriptions can access more than 175 downloadable unit bundles in our store for free (a value of $1,500). district subscriptions provide huge group discounts for their schools. email for a quote: [email protected] ..

Scientific experiments are meant to show cause and effect of a phenomena (relationships in nature).  The “ variables ” are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment.

An experiment can have three kinds of variables: i ndependent, dependent, and controlled .

  • The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing.
  • The dependent variable is the factor that changes as a result of the change to the independent variable.
  • The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.

For example, let’s design an experiment with two plants sitting in the sun side by side. The controlled variables (or constants) are that at the beginning of the experiment, the plants are the same size, get the same amount of sunlight, experience the same ambient temperature and are in the same amount and consistency of soil (the weight of the soil and container should be measured before the plants are added). The independent variable is that one plant is getting watered (1 cup of water) every day and one plant is getting watered (1 cup of water) once a week. The dependent variables are the changes in the two plants that the scientist observes over time.

Experimental Design - Independent, Dependent, and Controlled Variables

Can you describe the dependent variable that may result from this experiment? After four weeks, the dependent variable may be that one plant is taller, heavier and more developed than the other. These results can be recorded and graphed by measuring and comparing both plants’ height, weight (removing the weight of the soil and container recorded beforehand) and a comparison of observable foliage.

Using What You Learned: Design another experiment using the two plants, but change the independent variable. Can you describe the dependent variable that may result from this new experiment?

Think of another simple experiment and name the independent, dependent, and controlled variables. Use the graphic organizer included in the PDF below to organize your experiment's variables.

Please Login or Subscribe to access downloadable content.

Citing Research References

When you research information you must cite the reference. Citing for websites is different from citing from books, magazines and periodicals. The style of citing shown here is from the MLA Style Citations (Modern Language Association).

When citing a WEBSITE the general format is as follows. Author Last Name, First Name(s). "Title: Subtitle of Part of Web Page, if appropriate." Title: Subtitle: Section of Page if appropriate. Sponsoring/Publishing Agency, If Given. Additional significant descriptive information. Date of Electronic Publication or other Date, such as Last Updated. Day Month Year of access < URL >.

Here is an example of citing this page:

Amsel, Sheri. "Experimental Design - Independent, Dependent, and Controlled Variables" Exploring Nature Educational Resource ©2005-2024. March 25, 2024 < http://www.exploringnature.org/db/view/Experimental-Design-Independent-Dependent-and-Controlled-Variables >

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Independent and Dependent Variables: Differences & Examples

By Jim Frost 15 Comments

Scientist at work on an experiment consider independent and dependent variables.

In this post, learn the definitions of independent and dependent variables, how to identify each type, how they differ between different types of studies, and see examples of them in use.

What is an Independent Variable?

Independent variables (IVs) are the ones that you include in the model to explain or predict changes in the dependent variable. The name helps you understand their role in statistical analysis. These variables are independent . In this context, independent indicates that they stand alone and other variables in the model do not influence them. The researchers are not seeking to understand what causes the independent variables to change.

Independent variables are also known as predictors, factors , treatment variables, explanatory variables, input variables, x-variables, and right-hand variables—because they appear on the right side of the equals sign in a regression equation. In notation, statisticians commonly denote them using Xs. On graphs, analysts place independent variables on the horizontal, or X, axis.

In machine learning, independent variables are known as features.

For example, in a plant growth study, the independent variables might be soil moisture (continuous) and type of fertilizer (categorical).

Statistical models will estimate effect sizes for the independent variables.

Relate post : Effect Sizes in Statistics

Including independent variables in studies

The nature of independent variables changes based on the type of experiment or study:

Controlled experiments : Researchers systematically control and set the values of the independent variables. In randomized experiments, relationships between independent and dependent variables tend to be causal. The independent variables cause changes in the dependent variable.

Observational studies : Researchers do not set the values of the explanatory variables but instead observe them in their natural environment. When the independent and dependent variables are correlated, those relationships might not be causal.

When you include one independent variable in a regression model, you are performing simple regression. For more than one independent variable, it is multiple regression. Despite the different names, it’s really the same analysis with the same interpretations and assumptions.

Determining which IVs to include in a statistical model is known as model specification. That process involves in-depth research and many subject-area, theoretical, and statistical considerations. At its most basic level, you’ll want to include the predictors you are specifically assessing in your study and confounding variables that will bias your results if you don’t add them—particularly for observational studies.

For more information about choosing independent variables, read my post about Specifying the Correct Regression Model .

Related posts : Randomized Experiments , Observational Studies , Covariates , and Confounding Variables

What is a Dependent Variable?

The dependent variable (DV) is what you want to use the model to explain or predict. The values of this variable depend on other variables. It is the outcome that you’re studying. It’s also known as the response variable, outcome variable, and left-hand variable. Statisticians commonly denote them using a Y. Traditionally, graphs place dependent variables on the vertical, or Y, axis.

For example, in the plant growth study example, a measure of plant growth is the dependent variable. That is the outcome of the experiment, and we want to determine what affects it.

How to Identify Independent and Dependent Variables

If you’re reading a study’s write-up, how do you distinguish independent variables from dependent variables? Here are some tips!

Identifying IVs

How statisticians discuss independent variables changes depending on the field of study and type of experiment.

In randomized experiments, look for the following descriptions to identify the independent variables:

  • Independent variables cause changes in another variable.
  • The researchers control the values of the independent variables. They are controlled or manipulated variables.
  • Experiments often refer to them as factors or experimental factors. In areas such as medicine, they might be risk factors.
  • Treatment and control groups are always independent variables. In this case, the independent variable is a categorical grouping variable that defines the experimental groups to which participants belong. Each group is a level of that variable.

In observational studies, independent variables are a bit different. While the researchers likely want to establish causation, that’s harder to do with this type of study, so they often won’t use the word “cause.” They also don’t set the values of the predictors. Some independent variables are the experiment’s focus, while others help keep the experimental results valid.

Here’s how to recognize independent variables in observational studies:

  • IVs explain the variability, predict, or correlate with changes in the dependent variable.
  • Researchers in observational studies must include confounding variables (i.e., confounders) to keep the statistical results valid even if they are not the primary interest of the study. For example, these might include the participants’ socio-economic status or other background information that the researchers aren’t focused on but can explain some of the dependent variable’s variability.
  • The results are adjusted or controlled for by a variable.

Regardless of the study type, if you see an estimated effect size, it is an independent variable.

Identifying DVs

Dependent variables are the outcome. The IVs explain the variability or causes changes in the DV. Focus on the “depends” aspect. The value of the dependent variable depends on the IVs. If Y depends on X, then Y is the dependent variable. This aspect applies to both randomized experiments and observational studies.

In an observational study about the effects of smoking, the researchers observe the subjects’ smoking status (smoker/non-smoker) and their lung cancer rates. It’s an observational study because they cannot randomly assign subjects to either the smoking or non-smoking group. In this study, the researchers want to know whether lung cancer rates depend on smoking status. Therefore, the lung cancer rate is the dependent variable.

In a randomized COVID-19 vaccine experiment , the researchers randomly assign subjects to the treatment or control group. They want to determine whether COVID-19 infection rates depend on vaccination status. Hence, the infection rate is the DV.

Note that a variable can be an independent variable in one study but a dependent variable in another. It depends on the context.

For example, one study might assess how the amount of exercise (IV) affects health (DV). However, another study might study the factors (IVs) that influence how much someone exercises (DV). The amount of exercise is an independent variable in one study but a dependent variable in the other!

How Analyses Use IVs and DVs

Regression analysis and ANOVA mathematically describe the relationships between each independent variable and the dependent variable. Typically, you want to determine how changes in one or more predictors associate with changes in the dependent variable. These analyses estimate an effect size for each independent variable.

Suppose researchers study the relationship between wattage, several types of filaments, and the output from a light bulb. In this study, light output is the dependent variable because it depends on the other two variables. Wattage (continuous) and filament type (categorical) are the independent variables.

After performing the regression analysis, the researchers will understand the nature of the relationship between these variables. How much does the light output increase on average for each additional watt? Does the mean light output differ by filament types? They will also learn whether these effects are statistically significant.

Related post : When to Use Regression Analysis

Graphing Independent and Dependent Variables

As I mentioned earlier, graphs traditionally display the independent variables on the horizontal X-axis and the dependent variable on the vertical Y-axis. The type of graph depends on the nature of the variables. Here are a couple of examples.

Suppose you experiment to determine whether various teaching methods affect learning outcomes. Teaching method is a categorical predictor that defines the experimental groups. To display this type of data, you can use a boxplot, as shown below.

Example boxplot that illustrates independent and dependent variables.

The groups are along the horizontal axis, while the dependent variable, learning outcomes, is on the vertical. From the graph, method 4 has the best results. A one-way ANOVA will tell you whether these results are statistically significant. Learn more about interpreting boxplots .

Now, imagine that you are studying people’s height and weight. Specifically, do height increases cause weight to increase? Consequently, height is the independent variable on the horizontal axis, and weight is the dependent variable on the vertical axis. You can use a scatterplot to display this type of data.

Example scatterplot that illustrates independent and dependent variables.

It appears that as height increases, weight tends to increase. Regression analysis will tell you if these results are statistically significant. Learn more about interpreting scatterplots .

Share this:

one independent variable per experiment

Reader Interactions

' src=

April 2, 2024 at 2:05 am

Hi again Jim

Thanks so much for taking an interest in New Zealand’s Equity Index.

Rather than me trying to explain what our Ministry of Education has done, here is a link to a fairly short paper. Scroll down to page 4 of this (if you have the inclination) – https://fyi.org.nz/request/21253/response/80708/attach/4/1301098%20Response%20and%20Appendix.pdf

The Equity Index is used to allocate only 4% of total school funding. The most advantaged 5% of schools get no “equity funding” and the other 95% get a share of the equity funding pool based on their index score. We are talking a maximum of around $1,000NZD per child per year for the most disadvantaged schools. The average amount is around $200-$300 per child per year.

My concern is that I thought the dependent variable is the thing you want to explain or predict using one or more independent variables. Choosing the form of dependent variable that gets a good fit seems to be answering the question “what can we predict well?” rather than “how do we best predict the factor of interest?” The factor is educational achievement and I think this should have been decided upon using theory rather than experimentation with the data.

As it turns out, the Ministry has chosen a measure of educational achievement that puts a heavy weight on achieving an “excellence” rating on a qualification and a much lower weight on simply gaining a qualification. My reading is that they have taken what our universities do when looking at which students to admit.

It doesn’t seem likely to me that a heavy weighting on excellent achievement is appropriate for targeting extra funding to schools with a lot of under-achieving students.

However, my stats knowledge isn’t extensive and it’s definitely rusty, so your thoughts are most helpful.

Regards Kathy Spencer

April 1, 2024 at 4:08 pm

Hi Jim, Great website, thank you.

I have been looking at New Zealand’s Equity Index which is used to allocate a small amount of extra funding to schools attended by children from disadvantaged backgrounds. The Index uses 37 socioeconomic measures relating to a child’s and their parents’ backgrounds that are found to be associated with educational achievement.

I was a bit surprised to read how they had decided on the dependent variable to be used as the measure of educational achievement, or dependent variable. Part of the process was as follows- “Each measure was tested to see the degree to which it could be predicted by the socioeconomic factors selected for the Equity Index.”

Any comment?

Many thanks Kathy Spencer

' src=

April 1, 2024 at 9:20 pm

That’s a very complex study and I don’t know much about it. So, that limits what I can say about it. But I’ll give you a few thoughts that come to mind.

This method is common in educational and social research, particularly when the goal is to understand or mitigate the impact of socioeconomic disparities on educational outcomes.

There are the usual concerns about not confusing correlation with causation. However, because this program seems to quantify barriers and then provide extra funding based on the index, I don’t think that’s a problem. They’re not attempting to adjust the socioeconomic measures so no worries about whether they’re directly causal or not.

I might have a small concern about cherry picking the model that happens to maximize the R-squared. Chasing the R-squared rather than having theory drive model selecting is often problematic. Chasing the best fit increases the likelihood that the model fits this specific dataset best by random chance rather than being truly the best. If so, it won’t perform as well outside the dataset used to fit the model. Hopefully, they validated the predicted ability of the model using other data.

However, I’m not sure if the extra funding is determined by the model? I don’t know if the index value is calculated separately outside the candidate models and then fed into the various models. Or does the choice of model affect how the index value is calculated? If it’s the former, then the funding doesn’t depend on a potentially cherry picked model. If the latter, it does.

So, I’m not really clear on the purpose of the model. I’m guessing they just want to validate their Equity Index. And maximizing the R-squared doesn’t really say it’s the best Index but it does at least show that it likely has some merit. I’d be curious how the took the 37 measures and combined them to one index. So, I have more questions than answers. I don’t mean that in a critical sense. Just that I know almost nothing about this program.

I’m curious, what was the outcome they picked? How high was the R-squared? And what were your concerns?

' src=

February 6, 2024 at 6:57 pm

Excellent explanation, thank you.

February 5, 2024 at 5:04 pm

Thank you for this insightful blog. Is it valid to use a dependent variable delivered from the mean of independent variables in multiple regression if you want to evaluate the influence of each unique independent variable on the dependent variables?

February 5, 2024 at 11:11 pm

It’s difficult to answer your question because I’m not sure what you mean that the DV is “delivered from the mean of IVs.” If you mean that multiple IVs explain changes in the DV’s mean, yes, that’s the standard use for multiple regression.

If you mean something else, please explain in further detail. Thanks!

February 6, 2024 at 6:32 am

What I meant is; the DV values used as parameters for multiple regression is basically calculated as the average of the IVs. For instance:

From 3 IVs (X1, X2, X3), Y is delivered as :

Y = (Sum of all IVs) / (3)

Then the resulting Y is used as the DV along with the initial IVs to compute the multiple regression.

February 6, 2024 at 2:17 pm

There are a couple of reasons why you shouldn’t do that.

For starters, Y-hat (the predicted value of the regression equation) is the mean of the DV given specific values of the IV. However, that mean is calculated by using the regression coefficients and constant in the regression equation. You don’t calculate the DV mean as the sum of the IVs divided by the number of IVs. Perhaps given a very specific subject-area context, using this approach might seem to make sense but there are other problems.

A critical problem is that the Y is now calculated using the IVs. Instead, the DVs should be measured outcomes and not calculated from IVs. This violates regression assumptions and produces questionable results.

Additionally, it complicates the interpretation. Because the DV is calculated from the IV, you know the regression analysis will find a relationship between them. But you have no idea if that relationship exists in the real world. This complication occurs because your results are based on forcing the DV to equal a function of the IVs and do not reflect real-world outcomes.

In short, DVs should be real-world outcomes that you measure! And be sure to keep your IVs and DV independent. Let the regression analysis estimate the regression equation from your data that contains measured DVs. Don’t use a function to force the DV to equal some function of the IVs because that’s the opposite direction of how regression works!

I hope that helps!

' src=

September 6, 2022 at 7:43 pm

Thank you for sharing.

' src=

March 3, 2022 at 1:59 am

Excellent explanation.

' src=

February 13, 2022 at 12:31 pm

Thanks a lot for creating this excellent blog. This is my go-to resource for Statistics.

I had been pondering over a question for sometime, it would be great if you could shed some light on this.

In linear and non-linear regression, should the distribution of independent and dependent variables be unskewed? When is there a need to transform the data (say, Box-Cox transformation), and do we transform the independent variables as well?

' src=

October 28, 2021 at 12:55 pm

If I use a independent variable (X) and it displays a low p-value <.05, why is it if I introduce another independent variable to regression the coefficient and p-value of Y that I used in first regression changes to look insignificant? The second variable that I introduced has a low p-value in regression.

October 29, 2021 at 11:22 pm

Keep in mind that the significance of each IV is calculated after accounting for the variance of all the other variables in the model, assuming you’re using the standard adjusted sums of squares rather than sequential sums of squares. The sums of squares (SS) is a measure of how much dependent variable variability that each IV accounts for. In the illustration below, I’ll assume you’re using the standard of adjusted SS.

So, let’s say that originally you have X1 in the model along with some other IVs. Your model estimates the significance of X1 after assessing the variability that the other IVs account for and finds that X1 is significant. Now, you add X2 to the model in addition to X1 and the other IVs. Now, when assessing X1, the model accounts for the variability of the IVs including the newly added X2. And apparently X2 explains a good portion of the variability. X1 is no longer able to account for that variability, which causes it to not be statistically significant.

In other words, X2 explains some of the variability that X1 previously explained. Because X1 no longer explains it, it is no longer significant.

Additionally, the significance of IVs is more likely to change when you add or remove IVs that are correlated. Correlated IVs is known as multicollinearity. Multicollinearity can be a problem when you have too much. Given the change in significance, I’d check your model for multicollinearity just to be safe! Click the link to read a post that wrote about that!

' src=

September 6, 2021 at 8:35 am

nice explanation

' src=

August 25, 2021 at 3:09 am

it is excellent explanation

Comments and Questions Cancel reply

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

Independent and Dependent Variables: Which Is Which?

author image

General Education

feature_variables.jpg

Independent and dependent variables are important for both math and science. If you don't understand what these two variables are and how they differ, you'll struggle to analyze an experiment or plot equations. Fortunately, we make learning these concepts easy!

In this guide, we break down what independent and dependent variables are , give examples of the variables in actual experiments, explain how to properly graph them, provide a quiz to test your skills, and discuss the one other important variable you need to know.

What Is an Independent Variable? What Is a Dependent Variable?

A variable is something you're trying to measure. It can be practically anything, such as objects, amounts of time, feelings, events, or ideas. If you're studying how people feel about different television shows, the variables in that experiment are television shows and feelings. If you're studying how different types of fertilizer affect how tall plants grow, the variables are type of fertilizer and plant height.

There are two key variables in every experiment: the independent variable and the dependent variable.

Independent variable: What the scientist changes or what changes on its own.

Dependent variable: What is being studied/measured.

The independent variable (sometimes known as the manipulated variable) is the variable whose change isn't affected by any other variable in the experiment. Either the scientist has to change the independent variable herself or it changes on its own; nothing else in the experiment affects or changes it. Two examples of common independent variables are age and time. There's nothing you or anything else can do to speed up or slow down time or increase or decrease age. They're independent of everything else.

The dependent variable (sometimes known as the responding variable) is what is being studied and measured in the experiment. It's what changes as a result of the changes to the independent variable. An example of a dependent variable is how tall you are at different ages. The dependent variable (height) depends on the independent variable (age).

An easy way to think of independent and dependent variables is, when you're conducting an experiment, the independent variable is what you change, and the dependent variable is what changes because of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

It can be a lot easier to understand the differences between these two variables with examples, so let's look at some sample experiments below.

body_change-4.jpg

Examples of Independent and Dependent Variables in Experiments

Below are overviews of three experiments, each with their independent and dependent variables identified.

Experiment 1: You want to figure out which brand of microwave popcorn pops the most kernels so you can get the most value for your money. You test different brands of popcorn to see which bag pops the most popcorn kernels.

  • Independent Variable: Brand of popcorn bag (It's the independent variable because you are actually deciding the popcorn bag brands)
  • Dependent Variable: Number of kernels popped (This is the dependent variable because it's what you measure for each popcorn brand)

Experiment 2 : You want to see which type of fertilizer helps plants grow fastest, so you add a different brand of fertilizer to each plant and see how tall they grow.

  • Independent Variable: Type of fertilizer given to the plant
  • Dependent Variable: Plant height

Experiment 3: You're interested in how rising sea temperatures impact algae life, so you design an experiment that measures the number of algae in a sample of water taken from a specific ocean site under varying temperatures.

  • Independent Variable: Ocean temperature
  • Dependent Variable: The number of algae in the sample

For each of the independent variables above, it's clear that they can't be changed by other variables in the experiment. You have to be the one to change the popcorn and fertilizer brands in Experiments 1 and 2, and the ocean temperature in Experiment 3 cannot be significantly changed by other factors. Changes to each of these independent variables cause the dependent variables to change in the experiments.

Where Do You Put Independent and Dependent Variables on Graphs?

Independent and dependent variables always go on the same places in a graph. This makes it easy for you to quickly see which variable is independent and which is dependent when looking at a graph or chart. The independent variable always goes on the x-axis, or the horizontal axis. The dependent variable goes on the y-axis, or vertical axis.

Here's an example:

body_graph-3.jpg

As you can see, this is a graph showing how the number of hours a student studies affects the score she got on an exam. From the graph, it looks like studying up to six hours helped her raise her score, but as she studied more than that her score dropped slightly.

The amount of time studied is the independent variable, because it's what she changed, so it's on the x-axis. The score she got on the exam is the dependent variable, because it's what changed as a result of the independent variable, and it's on the y-axis. It's common to put the units in parentheses next to the axis titles, which this graph does.

There are different ways to title a graph, but a common way is "[Independent Variable] vs. [Dependent Variable]" like this graph. Using a standard title like that also makes it easy for others to see what your independent and dependent variables are.

Are There Other Important Variables to Know?

Independent and dependent variables are the two most important variables to know and understand when conducting or studying an experiment, but there is one other type of variable that you should be aware of: constant variables.

Constant variables (also known as "constants") are simple to understand: they're what stay the same during the experiment. Most experiments usually only have one independent variable and one dependent variable, but they will all have multiple constant variables.

For example, in Experiment 2 above, some of the constant variables would be the type of plant being grown, the amount of fertilizer each plant is given, the amount of water each plant is given, when each plant is given fertilizer and water, the amount of sunlight the plants receive, the size of the container each plant is grown in, and more. The scientist is changing the type of fertilizer each plant gets which in turn changes how much each plant grows, but every other part of the experiment stays the same.

In experiments, you have to test one independent variable at a time in order to accurately understand how it impacts the dependent variable. Constant variables are important because they ensure that the dependent variable is changing because, and only because, of the independent variable so you can accurately measure the relationship between the dependent and independent variables.

If you didn't have any constant variables, you wouldn't be able to tell if the independent variable was what was really affecting the dependent variable. For example, in the example above, if there were no constants and you used different amounts of water, different types of plants, different amounts of fertilizer and put the plants in windows that got different amounts of sun, you wouldn't be able to say how fertilizer type affected plant growth because there would be so many other factors potentially affecting how the plants grew.

body_plants.jpg

3 Experiments to Help You Understand Independent and Dependent Variables

If you're still having a hard time understanding the relationship between independent and dependent variable, it might help to see them in action. Here are three experiments you can try at home.

Experiment 1: Plant Growth Rates

One simple way to explore independent and dependent variables is to construct a biology experiment with seeds. Try growing some sunflowers and see how different factors affect their growth. For example, say you have ten sunflower seedlings, and you decide to give each a different amount of water each day to see if that affects their growth. The independent variable here would be the amount of water you give the plants, and the dependent variable is how tall the sunflowers grow.

Experiment 2: Chemical Reactions

Explore a wide range of chemical reactions with this chemistry kit . It includes 100+ ideas for experiments—pick one that interests you and analyze what the different variables are in the experiment!

Experiment 3: Simple Machines

Build and test a range of simple and complex machines with this K'nex kit . How does increasing a vehicle's mass affect its velocity? Can you lift more with a fixed or movable pulley? Remember, the independent variable is what you control/change, and the dependent variable is what changes because of that.

Quiz: Test Your Variable Knowledge

Can you identify the independent and dependent variables for each of the four scenarios below? The answers are at the bottom of the guide for you to check your work.

Scenario 1: You buy your dog multiple brands of food to see which one is her favorite.

Scenario 2: Your friends invite you to a party, and you decide to attend, but you're worried that staying out too long will affect how well you do on your geometry test tomorrow morning.

Scenario 3: Your dentist appointment will take 30 minutes from start to finish, but that doesn't include waiting in the lounge before you're called in. The total amount of time you spend in the dentist's office is the amount of time you wait before your appointment, plus the 30 minutes of the actual appointment

Scenario 4: You regularly babysit your little cousin who always throws a tantrum when he's asked to eat his vegetables. Over the course of the week, you ask him to eat vegetables four times.

Summary: Independent vs Dependent Variable

Knowing the independent variable definition and dependent variable definition is key to understanding how experiments work. The independent variable is what you change, and the dependent variable is what changes as a result of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

When graphing these variables, the independent variable should go on the x-axis (the horizontal axis), and the dependent variable goes on the y-axis (vertical axis).

Constant variables are also important to understand. They are what stay the same throughout the experiment so you can accurately measure the impact of the independent variable on the dependent variable.

What's Next?

Independent and dependent variables are commonly taught in high school science classes. Read our guide to learn which science classes high school students should be taking.

Scoring well on standardized tests is an important part of having a strong college application. Check out our guides on the best study tips for the SAT and ACT.

Interested in science? Science Olympiad is a great extracurricular to include on your college applications, and it can help you win big scholarships. Check out our complete guide to winning Science Olympiad competitions.

Quiz Answers

1: Independent: dog food brands; Dependent: how much you dog eats

2: Independent: how long you spend at the party; Dependent: your exam score

3: Independent: Amount of time you spend waiting; Dependent: Total time you're at the dentist (the 30 minutes of appointment time is the constant)

4: Independent: Number of times your cousin is asked to eat vegetables; Dependent: number of tantrums

Want to improve your SAT score by 160 points or your ACT score by 4 points?   We've written a guide for each test about the top 5 strategies you must be using to have a shot at improving your score. Download them for free now:

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Independent Variable Definition and Examples

Understand the Independent Variable in an Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

The independent variable and the dependent variable are the two main variables in a science experiment. Below is the definition of an independent variable and a look at how you might use it.

Key Takeaways: Independent Variable

  • The independent variable is the factor that you purposely change or control to see what effect it has.
  • The variable that responds to the change in the independent variable is called the dependent variable. The dependent variable depends on the independent variable.
  • The independent variable is graphed on the x-axis.

Independent Variable Definition

An independent variable is defined as a variable that is changed or controlled in a scientific experiment. The independent variable represents the cause or reason for an outcome. Independent variables are the variables that the experimenter changes to test his or her dependent variable . A change in the independent variable directly causes a change in the dependent variable. The effect on the dependent variable is measured and recorded.

Common misspellings: independant variable

Independent Variable Examples

Here are some examples of an independent variable.

  • A scientist is testing the effect of light and dark on the behavior of moths by turning a light on and off. The independent variable is the amount of light (cause) and the moth's reaction is the dependent variable (the effect).
  • In a study to determine the effect of temperature on plant pigmentation , the independent variable is the temperature, while the amount of pigment or color is the dependent variable.

Graphing the Independent Variable

When graphing data for an experiment, the independent variable is plotted on the x-axis, while the dependent variable is recorded on the y-axis. An easy way to keep the two variables straight is to use the acronym DRY MIX , which stands for:

  • Dependent variable that Responds to change goes on the Y axis
  • Manipulated or Independent variable goes on the X axis

Practice Identifying the Independent Variable

Students are often asked to identify the independent and dependent variable in an experiment. The difficulty is that the value of both of these variables can change. It is even possible for the dependent variable to remain unchanged in response to controlling the independent variable.

Example : You are asked to identify the independent and dependent variable in an experiment to see if there is a relationship between hours of sleep and student test scores.

There are two ways to identify the independent variable. The first is to write the hypothesis and see if it makes sense.

For example:

  • Student test scores do not affect the number of hours the students sleep.
  • The number of hours students sleep do not affect their test scores.

Only one of these statements makes sense. This type of hypothesis is constructed to state the independent variable followed by the predicted impact on the dependent variable. So, the number of hours of sleep is the independent variable.

The other way to identify the independent variable is more intuitive. Remember, the independent variable is the one the experimenter controls to measure its effect on the dependent variable. A researcher can control the number of hours a student sleeps. On the other hand, the scientist has no control over the students' test scores.

The independent variable always changes in an experiment, even if there is just a control and an experimental group. The dependent variable may or may not change in response to the independent variable. In the example regarding sleep and student test scores, the data might show no change in test scores, no matter how much sleep students get (although this outcome seems unlikely). The point is that a researcher knows the values of the independent variable. The value of the dependent variable is measured .

  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.). Wadsworth Publishing. ISBN 0-495-59841-0.
  • Dodge, Y. (2003). The Oxford Dictionary of Statistical Terms . OUP. ISBN 0-19-920613-9.
  • Everitt, B. S. (2002). The Cambridge Dictionary of Statistics (2nd ed.). Cambridge UP. ISBN 0-521-81099-X.
  • Gujarati, Damodar N.; Porter, Dawn C. (2009). "Terminology and Notation". Basic Econometrics (5th international ed.). New York: McGraw-Hill. p. 21. ISBN 978-007-127625-2.
  • Shadish, William R.; Cook, Thomas D.; Campbell, Donald T. (2002). Experimental and quasi-experimental designs for generalized causal inference . (Nachdr. ed.). Boston: Houghton Mifflin. ISBN 0-395-61556-9.
  • Oxidation Definition and Example in Chemistry
  • Dependent Variable vs. Independent Variable: What Is the Difference?
  • Heavy Metal Definition and List
  • Melting Definition in Chemistry
  • Stoichiometry Definition in Chemistry
  • The Combined Gas Law in Chemistry
  • pKa Definition in Chemistry
  • Element Symbol Definition in Chemistry
  • What Is an Element in Chemistry? Definition and Examples
  • Absolute Temperature Definition
  • 4 Types and Examples of Chemical Weathering
  • Ionization Energy Definition and Trend
  • The Chemical Composition of Air
  • Why Is the Carbon Cycle Important?
  • Definition of Air in Science
  • Null Hypothesis Definition and Examples

Independent Variables (Definition + 43 Examples)

practical psychology logo

Have you ever wondered how scientists make discoveries and how researchers come to understand the world around us? A crucial tool in their kit is the concept of the independent variable, which helps them delve into the mysteries of science and everyday life.

An independent variable is a condition or factor that researchers manipulate to observe its effect on another variable, known as the dependent variable. In simpler terms, it’s like adjusting the dials and watching what happens! By changing the independent variable, scientists can see if and how it causes changes in what they are measuring or observing, helping them make connections and draw conclusions.

In this article, we’ll explore the fascinating world of independent variables, journey through their history, examine theories, and look at a variety of examples from different fields.

History of the Independent Variable

pill bottles

Once upon a time, in a world thirsty for understanding, people observed the stars, the seas, and everything in between, seeking to unlock the mysteries of the universe.

The story of the independent variable begins with a quest for knowledge, a journey taken by thinkers and tinkerers who wanted to explain the wonders and strangeness of the world.

Origins of the Concept

The seeds of the idea of independent variables were sown by Sir Francis Galton , an English polymath, in the 19th century. Galton wore many hats—he was a psychologist, anthropologist, meteorologist, and a statistician!

It was his diverse interests that led him to explore the relationships between different factors and their effects. Galton was curious—how did one thing lead to another, and what could be learned from these connections?

As Galton delved into the world of statistical theories , the concept of independent variables started taking shape.

He was interested in understanding how characteristics, like height and intelligence, were passed down through generations.

Galton’s work laid the foundation for later thinkers to refine and expand the concept, turning it into an invaluable tool for scientific research.

Evolution over Time

After Galton’s pioneering work, the concept of the independent variable continued to evolve and grow. Scientists and researchers from various fields adopted and adapted it, finding new ways to use it to make sense of the world.

They discovered that by manipulating one factor (the independent variable), they could observe changes in another (the dependent variable), leading to groundbreaking insights and discoveries.

Through the years, the independent variable became a cornerstone in experimental design . Researchers in fields like physics, biology, psychology, and sociology used it to test hypotheses, develop theories, and uncover the laws that govern our universe.

The idea that originated from Galton’s curiosity had bloomed into a universal key, unlocking doors to knowledge across disciplines.

Importance in Scientific Research

Today, the independent variable stands tall as a pillar of scientific research. It helps scientists and researchers ask critical questions, test their ideas, and find answers. Without independent variables, we wouldn’t have many of the advancements and understandings that we take for granted today.

The independent variable plays a starring role in experiments, helping us learn about everything from the smallest particles to the vastness of space. It helps researchers create vaccines, understand social behaviors, explore ecological systems, and even develop new technologies.

In the upcoming sections, we’ll dive deeper into what independent variables are, how they work, and how they’re used in various fields.

Together, we’ll uncover the magic of this scientific concept and see how it continues to shape our understanding of the world around us.

What is an Independent Variable?

Embarking on the captivating journey of scientific exploration requires us to grasp the essential terms and ideas. It's akin to a treasure hunter mastering the use of a map and compass.

In our adventure through the realm of independent variables, we’ll delve deeper into some fundamental concepts and definitions to help us navigate this exciting world.

Variables in Research

In the grand tapestry of research, variables are the gems that researchers seek. They’re elements, characteristics, or behaviors that can shift or vary in different circumstances.

Picture them as the myriad of ingredients in a chef’s kitchen—each variable can be adjusted or modified to create a myriad of dishes, each with a unique flavor!

Understanding variables is essential as they form the core of every scientific experiment and observational study.

Types of Variables

Independent Variable The star of our story, the independent variable, is the one that researchers change or control to study its effects. It’s like a chef experimenting with different spices to see how each one alters the taste of the soup. The independent variable is the catalyst, the initial spark that sets the wheels of research in motion.

Dependent Variable The dependent variable is the outcome we observe and measure . It’s the altered flavor of the soup that results from the chef’s culinary experiments. This variable depends on the changes made to the independent variable, hence the name!

Observing how the dependent variable reacts to changes helps scientists draw conclusions and make discoveries.

Control Variable Control variables are the unsung heroes of scientific research. They’re the constants, the elements that researchers keep the same to ensure the integrity of the experiment.

Imagine if our chef used a different type of broth each time he experimented with spices—the results would be all over the place! Control variables keep the experiment grounded and help researchers be confident in their findings.

Confounding Variables Imagine a hidden rock in a stream, changing the water’s flow in unexpected ways. Confounding variables are similar—they are external factors that can sneak into experiments and influence the outcome , adding twists to our scientific story.

These variables can blur the relationship between the independent and dependent variables, making the results of the study a bit puzzly. Detecting and controlling these hidden elements helps researchers ensure the accuracy of their findings and reach true conclusions.

There are of course other types of variables, and different ways to manipulate them called " schedules of reinforcement ," but we won't get into that too much here.

Role of the Independent Variable

Manipulation When researchers manipulate the independent variable, they are orchestrating a symphony of cause and effect. They’re adjusting the strings, the brass, the percussion, observing how each change influences the melody—the dependent variable.

This manipulation is at the heart of experimental research. It allows scientists to explore relationships, unravel patterns, and unearth the secrets hidden within the fabric of our universe.

Observation With every tweak and adjustment made to the independent variable, researchers are like seasoned detectives, observing the dependent variable for changes, collecting clues, and piecing together the puzzle.

Observing the effects and changes that occur helps them deduce relationships, formulate theories, and expand our understanding of the world. Every observation is a step towards solving the mysteries of nature and human behavior.

Identifying Independent Variables

Characteristics Identifying an independent variable in the vast landscape of research can seem daunting, but fear not! Independent variables have distinctive characteristics that make them stand out.

They’re the elements that are deliberately changed or controlled in an experiment to study their effects on the dependent variable. Recognizing these characteristics is like learning to spot footprints in the sand—it leads us to the heart of the discovery!

In Different Types of Research The world of research is diverse and varied, and the independent variable dons many guises! In the field of medicine, it might manifest as the dosage of a drug administered to patients.

In psychology, it could take the form of different learning methods applied to study memory retention. In each field, identifying the independent variable correctly is the golden key that unlocks the treasure trove of knowledge and insights.

As we forge ahead on our enlightening journey, equipped with a deeper understanding of independent variables and their roles, we’re ready to delve into the intricate theories and diverse examples that underscore their significance.

Independent Variables in Research

researcher doing research

Now that we’re acquainted with the basic concepts and have the tools to identify independent variables, let’s dive into the fascinating ocean of theories and frameworks.

These theories are like ancient scrolls, providing guidelines and blueprints that help scientists use independent variables to uncover the secrets of the universe.

Scientific Method

What is it and How Does it Work? The scientific method is like a super-helpful treasure map that scientists use to make discoveries. It has steps we follow: asking a question, researching, guessing what will happen (that's a hypothesis!), experimenting, checking the results, figuring out what they mean, and telling everyone about it.

Our hero, the independent variable, is the compass that helps this adventure go the right way!

How Independent Variables Lead the Way In the scientific method, the independent variable is like the captain of a ship, leading everyone through unknown waters.

Scientists change this variable to see what happens and to learn new things. It’s like having a compass that points us towards uncharted lands full of knowledge!

Experimental Design

The Basics of Building Constructing an experiment is like building a castle, and the independent variable is the cornerstone. It’s carefully chosen and manipulated to see how it affects the dependent variable. Researchers also identify control and confounding variables, ensuring the castle stands strong, and the results are reliable.

Keeping Everything in Check In every experiment, maintaining control is key to finding the treasure. Scientists use control variables to keep the conditions consistent, ensuring that any changes observed are truly due to the independent variable. It’s like ensuring the castle’s foundation is solid, supporting the structure as it reaches for the sky.

Hypothesis Testing

Making Educated Guesses Before they start experimenting, scientists make educated guesses called hypotheses . It’s like predicting which X marks the spot of the treasure! It often includes the independent variable and the expected effect on the dependent variable, guiding researchers as they navigate through the experiment.

Independent Variables in the Spotlight When testing these guesses, the independent variable is the star of the show! Scientists change and watch this variable to see if their guesses were right. It helps them figure out new stuff and learn more about the world around us!

Statistical Analysis

Figuring Out Relationships After the experimenting is done, it’s time for scientists to crack the code! They use statistics to understand how the independent and dependent variables are related and to uncover the hidden stories in the data.

Experimenters have to be careful about how they determine the validity of their findings, which is why they use statistics. Something called "experimenter bias" can get in the way of having true (valid) results, because it's basically when the experimenter influences the outcome based on what they believe to be true (or what they want to be true!).

How Important are the Discoveries? Through statistical analysis, scientists determine the significance of their findings. It’s like discovering if the treasure found is made of gold or just shiny rocks. The analysis helps researchers know if the independent variable truly had an effect, contributing to the rich tapestry of scientific knowledge.

As we uncover more about how theories and frameworks use independent variables, we start to see how awesome they are in helping us learn more about the world. But we’re not done yet!

Up next, we’ll look at tons of examples to see how independent variables work their magic in different areas.

Examples of Independent Variables

Independent variables take on many forms, showcasing their versatility in a range of experiments and studies. Let’s uncover how they act as the protagonists in numerous investigations and learning quests!

Science Experiments

1) plant growth.

Consider an experiment aiming to observe the effect of varying water amounts on plant height. In this scenario, the amount of water given to the plants is the independent variable!

2) Freezing Water

Suppose we are curious about the time it takes for water to freeze at different temperatures. The temperature of the freezer becomes the independent variable as we adjust it to observe the results!

3) Light and Shadow

Have you ever observed how shadows change? In an experiment, adjusting the light angle to observe its effect on an object’s shadow makes the angle of light the independent variable!

4) Medicine Dosage

In medical studies, determining how varying medicine dosages influence a patient’s recovery is essential. Here, the dosage of the medicine administered is the independent variable!

5) Exercise and Health

Researchers might examine the impact of different exercise forms on individuals’ health. The various exercise forms constitute the independent variable in this study!

6) Sleep and Wellness

Have you pondered how the sleep duration affects your well-being the following day? In such research, the hours of sleep serve as the independent variable!

calm blue room

7) Learning Methods

Psychologists might investigate how diverse study methods influence test outcomes. Here, the different study methods adopted by students are the independent variable!

8) Mood and Music

Have you experienced varied emotions with different music genres? The genre of music played becomes the independent variable when researching its influence on emotions!

9) Color and Feelings

Suppose researchers are exploring how room colors affect individuals’ emotions. In this case, the room colors act as the independent variable!

Environment

10) rainfall and plant life.

Environmental scientists may study the influence of varying rainfall levels on vegetation. In this instance, the amount of rainfall is the independent variable!

11) Temperature and Animal Behavior

Examining how temperature variations affect animal behavior is fascinating. Here, the varying temperatures serve as the independent variable!

12) Pollution and Air Quality

Investigating the effects of different pollution levels on air quality is crucial. In such studies, the pollution level is the independent variable!

13) Internet Speed and Productivity

Researchers might explore how varying internet speeds impact work productivity. In this exploration, the internet speed is the independent variable!

14) Device Type and User Experience

Examining how different devices affect user experience is interesting. Here, the type of device used is the independent variable!

15) Software Version and Performance

Suppose a study aims to determine how different software versions influence system performance. The software version becomes the independent variable!

16) Teaching Style and Student Engagement

Educators might investigate the effect of varied teaching styles on student engagement. In such a study, the teaching style is the independent variable!

17) Class Size and Learning Outcome

Researchers could explore how different class sizes influence students’ learning. Here, the class size is the independent variable!

18) Homework Frequency and Academic Achievement

Examining the relationship between the frequency of homework assignments and academic success is essential. The frequency of homework becomes the independent variable!

19) Telescope Type and Celestial Observation

Astronomers might study how different telescopes affect celestial observation. In this scenario, the telescope type is the independent variable!

20) Light Pollution and Star Visibility

Investigating the influence of varying light pollution levels on star visibility is intriguing. Here, the level of light pollution is the independent variable!

21) Observation Time and Astronomical Detail

Suppose a study explores how observation duration affects the detail captured in astronomical images. The duration of observation serves as the independent variable!

22) Community Size and Social Interaction

Sociologists may examine how the size of a community influences social interactions. In this research, the community size is the independent variable!

23) Cultural Exposure and Social Tolerance

Investigating the effect of diverse cultural exposure on social tolerance is vital. Here, the level of cultural exposure is the independent variable!

24) Economic Status and Educational Attainment

Researchers could explore how different economic statuses impact educational achievements. In such studies, economic status is the independent variable!

25) Training Intensity and Athletic Performance

Sports scientists might study how varying training intensities affect athletes’ performance. In this case, the training intensity is the independent variable!

26) Equipment Type and Player Safety

Examining the relationship between different sports equipment and player safety is crucial. Here, the type of equipment used is the independent variable!

27) Team Size and Game Strategy

Suppose researchers are investigating how the size of a sports team influences game strategy. The team size becomes the independent variable!

28) Diet Type and Health Outcome

Nutritionists may explore the impact of various diets on individuals’ health. In this exploration, the type of diet followed is the independent variable!

29) Caloric Intake and Weight Change

Investigating how different caloric intakes influence weight change is essential. In such a study, the caloric intake is the independent variable!

30) Food Variety and Nutrient Absorption

Researchers could examine how consuming a variety of foods affects nutrient absorption. Here, the variety of foods consumed is the independent variable!

Real-World Examples of Independent Variables

wind turbine

Isn't it fantastic how independent variables play such an essential part in so many studies? But the excitement doesn't stop there!

Now, let’s explore how findings from these studies, led by independent variables, make a big splash in the real world and improve our daily lives!

Healthcare Advancements

31) treatment optimization.

By studying different medicine dosages and treatment methods as independent variables, doctors can figure out the best ways to help patients recover quicker and feel better. This leads to more effective medicines and treatment plans!

32) Lifestyle Recommendations

Researching the effects of sleep, exercise, and diet helps health experts give us advice on living healthier lives. By changing these independent variables, scientists uncover the secrets to feeling good and staying well!

Technological Innovations

33) speeding up the internet.

When scientists explore how different internet speeds affect our online activities, they’re able to develop technologies to make the internet faster and more reliable. This means smoother video calls and quicker downloads!

34) Improving User Experience

By examining how we interact with various devices and software, researchers can design technology that’s easier and more enjoyable to use. This leads to cooler gadgets and more user-friendly apps!

Educational Strategies

35) enhancing learning.

Investigating different teaching styles, class sizes, and study methods helps educators discover what makes learning fun and effective. This research shapes classrooms, teaching methods, and even homework!

36) Tailoring Student Support

By studying how students with diverse needs respond to different support strategies, educators can create personalized learning experiences. This means every student gets the help they need to succeed!

Environmental Protection

37) conserving nature.

Researching how rainfall, temperature, and pollution affect the environment helps scientists suggest ways to protect our planet. By studying these independent variables, we learn how to keep nature healthy and thriving!

38) Combating Climate Change

Scientists studying the effects of pollution and human activities on climate change are leading the way in finding solutions. By exploring these independent variables, we can develop strategies to combat climate change and protect the Earth!

Social Development

39) building stronger communities.

Sociologists studying community size, cultural exposure, and economic status help us understand what makes communities happy and united. This knowledge guides the development of policies and programs for stronger societies!

40) Promoting Equality and Tolerance

By exploring how exposure to diverse cultures affects social tolerance, researchers contribute to fostering more inclusive and harmonious societies. This helps build a world where everyone is respected and valued!

Enhancing Sports Performance

41) optimizing athlete training.

Sports scientists studying training intensity, equipment type, and team size help athletes reach their full potential. This research leads to better training programs, safer equipment, and more exciting games!

42) Innovating Sports Strategies

By investigating how different game strategies are influenced by various team compositions, researchers contribute to the evolution of sports. This means more thrilling competitions and matches for us to enjoy!

Nutritional Well-Being

43) guiding healthy eating.

Nutritionists researching diet types, caloric intake, and food variety help us understand what foods are best for our bodies. This knowledge shapes dietary guidelines and helps us make tasty, yet nutritious, meal choices!

44) Promoting Nutritional Awareness

By studying the effects of different nutrients and diets, researchers educate us on maintaining a balanced diet. This fosters a greater awareness of nutritional well-being and encourages healthier eating habits!

As we journey through these real-world applications, we witness the incredible impact of studies featuring independent variables. The exploration doesn’t end here, though!

Let’s continue our adventure and see how we can identify independent variables in our own observations and inquiries! Keep your curiosity alive, and let’s delve deeper into the exciting realm of independent variables!

Identifying Independent Variables in Everyday Scenarios

So, we’ve seen how independent variables star in many studies, but how about spotting them in our everyday life?

Recognizing independent variables can be like a treasure hunt – you never know where you might find one! Let’s uncover some tips and tricks to identify these hidden gems in various situations.

1) Asking Questions

One of the best ways to spot an independent variable is by asking questions! If you’re curious about something, ask yourself, “What am I changing or manipulating in this situation?” The thing you’re changing is likely the independent variable!

For example, if you’re wondering whether the amount of sunlight affects how quickly your laundry dries, the sunlight amount is your independent variable!

2) Making Observations

Keep your eyes peeled and observe the world around you! By watching how changes in one thing (like the amount of rain) affect something else (like the height of grass), you can identify the independent variable.

In this case, the amount of rain is the independent variable because it’s what’s changing!

3) Conducting Experiments

Get hands-on and conduct your own experiments! By changing one thing and observing the results, you’re identifying the independent variable.

If you’re growing plants and decide to water each one differently to see the effects, the amount of water is your independent variable!

4) Everyday Scenarios

In everyday scenarios, independent variables are all around!

When you adjust the temperature of your oven to bake cookies, the oven temperature is the independent variable.

Or if you’re deciding how much time to spend studying for a test, the study time is your independent variable!

5) Being Curious

Keep being curious and asking “What if?” questions! By exploring different possibilities and wondering how changing one thing could affect another, you’re on your way to identifying independent variables.

If you’re curious about how the color of a room affects your mood, the room color is the independent variable!

6) Reviewing Past Studies

Don’t forget about the treasure trove of past studies and experiments! By reviewing what scientists and researchers have done before, you can learn how they identified independent variables in their work.

This can give you ideas and help you recognize independent variables in your own explorations!

Exercises for Identifying Independent Variables

Ready for some practice? Let’s put on our thinking caps and try to identify the independent variables in a few scenarios.

Remember, the independent variable is what’s being changed or manipulated to observe the effect on something else! (You can see the answers below)

Scenario One: Cooking Time

You’re cooking pasta for dinner and want to find out how the cooking time affects its texture. What is the independent variable?

Scenario Two: Exercise Routine

You decide to try different exercise routines each week to see which one makes you feel the most energetic. What is the independent variable?

Scenario Three: Plant Fertilizer

You’re growing tomatoes in your garden and decide to use different types of fertilizer to see which one helps them grow the best. What is the independent variable?

Scenario Four: Study Environment

You’re preparing for an important test and try studying in different environments (quiet room, coffee shop, library) to see where you concentrate best. What is the independent variable?

Scenario Five: Sleep Duration

You’re curious to see how the number of hours you sleep each night affects your mood the next day. What is the independent variable?

By practicing identifying independent variables in different scenarios, you’re becoming a true independent variable detective. Keep practicing, stay curious, and you’ll soon be spotting independent variables everywhere you go.

Independent Variable: The cooking time is the independent variable. You are changing the cooking time to observe its effect on the texture of the pasta.

Independent Variable: The type of exercise routine is the independent variable. You are trying out different exercise routines each week to see which one makes you feel the most energetic.

Independent Variable: The type of fertilizer is the independent variable. You are using different types of fertilizer to observe their effects on the growth of the tomatoes.

Independent Variable: The study environment is the independent variable. You are studying in different environments to see where you concentrate best.

Independent Variable: The number of hours you sleep is the independent variable. You are changing your sleep duration to see how it affects your mood the next day.

Whew, what a journey we’ve had exploring the world of independent variables! From understanding their definition and role to diving into a myriad of examples and real-world impacts, we’ve uncovered the treasures hidden in the realm of independent variables.

The beauty of independent variables lies in their ability to unlock new knowledge and insights, guiding us to discoveries that improve our lives and the world around us.

By identifying and studying these variables, we embark on exciting learning adventures, solving mysteries and answering questions about the universe we live in.

Remember, the joy of discovery doesn’t end here. The world is brimming with questions waiting to be answered and mysteries waiting to be solved.

Keep your curiosity alive, continue exploring, and who knows what incredible discoveries lie ahead.

Related posts:

  • Confounding Variable in Psychology (Examples + Definition)
  • 19+ Experimental Design Examples (Methods + Types)
  • Variable Interval Reinforcement Schedule (Examples)
  • Variable Ratio Reinforcement Schedule (Examples)
  • State Dependent Memory + Learning (Definition and Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

The Scientific Method/Independent and Dependent Variables

  • 1 Relationships Between Variables
  • 2 Hypothesis
  • 3.1 Corollary to Isolation of Effects

Relationships Between Variables

In any experiment, the object is to gather information about some event, in order to increase one's knowledge about it. In order to design an experiment, it is necessary to know or make an educated guess about cause and effect relationships between what you change in the experiment and what you are measuring. In order to do this, scientists use established theories to come up with a hypothesis before experimenting.

A hypothesis is a conjecture, based on knowledge obtained while formulating the question, that may explain any given behavior. The hypothesis might be very specific or it might be broad. "DNA makes RNA make protein" or "Unknown species of life dwell in the ocean," are two examples of valid hypothesis.

When formulating a hypothesis in the context of a controlled experiment, it will typically take the form a prediction of how changing one variable effects another, bring a variable any aspect, or collection, open to measurable change. The variable(s) that you alter intentionally in function of the experiment are called independent variables , while the variables that do not change by intended direct action are called dependent variables .

A hypothesis says something to the effect of:

Changing independent variable X should do something to dependent variable Y.

For example, suppose you wanted to measure the effects of temperature on the solubility of table sugar (sucrose). Knowing that dissolving sugar doesn't release or absorb much heat, it may seem intuitive to guess that the solubility does not depend on the temperature. Therefore our hypothesis may be:

Increasing or decreasing the temperature of a solution of water does not affect the solubility of sugar.

Isolation of Effects

When determining what independent variables to change in an experiment, it is very important that you isolate the effects of each independent variable. You do not want to change more than one variable at once, for if you do it becomes more difficult to analyze the effects of each change on the dependent variable.

This is why experiments have to be designed very carefully. For example, performing the above tests on tap water may have different results from performing them on spring water, due to differences in salt content. Also, performing them on different days may cause variation due to pressure differences, or performing them with different brands of sugar may yield different results if different companies use different additives.

It is valid to test the effects of each of these things, if one desires, but if one does not have an infinite amount of money to experiment with all of the things that could go wrong (to see what happens if they do), a better alternative is to design the experiment to avoid potential pitfalls such as these.

Corollary to Isolation of Effects

A corollary to this warning is that when designing the experiment, you should choose a set of conditions that maximizes your power to analyze the effects of changes in variables. For example, if you wanted to measure the effects of temperature and of water volume, you should start with a basis (say, 20oC and 4 fluid ounces of water) which is easy to replicate, and then, keeping one of the variables constant, changing the other one. Then, do the opposite. You may end up with an experimental scheme like this one:

Once the data is gathered, you would analyze tests number 1, 4, and 5 to get an idea of the effect of temperature, and tests number 1, 2, and 3 to get an idea of volume effects. You would not analyze all 5 data points at once.

one independent variable per experiment

  • Book:The Scientific Method

Navigation menu

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics

How to Identify Dependent and Independent Variables

Last Updated: June 29, 2024 Fact Checked

This article was co-authored by Michael Simpson, PhD . Dr. Michael Simpson (Mike) is a Registered Professional Biologist in British Columbia, Canada. He has over 20 years of experience in ecology research and professional practice in Britain and North America, with an emphasis on plants and biological diversity. Mike also specializes in science communication and providing education and technical support for ecology projects. Mike received a BSc with honors in Ecology and an MA in Society, Science, and Nature from The University of Lancaster in England as well as a Ph.D. from the University of Alberta. He has worked in British, North American, and South American ecosystems, and with First Nations communities, non-profits, government, academia, and industry. There are 10 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 138,704 times.

Whether you’re conducting an experiment or learning algebra, understanding the relationship between independent and dependent variables is a valuable skill. Learning the difference between them can be tricky at first, but you’ll get the hang of it in no time.

Understanding Independent and Dependent Variables

Step 1 Think of an independent variable as a cause that produces an effect.

  • For example, if a researcher wants to see how well different doses of a medication work, the dose is the independent variable.
  • Suppose you want to see if studying more improves your test scores. The amount of time you spend studying is the independent variable.

Step 2 Treat the dependent variable as an outcome.

  • Say a researcher is testing an allergy medication. Allergy relief after taking the dose is the dependent variable, or the outcome caused by taking the medicine.

Step 3 Remember that a dependent variable can’t change an independent variable.

Tip: When you encounter variables, plug them into this sentence: “ Independent variable causes Dependent Variable , but it isn't possible that Dependent Variable could cause Independent Variable .

For example: “A 5 mg dose of medication causes allergy relief, but it isn’t possible that allergy relief could cause a 5 mg dose of medication.”

Identifying Variables in Equations

Step 1 Use letters to represent variables in word problems.

  • The $3 per chore is a constant. Your parents set that in stone, and that number isn't going to change. On the other hand, the number of chores you do and the total amount of money you earn aren't constant. They're variables that you want to measure.
  • To set up an equation, use letters to represent the chores you do and the money you'll earn. Let t represent the total amount of money you earn and n stand for the number of chores you do.

Step 2 Set up an equation with the variables.

  • Notice that the amount of money you'll earn depends on the number of chores to do. Since it depends on other variables, it's the dependent variable.

Step 3 Practice solving equations to see how variables are connected.

Graphing Independent and Dependent Variables

Step 1 Create a graph with x and y-axes.

  • Say you sell apples and want to see how advertising affects your sales. The amount of money you spent in a month on advertising is the independent variable, or the factor that causes the effect you’re trying to understand. The number of apples you sold that month is the dependent variable.

Step 2 Label the x-axis with units to measure your independent variable.

  • Suppose you’re trying to see if advertising more increases the number of apples you sold. Divide the x-axis into units to measure your monthly advertising budget.
  • If you’ve spent between $0 and $500 a month in the last year on advertising, draw 10 dashes along the x-axis. Label the left end of the line “$0.” Then label each dash with a dollar amount in $50 increments ($50, $100, $150, and so on) until you’ve reached the last dash, or “$500.”

Step 3 Draw dashes along the y-axis to measure the dependent variable.

  • Suppose your monthly apple sales have ranged between 60 and 250 over the last year. Draw 10 dashes across the y-axis, label the first “50,” and label the rest of the dashes in increments of 25 (50, 75, 100, and so on), until you’ve written 275 next to the last dash.

Step 4 Enter your variables'...

  • For instance, if you spent $350 on advertising last month, find the dash labeled “350” on the x-axis. If last month’s apple sales totaled 225, find the dash labeled “225” on the y-axis. Draw a dot at the point at the graph coordinate ($350, 225), then continue graphing points for the rest of your monthly numbers.

Step 5 Look for patterns in the points you’ve graphed.

  • For example, say you’ve graphed your advertising expenses and monthly apple sales, and the dots are arranged in an upward sloped line. This means that your monthly sales were higher when you spent more on advertising.

Expert Q&A

Michael Simpson, PhD

You Might Also Like

Calculate Percentages

  • ↑ Michael Simpson, PhD. Registered Professional Biologist. Expert Interview. 25 June 2021.
  • ↑ https://researchbasics.education.uconn.edu/variables/
  • ↑ https://libguides.usc.edu/writingguide/variables
  • ↑ https://nces.ed.gov/nceskids/help/user_guide/graph/variables.asp
  • ↑ https://www.khanacademy.org/math/algebra/introduction-to-algebra/alg1-dependent-independent/e/dependent-and-independent-variables
  • ↑ https://www.mathsisfun.com/algebra/equations-solving.html
  • ↑ https://www.khanacademy.org/math/pre-algebra/pre-algebra-equations-expressions/pre-algebra-dependent-independent/a/dependent-and-independent-variables-review
  • ↑ https://www2.nau.edu/lrm22/lessons/graph_tips/graph_tips.html
  • ↑ https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-equations-and-inequalities/cc-6th-dependent-independent/v/dependent-and-independent-variables-exercise-example-2
  • ↑ https://nces.ed.gov/nceskids/help/user_guide/graph/line.asp

About This Article

Michael Simpson, PhD

  • Send fan mail to authors

Did this article help you?

Do I Have a Dirty Mind Quiz

Featured Articles

Enjoy Your Preteen Years

Trending Articles

DnD Name Generator

Watch Articles

Make Fluffy Pancakes

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Develop the tech skills you need for work and life

one independent variable per experiment

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.2 Multiple Independent Variables

Learning objectives.

  • Explain why researchers often include multiple independent variables in their studies.
  • Define factorial design, and use a factorial design table to represent and interpret simple factorial designs.
  • Distinguish between main effects and interactions, and recognize and give examples of each.
  • Sketch and interpret bar graphs and line graphs showing the results of studies with simple factorial designs.

Just as it is common for studies in psychology to include multiple dependent variables, it is also common for them to include multiple independent variables. Schnall and her colleagues studied the effect of both disgust and private body consciousness in the same study. Researchers’ inclusion of multiple independent variables in one experiment is further illustrated by the following actual titles from various professional journals:

  • The Effects of Temporal Delay and Orientation on Haptic Object Recognition
  • Opening Closed Minds: The Combined Effects of Intergroup Contact and Need for Closure on Prejudice
  • Effects of Expectancies and Coping on Pain-Induced Intentions to Smoke
  • The Effect of Age and Divided Attention on Spontaneous Recognition
  • The Effects of Reduced Food Size and Package Size on the Consumption Behavior of Restrained and Unrestrained Eaters

Just as including multiple dependent variables in the same experiment allows one to answer more research questions, so too does including multiple independent variables in the same experiment. For example, instead of conducting one study on the effect of disgust on moral judgment and another on the effect of private body consciousness on moral judgment, Schnall and colleagues were able to conduct one study that addressed both questions. But including multiple independent variables also allows the researcher to answer questions about whether the effect of one independent variable depends on the level of another. This is referred to as an interaction between the independent variables. Schnall and her colleagues, for example, observed an interaction between disgust and private body consciousness because the effect of disgust depended on whether participants were high or low in private body consciousness. As we will see, interactions are often among the most interesting results in psychological research.

Factorial Designs

By far the most common approach to including multiple independent variables in an experiment is the factorial design. In a factorial design , each level of one independent variable (which can also be called a factor ) is combined with each level of the others to produce all possible combinations. Each combination, then, becomes a condition in the experiment. Imagine, for example, an experiment on the effect of cell phone use (yes vs. no) and time of day (day vs. night) on driving ability. This is shown in the factorial design table in Figure 8.2 “Factorial Design Table Representing a 2 × 2 Factorial Design” . The columns of the table represent cell phone use, and the rows represent time of day. The four cells of the table represent the four possible combinations or conditions: using a cell phone during the day, not using a cell phone during the day, using a cell phone at night, and not using a cell phone at night. This particular design is a 2 × 2 (read “two-by-two”) factorial design because it combines two variables, each of which has two levels. If one of the independent variables had a third level (e.g., using a handheld cell phone, using a hands-free cell phone, and not using a cell phone), then it would be a 3 × 2 factorial design, and there would be six distinct conditions. Notice that the number of possible conditions is the product of the numbers of levels. A 2 × 2 factorial design has four conditions, a 3 × 2 factorial design has six conditions, a 4 × 5 factorial design would have 20 conditions, and so on.

Figure 8.2 Factorial Design Table Representing a 2 × 2 Factorial Design

Factorial Design Table Representing a 2x2 Factorial Design

In principle, factorial designs can include any number of independent variables with any number of levels. For example, an experiment could include the type of psychotherapy (cognitive vs. behavioral), the length of the psychotherapy (2 weeks vs. 2 months), and the sex of the psychotherapist (female vs. male). This would be a 2 × 2 × 2 factorial design and would have eight conditions. Figure 8.3 “Factorial Design Table Representing a 2 × 2 × 2 Factorial Design” shows one way to represent this design. In practice, it is unusual for there to be more than three independent variables with more than two or three levels each because the number of conditions can quickly become unmanageable. For example, adding a fourth independent variable with three levels (e.g., therapist experience: low vs. medium vs. high) to the current example would make it a 2 × 2 × 2 × 3 factorial design with 24 distinct conditions. In the rest of this section, we will focus on designs with two independent variables. The general principles discussed here extend in a straightforward way to more complex factorial designs.

Figure 8.3 Factorial Design Table Representing a 2 × 2 × 2 Factorial Design

Factorial Design Table Representing a 2x2x2 Factorial Design

Assigning Participants to Conditions

Recall that in a simple between-subjects design, each participant is tested in only one condition. In a simple within-subjects design, each participant is tested in all conditions. In a factorial experiment, the decision to take the between-subjects or within-subjects approach must be made separately for each independent variable. In a between-subjects factorial design , all of the independent variables are manipulated between subjects. For example, all participants could be tested either while using a cell phone or while not using a cell phone and either during the day or during the night. This would mean that each participant was tested in one and only one condition. In a within-subjects factorial design , all of the independent variables are manipulated within subjects. All participants could be tested both while using a cell phone and while not using a cell phone and both during the day and during the night. This would mean that each participant was tested in all conditions. The advantages and disadvantages of these two approaches are the same as those discussed in Chapter 6 “Experimental Research” . The between-subjects design is conceptually simpler, avoids carryover effects, and minimizes the time and effort of each participant. The within-subjects design is more efficient for the researcher and controls extraneous participant variables.

It is also possible to manipulate one independent variable between subjects and another within subjects. This is called a mixed factorial design . For example, a researcher might choose to treat cell phone use as a within-subjects factor by testing the same participants both while using a cell phone and while not using a cell phone (while counterbalancing the order of these two conditions). But he or she might choose to treat time of day as a between-subjects factor by testing each participant either during the day or during the night (perhaps because this only requires them to come in for testing once). Thus each participant in this mixed design would be tested in two of the four conditions.

Regardless of whether the design is between subjects, within subjects, or mixed, the actual assignment of participants to conditions or orders of conditions is typically done randomly.

Nonmanipulated Independent Variables

In many factorial designs, one of the independent variables is a nonmanipulated independent variable . The researcher measures it but does not manipulate it. The study by Schnall and colleagues is a good example. One independent variable was disgust, which the researchers manipulated by testing participants in a clean room or a messy room. The other was private body consciousness, which the researchers simply measured. Another example is a study by Halle Brown and colleagues in which participants were exposed to several words that they were later asked to recall (Brown, Kosslyn, Delamater, Fama, & Barsky, 1999). The manipulated independent variable was the type of word. Some were negative health-related words (e.g., tumor , coronary ), and others were not health related (e.g., election , geometry ). The nonmanipulated independent variable was whether participants were high or low in hypochondriasis (excessive concern with ordinary bodily symptoms). The result of this study was that the participants high in hypochondriasis were better than those low in hypochondriasis at recalling the health-related words, but they were no better at recalling the non-health-related words.

Such studies are extremely common, and there are several points worth making about them. First, nonmanipulated independent variables are usually participant variables (private body consciousness, hypochondriasis, self-esteem, and so on), and as such they are by definition between-subjects factors. For example, people are either low in hypochondriasis or high in hypochondriasis; they cannot be tested in both of these conditions. Second, such studies are generally considered to be experiments as long as at least one independent variable is manipulated, regardless of how many nonmanipulated independent variables are included. Third, it is important to remember that causal conclusions can only be drawn about the manipulated independent variable. For example, Schnall and her colleagues were justified in concluding that disgust affected the harshness of their participants’ moral judgments because they manipulated that variable and randomly assigned participants to the clean or messy room. But they would not have been justified in concluding that participants’ private body consciousness affected the harshness of their participants’ moral judgments because they did not manipulate that variable. It could be, for example, that having a strict moral code and a heightened awareness of one’s body are both caused by some third variable (e.g., neuroticism). Thus it is important to be aware of which variables in a study are manipulated and which are not.

Graphing the Results of Factorial Experiments

The results of factorial experiments with two independent variables can be graphed by representing one independent variable on the x- axis and representing the other by using different kinds of bars or lines. (The y- axis is always reserved for the dependent variable.) Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows results for two hypothetical factorial experiments. The top panel shows the results of a 2 × 2 design. Time of day (day vs. night) is represented by different locations on the x- axis, and cell phone use (no vs. yes) is represented by different-colored bars. (It would also be possible to represent cell phone use on the x- axis and time of day as different-colored bars. The choice comes down to which way seems to communicate the results most clearly.) The bottom panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows the results of a 4 × 2 design in which one of the variables is quantitative. This variable, psychotherapy length, is represented along the x- axis, and the other variable (psychotherapy type) is represented by differently formatted lines. This is a line graph rather than a bar graph because the variable on the x- axis is quantitative with a small number of distinct levels.

Figure 8.4 Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables

Two Ways to PLot the Results of a Factorial Experiment With Two Independent Variables

Main Effects and Interactions

In factorial designs, there are two kinds of results that are of interest: main effects and interaction effects (which are also called just “interactions”). A main effect is the statistical relationship between one independent variable and a dependent variable—averaging across the levels of the other independent variable. Thus there is one main effect to consider for each independent variable in the study. The top panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” shows a main effect of cell phone use because driving performance was better, on average, when participants were not using cell phones than when they were. The blue bars are, on average, higher than the red bars. It also shows a main effect of time of day because driving performance was better during the day than during the night—both when participants were using cell phones and when they were not. Main effects are independent of each other in the sense that whether or not there is a main effect of one independent variable says nothing about whether or not there is a main effect of the other. The bottom panel of Figure 8.4 “Two Ways to Plot the Results of a Factorial Experiment With Two Independent Variables” , for example, shows a clear main effect of psychotherapy length. The longer the psychotherapy, the better it worked. But it also shows no overall advantage of one type of psychotherapy over the other.

There is an interaction effect (or just “interaction”) when the effect of one independent variable depends on the level of another. Although this might seem complicated, you have an intuitive understanding of interactions already. It probably would not surprise you, for example, to hear that the effect of receiving psychotherapy is stronger among people who are highly motivated to change than among people who are not motivated to change. This is an interaction because the effect of one independent variable (whether or not one receives psychotherapy) depends on the level of another (motivation to change). Schnall and her colleagues also demonstrated an interaction because the effect of whether the room was clean or messy on participants’ moral judgments depended on whether the participants were low or high in private body consciousness. If they were high in private body consciousness, then those in the messy room made harsher judgments. If they were low in private body consciousness, then whether the room was clean or messy did not matter.

The effect of one independent variable can depend on the level of the other in different ways. This is shown in Figure 8.5 “Bar Graphs Showing Three Types of Interactions” . In the top panel, one independent variable has an effect at one level of the second independent variable but no effect at the others. (This is much like the study of Schnall and her colleagues where there was an effect of disgust for those high in private body consciousness but not for those low in private body consciousness.) In the middle panel, one independent variable has a stronger effect at one level of the second independent variable than at the other level. This is like the hypothetical driving example where there was a stronger effect of using a cell phone at night than during the day. In the bottom panel, one independent variable again has an effect at both levels of the second independent variable, but the effects are in opposite directions. Figure 8.5 “Bar Graphs Showing Three Types of Interactions” shows the strongest form of this kind of interaction, called a crossover interaction . One example of a crossover interaction comes from a study by Kathy Gilliland on the effect of caffeine on the verbal test scores of introverts and extroverts (Gilliland, 1980). Introverts perform better than extroverts when they have not ingested any caffeine. But extroverts perform better than introverts when they have ingested 4 mg of caffeine per kilogram of body weight. Figure 8.6 “Line Graphs Showing Three Types of Interactions” shows examples of these same kinds of interactions when one of the independent variables is quantitative and the results are plotted in a line graph. Note that in a crossover interaction, the two lines literally “cross over” each other.

Figure 8.5 Bar Graphs Showing Three Types of Interactions

Bar Graphs Showing Three Types of Interactions

In the top panel, one independent variable has an effect at one level of the second independent variable but not at the other. In the middle panel, one independent variable has a stronger effect at one level of the second independent variable than at the other. In the bottom panel, one independent variable has the opposite effect at one level of the second independent variable than at the other.

Figure 8.6 Line Graphs Showing Three Types of Interactions

Line Graphs Showing Three Types of Interactions

In many studies, the primary research question is about an interaction. The study by Brown and her colleagues was inspired by the idea that people with hypochondriasis are especially attentive to any negative health-related information. This led to the hypothesis that people high in hypochondriasis would recall negative health-related words more accurately than people low in hypochondriasis but recall non-health-related words about the same as people low in hypochondriasis. And of course this is exactly what happened in this study.

Key Takeaways

  • Researchers often include multiple independent variables in their experiments. The most common approach is the factorial design, in which each level of one independent variable is combined with each level of the others to create all possible conditions.
  • In a factorial design, the main effect of an independent variable is its overall effect averaged across all other independent variables. There is one main effect for each independent variable.
  • There is an interaction between two independent variables when the effect of one depends on the level of the other. Some of the most interesting research questions and results in psychology are specifically about interactions.
  • Practice: Return to the five article titles presented at the beginning of this section. For each one, identify the independent variables and the dependent variable.
  • Practice: Create a factorial design table for an experiment on the effects of room temperature and noise level on performance on the SAT. Be sure to indicate whether each independent variable will be manipulated between subjects or within subjects and explain why.

Brown, H. D., Kosslyn, S. M., Delamater, B., Fama, A., & Barsky, A. J. (1999). Perceptual and memory biases for health-related information in hypochondriacal individuals. Journal of Psychosomatic Research , 47 , 67–78.

Gilliland, K. (1980). The interactive effect of introversion-extroversion with caffeine induced arousal on verbal performance. Journal of Research in Personality , 14 , 482–492.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Frequently asked questions

Can i include more than one independent or dependent variable in a study.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Design of Experiments with Multiple Independent Variables: A Resource Management Perspective on Complete and Reduced Factorial Designs

Linda m. collins.

The Methodology Center and Department of Human Development and Family Studies, The Pennsylvania State University

John J. Dziak

The Methodology Center, The Pennsylvania State University

Department of Statistics and The Methodology Center, The Pennsylvania State University

An investigator who plans to conduct experiments with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy. Considerations in making design decisions include whether research questions are framed as main effects or simple effects; whether and which effects are aliased (confounded) in a particular design; the number of experimental conditions that must be implemented in a particular design and the number of experimental subjects the design requires to maintain the desired level of statistical power; and the costs associated with implementing experimental conditions and obtaining experimental subjects. In this article four design options are compared: complete factorial, individual experiments, single factor, and fractional factorial designs. Complete and fractional factorial designs and single factor designs are generally more economical than conducting individual experiments on each factor. Although relatively unfamiliar to behavioral scientists, fractional factorial designs merit serious consideration because of their economy and versatility.

Suppose a scientist is interested in investigating the effects of k independent variables, where k > 1. For example, Bolger and Amarel (2007) investigated the hypothesis that the effect of peer social support on performance stress can be positive or negative, depending on whether the way the peer social support is given enhances or degrades self-efficacy. Their experiment could be characterized as involving four factors: support offered (yes or no), nature of support (visible or indirect), message from a confederate that recipient of support is unable to handle the task alone (yes or no), and message that a confederate would be unable to handle the task (yes or no).

One design possibility when k > 1 independent variables are to be examined is a factorial experiment. In factorial research designs, experimental conditions are formed by systematically varying the levels of two or more independent variables, or factors. For example, in the classic two × two factorial design there are two factors each with two levels. The two factors are crossed, that is, all combinations of levels of the two factors are formed, to create a design with four experimental conditions. More generally, factorial designs can include k ≥ 2 factors and can incorporate two or more levels per factor. With four two-level variables, such as in Bolger and Amarel (2007) , a complete factorial experiment would involve 2 × 2 × 2 × 2 = 16 experimental conditions. One advantage of factorial designs, as compared to simpler experiments that manipulate only a single factor at a time, is the ability to examine interactions between factors. A second advantage of factorial designs is their efficiency with respect to use of experimental subjects; factorial designs require fewer experimental subjects than comparable alternative designs to maintain the same level of statistical power (e.g. Wu & Hamada, 2000 ).

However, a complete factorial experiment is not always an option. In some cases there may be combinations of levels of the factors that would create a nonsensical, toxic, logistically impractical or otherwise undesirable experimental condition. For example, Bolger and Amarel (2007) could not have conducted a complete factorial experiment because some of the combinations of levels of the factors would have been illogical (e.g. no support offered but support was direct). But even when all combinations of factors are reasonable, resource limitations may make implementation of a complete factorial experiment impossible. As the number of factors and levels of factors under consideration increases, the number of experimental conditions that must be implemented in a complete factorial design increases rapidly. The accompanying logistical difficulty and expense may exceed available resources, prompting investigators to seek alternative experimental designs that require fewer experimental conditions.

In this article the term “reduced design” will be used to refer generally to any design approach that involves experimental manipulation of all k independent variables, but includes fewer experimental conditions than a complete factorial design with the same k variables. Reduced designs are often necessary to make simultaneous investigation of multiple independent variables feasible. However, any removal of experimental conditions to form a reduced design has important scientific consequences. The number of effects that can be estimated in an experimental design is limited to one fewer than the number of experimental conditions represented in the design. Therefore, when experimental conditions are removed from a design some effects are combined so that their sum only, not the individual effects, can be estimated. Another way to think of this is that two or more interpretational labels (e.g. main effect of Factor A; interaction between Factor A and Factor B) can be applied to the same source of variation. This phenomenon is known as aliasing (sometimes referred to as confounding, or as collinearity in the regression framework).

Any investigator who wants or needs to examine multiple independent variables is faced with deciding whether to use a complete factorial or a reduced experimental design. The best choice is one that strikes a careful and strategic balance between service to scientific objectives and economy. Weighing a variety of considerations to achieve such a balance, including the exact research questions of interest, the potential impact of aliasing on interpretation of results, and the costs associated with each design option, is the topic of this article.

Objectives of this article

This article has two objectives. The first objective is to propose that a resource management perspective may be helpful to investigators who are choosing a design for an experiment that will involve several independent variables. The resource management perspective assumes that an experiment is motivated by a finite set of research questions and that these questions can be prioritized for decision making purposes. Then according to this perspective the preferred experimental design is the one that, in relation to the resource requirements of the design, offers the greatest potential to advance the scientific agenda motivating the experiment. Four general design alternatives will be considered from a resource management perspective: complete factorial designs and three types of reduced designs. One of the reduced designs, the fractional factorial, is used routinely in engineering but currently unfamiliar to many social and behavioral scientists. In our view fractional factorial designs merit consideration by social and behavioral scientists alongside other more commonly used reduced designs. Accordingly, a second objective of this article is to offer a brief introductory tutorial on fractional factorial designs, in the hope of assisting investigators who wish to evaluate whether these designs might be of use in their research.

Overview of four design alternatives

Throughout this article, it is assumed that an investigator is interested in examining the effects of k independent variables, each of which could correspond to a factor in a factorial experiment. It is not necessarily a foregone conclusion that the k independent variables must be examined in a single experiment; they may represent a set of questions comprising a program of research, or a set of features or components comprising a behavioral intervention program. It is assumed that the k factors can be independently manipulated, and that no possible combination of the factors would create an experimental condition that cannot or should not be implemented. For the sake of simplicity, it is also assumed that each of the k factors has only two levels, such as On/Off or Yes/No. Factorial and fractional factorial designs can be done with factors having any number of levels, but two-level factors allow the most straightforward interpretation and largest statistical power, especially for interactions.

In this section the four different design alternatives considered in this article are introduced using a hypothetical example based on the following scenario: An investigator is to conduct a study on anxiety related to public speaking (this example is modeled very loosely on Bolger and Amarel, 2007 ). There are three factors of theoretical interest to the investigator, each with two levels, On or Off. The factors are whether or not (1) the subject is allowed to choose a topic for the presentation ( choose ); (2) the subject is taught a deep-breathing relaxation exercise to perform just before giving the presentation ( breath ); and (3) the subject is provided with extra time to prepare for the speech ( prep ). This small hypothetical example will be useful in illustrating some initial key points of comparison among the design alternatives. Later in the article the hypothetical example will be extended to include more factors so that some additional points can be illustrated.

The first alternative considered here is a complete factorial design. The remaining alternatives considered are reduced designs, each of which can be viewed as a subset of the complete factorial.

Complete factorial designs

Factorial designs may be denoted using the exponential notation 2 k , which compactly expresses that k factors with 2 levels each are crossed, resulting in 2 k experimental conditions (sometimes called “cells”). Each experimental condition represents a unique combination of levels of the k factors. In the hypothetical example a complete factorial design would be expressed as 2 3 (or equivalently, 2 × 2 × 2) and would involve eight experimental conditions. Table 1 shows these eight experimental conditions along with effect coding. The design enables estimation of seven effects: three main effects, three two-way interactions, and a single three-way interaction.

Experimental ConditionFactor 1Factor 2Factor 3Main EffectsInteractions
choosebreathprep1231 × 21 × 32 × 31 × 2 × 3
1OffOffOff-1-1-1111-1
2OffOffOn-1-111-1-11
3OffOnOff-11-1-11-11
4OffOnOn-111-1-11-1
5OnOffOff1-1-1-1-111
6OnOffOn1-11-11-1-1
7OnOnOff11-11-1-1-1
8OnOnOn1111111

Table 1 illustrates one feature of complete factorial designs in which an equal number of subjects is assigned to each experimental condition, namely the balance property. A design is balanced if each level of each factor appears in the design the same number of times and is assigned to the same number of subjects ( Hays, 1994 ; Wu & Hamada, 2000 ). In a balanced design the main effects and interactions are orthogonal, so that each one is estimated and tested as if it were the only one under consideration, with very little loss of efficiency due to the presence of other factors 1 . (Effects may still be orthogonal even in unbalanced designs if certain proportionality conditions are met; see e.g. Hays, 1994 , p. 475.) The balance property is evident in Table 1 ; each level of each factor appears exactly four times.

Individual experiments

The individual experiments approach requires conducting a two-condition experiment for each independent variable, that is, k separate experiments. In the example this would require conducting three different experiments, involving a total of six experimental conditions. In one experiment, a condition in which subjects are allowed to choose the topic of the presentation would be compared to one in which subjects are assigned a topic; in a second experiment, a condition in which subjects are taught a relaxation exercise would be compared to one in which no relaxation exercise is taught; in a third experiment, a condition in which subjects are given ample time to prepare in advance would be compared to one in which subjects are given little preparation time. The subset of experimental conditions from the complete three-factor factorial experiment in Table 1 that would be implemented in the individual experiments approach is depicted in the first section of Table 2 . This design, considered as a whole, is not balanced. Each of the independent variables is set to On once and set to Off five times.

Experimental ConditionFactor 1Factor 2Factor 3Main EffectsInteractions
choosebreathprep1231 × 21 × 32 × 31 × 2 × 3
Subset comprising individual experiments
Effect of
 1OffOffOff-1-1-1111-1
 5OnOffOff1-1-1-1-111
Effect of
 1OffOffOff-1-1-1111-1
 3OffOnOff-11-1-11-11
Effect of
 1OffOffOff-1-1-1111-1
 2OffOffOn-1-111-1-11
Subset comprising single factor design: Comparative treatment design
 1OffOffOff-1-1-1111-1
 2OffOffOn-1-111-1-11
 3OffOnOff-11-1-11-11
 5OnOffOff1-1-1-1-111
Subset comprising single factor design: Constructive treatment design
 1OffOffOff-1-1-1111-1
 5OnOffOff1-1-1-1-111
 7OnOnOff11-11-1-1-1
 8OnOnOn1111111
Subset comprising fractional factorial design
 2OffOffOn-1-111-1-11
 3OffOnOff-11-1-11-11
 5OnOffOff1-1-1-1-111
 8OnOnOn1111111

Single factor designs in which the factor has many levels

In the single factor approach a single experiment is performed in which various combinations of levels of the independent variables are selected to form one nominal or ordinal categorical factor with several qualitatively distinct levels. West, Aiken, and Todd (1993 ; West & Aiken, 1997 ) reviewed three variations of the single factor design that are used frequently, particularly in research on behavioral interventions for prevention and treatment. In the comparative treatment design there are k +1 experimental conditions: k experimental conditions in which one independent variable is set to On and all the others to Off, plus a single control condition in which all independent variables are set to Off. This approach is similar to conducting separate individual experiments, except that a shared control group is used for all factors. The second section of Table 2 shows the four experimental conditions that would comprise a comparative treatment design in the hypothetical example. These are the same experimental conditions that appear in the individual experiments design.

By contrast, for the constructive treatment design an intervention is “built” by combining successive features. For example, an investigator interested in developing a treatment to reduce anxiety might want to assess the effect of allowing the subject to choose a topic, then the incremental effect of also teaching a relaxation exercise, then the incremental effect of allowing extra preparation time. The third section of Table 2 shows the subset of experimental conditions from the complete factorial shown in Table 1 that would be implemented in a three-factor constructive treatment experiment in which first choose is added, followed by breath and then prep . The constructive treatment strategy typically has k +1 experimental conditions but may have fewer or more. The dismantling design, in which the objective is to determine the effect of removing one or more features of an intervention, and other single factor designs are based on similar logic.

Table 2 shows that both the comparative treatment design and the constructive treatment design are unbalanced. In the comparative treatment design, each factor is set to On once and set to Off three times. In the constructive treatment design, choose is set to Off once and to On three times, and prep is set to On once and to Off three times. Other single factor designs are similarly unbalanced.

Fractional factorial designs

The fourth alternative considered in this article is to use a design from the family of fractional factorial designs. A fractional factorial design involves a special, carefully chosen subset, or fraction, of the experimental conditions in a complete factorial design. The bottom section of Table 2 shows a subset of experimental conditions from the complete three-factor factorial design that constitute a fractional factorial design. The experimental conditions in fractional factorial designs are selected so as to preserve the balance property. 2 As Table 2 shows, each level of each factor appears in the design exactly twice.

Fractional factorial designs are represented using an exponential notation based on that used for complete factorial designs. The fractional factorial design in Table 2 would be expressed as 2 3−1 . This notation contains the following information: (a) the corresponding complete factorial design is 2 3 , in other words involves 3 factors, each of which has 2 levels, for a total of 8 experimental conditions; (b) the fractional factorial design involves 2 3−1 = 2 2 = 4 experimental conditions; and (c) this fractional factorial design is a 2 −1 = 1/2 fraction of the complete factorial. Many fractional factorial designs, particularly those with many factors, involve even smaller fractions of the complete factorial.

Aliasing in the individual experiments, single factor, and fractional factorial designs

It was mentioned above that reduced designs involve aliasing of effects. A design's aliasing is evident in its effect coding. When effects are aliased their effect coding is perfectly correlated (whether positively or negatively). Aliasing in the individual experiments approach can be seen by examining the first section of Table 2 . In the experiment examining choose , the effect codes are identical for the main effect of choose and the choose × breath × prep interaction (−1 for experimental condition 1 and 1 for experimental condition 4), and these are perfectly negatively correlated with the effect codes for the choose × breath and choose × prep interactions. Thus these effects are aliased; the effect estimated by this experiment is an aggregate of the main effect of choose and all of the interactions involving choose . (The codes for the remaining effects, namely the main effects of breath and prep and the breath × prep interaction, are constants in this design.) Similarly, in the experiment investigating breath , the main effect and all of the interactions involving breath are aliased, and in the experiment investigating prep , the main effect and all of the interactions involving prep are aliased.

The aliasing in single factor experiments using the comparative treatment strategy is identical to the aliasing in the individual experiments approach. As shown in the second section of Table 2 , for the hypothetical example a comparative treatment experiment would involve experimental conditions 1, 2, 3, and 5, which are the same conditions as in the individual experiments approach. The effects of each factor are assessed by means of the same comparisons; for example, the effect of choose would be assessed by comparing experimental conditions 1 and 5. The primary difference is that only one control condition would be required in the single factor experiment, whereas in the individual experiments approach three control conditions are required.

The constructive treatment strategy is comprised of a different subset of experimental conditions from the full factorial than the individual experiments and comparative treatment approaches. Nevertheless, the aliasing is similar. As the third section of Table 2 shows, the effect of adding choose would be assessed by comparing experimental conditions 1 and 5, so the aliasing would be the same as that in the individual experiment investigating choose discussed above. The cumulative effect of adding breath would be assessed by comparing experimental conditions 5 and 7. The effect codes in these two experimental conditions for the main effect of breath are perfectly (positively or negatively) correlated with those for all of the interactions involving breath , although here the effect codes for the interactions are reversed as compared to the individual experiments and comparative treatment approaches. The same reasoning applies to the effect of prep , which is assessed by comparing experimental conditions 7 and 8.

As the fourth section of Table 2 illustrates, the aliasing in fractional factorial designs is different from the aliasing seen in the individual experiments and single factor approaches. In this fractional factorial design the effect of choose is estimated by comparing the mean of experimental conditions 2 and 3 with the mean of experimental conditions 5 and 8; the effect of breath is estimated by comparing the mean of experimental conditions 3 and 8 to the mean of experimental conditions 2 and 5; and the effect of prep is estimated by comparing the mean of experimental conditions 2 and 8 to the mean of experimental conditions 3 and 5. The effect codes show that the main effect of choose and the breath × prep interaction are aliased. The remaining effects are either orthogonal to the aliased effect or constant. Similarly, the main effect of breath and the choose × prep interaction are aliased, and the main effect of prep and the choose × breath interaction are aliased.

Note that each source of variation in this fractional factorial design has two aliases (e.g. choose and the breath × prep interaction form a single source of variation). This is characteristic of fractional factorial designs that, like this one, are 1/2 fractions. The denominator of the fraction always reveals how many aliases each source of variation has. Thus in a fractional factorial design that is a 1/4 fraction each source of variation has four aliases; in a fractional factorial design that is a 1/8 fraction each source of variation has eight aliases; and so on.

Aliasing and scientific questions

An investigator who is interested in using a reduced design to estimate the effects of k factors faces several considerations. These include: whether the research questions of primary scientific interest concern simple effects or main effects; whether the design's aliasing means that assumptions must be made in order to address the research questions; and how to use aliasing strategically. Each of these considerations is reviewed in this section.

Simple effects and main effects

In this article we have been discussing a situation in which a finite set of k independent variables is under consideration and the individual effects of each of the k variables are of interest. However, the question “Does a particular factor have an effect?” is incomplete; different research questions may involve different types of effects. Let us examine three different research questions concerning the effect of breath in the hypothetical example, and see how they correspond to effects in a factorial design.

Question 1: “Does the factor breath have an effect on the outcome variable when the factors choose and prep are set to Off?”

Question 2: “Will an intervention consisting of only the factors choose and prep set to On be improved if the factor breath is changed from Off to On?”

Question 3: “Does the factor breath have an effect on the outcome variable on average across levels of the other factors?”

In the language of experimental design, Questions 1 and 2 concern simple effects, and Question 3 concerns a main effect. The distinction between simple effects and main effects is subtle but important. A simple effect of a factor is an effect at a particular combination of levels of the remaining factors. There are as many simple effects for each factor as there are combinations of levels of the remaining factors. For example, the simple effect relevant to Question 1 is the conditional effect of changing breath from Off to On, assuming both prep and choose are set to Off. The simple effect relevant to Question 2 is the conditional effect of changing breath from Off to On, assuming both other factors are set to On. Thus although Questions 1 and 2 both are concerned with simple effects of breath , they are concerned with different simple effects.

A significant main effect for a factor is an effect on average across all combinations of levels of the other factors in the experiment. For example, Question 3 is concerned with the main effect of breath , that is, the effect of breath averaged across all combinations of levels of prep and choose . Given a particular set of k factors, there is only one main effect corresponding to each factor.

Simple effects and main effects are not interchangeable, unless we assume that all interactions are negligible. Thus, neither necessarily tells anything about the other. A positive main effect does not imply that all of the simple effects are nonzero or even nonnegative. It is even possible (due to a large interaction) for one simple effect to be positive, another simple effect for the same factor to be negative, and the main (averaged) effect to be zero. In the public speaking example, the answer to Question 2 does not imply anything about whether an intervention consisting of breath alone would be effective, or whether there would be an incremental effect of breath if it were added to an intervention initially consisting of choose alone.

Research questions, aliasing, and assumptions

Suppose an investigator is interested in addressing Question 1 above. The answer to this research question depends only upon the particular simple effect of breath when both of the other factors are set to Off. The research question does not ask whether any observed differences are attributable to the main effect of breath , the breath × prep interaction, the breath × choose interaction, the breath × prep × choose interaction, or some combination of the aliased effects. The answer to Question 2, which also concerns a simple effect, depends only upon whether changing breath from Off to On has an effect on the outcome variable when prep and choose are set to On; it does not depend on establishing whether any other effects in the model are present or absent. As Kirk (1968) pointed out, simple effects “represent a partition of a treatment sum of squares plus an interaction sum of squares” (p. 380). Thus, although there is aliasing in the individual experiments and comparative treatment strategies, these designs are appropriate for addressing Question 1, because the aliased effects correspond exactly to the effect of interest in Question 1. Similarly, although there is aliasing in the constructive treatment strategy, this design is appropriate for addressing Question 2. In other words, although in our view it is important to be aware of aliasing whenever considering a reduced experimental design, the aliasing ultimately is of little consequence if the aliased effect as a package is of primary scientific interest.

The individual experiments and comparative treatment strategies would not be appropriate for addressing Question 2. The constructive treatment strategy could address Question 1, but only if breath was the first factor set high, with the others low, in the first non-control group. The conclusions drawn from these experiments would be limited to simple effects and cannot be extended to main effects or interactions.

The situation is different if a reduced design is to be used to estimate main effects. Suppose an investigator is interested in addressing Question 3, that is, is interested in the main effect of breath . As was discussed above, in the individual experiments, comparative treatment, and constructive treatment approaches the main effect of breath is aliased with all the interactions involving breath . It is appropriate to use these designs to draw conclusions about the main effect of breath only if it is reasonable to assume that all of the interactions involving breath up to the k -way interaction are negligible. Then any effect of breath observed using an individual experiment or a single factor design is attributable to the main effect.

The difference in the aliasing structure of fractional factorial designs as compared to individual experiments and single factor designs becomes particularly salient when the primary scientific questions that motivate an experiment require estimating main effects as opposed to simple effects, and when larger numbers of factors are involved. However, the small three-factor fractional factorial experiment in Table 2 can be used to demonstrate the logic behind the choice of a particular fractional factorial design. In the design in Table 2 the main effect of breath is aliased with one two-way interaction: prep × choose . If it is reasonable to assume that this two-way interaction is negligible, then it is appropriate to use this fractional factorial design to estimate the main effect of breath . In general, investigators considering using a fractional factorial design seek a design in which main effects and scientifically important interactions are aliased only with effects that can be assumed to be negligible.

Many fractional factorial designs in which there are four or more factors require many fewer and much weaker assumptions for estimation of main effects than those required by the small hypothetical example used here. For these larger problems it is possible to identify a fractional factorial design that uses fewer experimental conditions than the complete design but in which main effects and also two-way interaction are aliased only with interactions involving three or more factors. Many of these designs also enable identification of some three-way interactions that are to be aliased only with interactions involving four or more factors. In general, the appeal of fractional factorial designs increases as the number of factors becomes larger. By contrast, individual experiments and single factor designs always alias main effects and all interactions from the two-way up to the k -way, no matter how many factors are involved.

Strategic aliasing and designating negligible effects

A useful starting point for choosing a reduced design is sorting all of the effects in the complete factorial into three categories: (1) effects that are of primary scientific interest and therefore are to be estimated; (2) effects that are expected to be zero or negligible; and (3) effects that are not of primary scientific interest but may be non-negligible. Strategic aliasing involves ensuring that effects of primary scientific interest are aliased only with negligible effects. There may be non-negligible effects that are not of scientific interest. Resources are not to be devoted to estimating such effects, but care must be taken not to alias them with effects of primary scientific interest.

Considering which, if any, effects to place in the negligible category is likely to be an unfamiliar, and perhaps in some instances uncomfortable, process for some social and behavioral scientists. However, the choice is critically important. On the one hand, when more effects are designated negligible the available options will in general include designs involving smaller numbers of experimental conditions; on the other hand, incorrectly designating effects as negligible can threaten the validity of scientific conclusions. The best bases for making assumptions about negligible effects are theory and prior empirical research. Yet there are few areas in the social and behavioral sciences in which theory makes specific predictions about higher-order interactions, and it appears that to date there has been relatively little empirical investigation of such interactions. Given this lack of guidance, on what basis can an investigator decide on assumptions?

A very cautious approach would be to assume that each and every interaction up to the k -way interaction is likely to be sizeable, unless there is empirical evidence or a compelling theoretical basis for assuming that it is negligible. This is equivalent to leaving the negligible category empty and designating each effect either of primary scientific interest or non-negligible. There are two strategies consistent with this perspective. One is to conduct a complete factorial experiment, being careful to ensure adequate statistical power to detect any interactions of scientific interest. The other strategy consistent with assuming all interactions are likely to be sizeable is to frame research questions only about simple effects that can reasonably be estimated with the individual experiments or single factor approaches. For example, as discussed above the aliasing associated with the comparative treatment design may not be an issue if research questions are framed in terms of simple effects.

If these cautious strategies seem too restrictive, another possibility is to adopt some heuristic guiding principles (see Wu & Hamada, 2000 ) that are used in engineering research for informing the choice of assumptions and aliasing structure and to help target resources in areas where they are likely to result in the most scientific progress. The guiding principles are intended for use when theory and prior research are unavailable; if guidance from these sources is available it should always be applied first. One guiding principle is called Hierarchical Ordering . This principle states that when resources are limited, the first priority should be estimation of lower order effects. Thus main effects are the first investigative priority, followed by two-way interactions. As Green and Rao (1971) noted, “…in many instances the simpler (additive) model represents a very good approximation of reality” (p. 359), particularly if measurement quality is good and floor and ceiling effects can be avoided. Another guiding principle is called Effect Sparsity ( Box & Meyer, 1986 ), or sometimes the Pareto Principle in Experimental Design ( Wu & Hamada, 2000 ). This principle states that the number of sizeable and important effects in a factorial experiment is small in comparison to the overall number of effects. Taken together, these principles suggest that unless theory and prior research specifically suggest otherwise, there are likely to be relatively few sizeable interactions except for a few two-way interactions and even fewer three-way interactions, and that aliasing the more complex and less interpretable higher-order interactions may well be a good choice.

Resolution of fractional factorial designs

Some general information about aliasing of main effects and two-way interactions is conveyed in a fractional factorial design's resolution ( Wu & Hamada, 2000 ). Resolution is designated by a Roman numeral, usually either III, IV, V or VI. The aliasing of main effects and two-way interactions in these designs is shown in Table 3 . As Table 3 shows, as design resolution increases main effects and two-way interactions become increasingly free of aliasing with lower-order interactions. Importantly, no design that is Resolution III or higher aliases main effects with other main effects.

Design resolutionMain effects not aliased withTwo-way interactions not aliased with
Resolution IIImain effects
Resolution IVmain effects and two-way interactionsmain effects
Resolution Vmain effects, two-way interactions and three-way interactionsmain effects and two-way interactions
Resolution VImain effects, two-way interactions, three-way interactions and four-way interactionsmain effects, two-way interactions and three-way interactions

Table 3 shows only which effects are not aliased with main effects and two-way interactions. Which and how many effects are aliased with main effects and two-way interactions depends on the exact design. For example, consider a 2 6−2 fractional factorial design. As mentioned previously, this is a 1/4 fraction design, so each source of variance has four aliases; thus each main effect is aliased with three other effects. Suppose this design is Resolution IV. Then none of the three effects aliased with the main effect will be another main effect or a two-way interaction. Instead, they will be three higher-order interactions.

According to the Hierarchical Ordering and Effect Sparsity principles, in the absence of theory or evidence to the contrary it is reasonable to make the working assumption that higher-order interactions are less likely to be sizeable than lower-order interactions. Thus, all else being equal, higher resolution designs, which alias scientifically important main effects and two-way interactions with higher-order interactions, are preferred to lower resolution designs, which alias these effects with lower-order interactions or with main effects. This concept has been called the maximum resolution criterion by Box and Hunter (1961) .

In general higher resolution designs tend to require more experimental conditions, although for a given number of experimental conditions there may be design alternatives with different resolutions.

Relative resource requirements of the four design alternatives

Number of experimental conditions and subjects required.

The four design options considered here can vary widely with respect to the number of experimental conditions that must be implemented and the number of subjects required to achieve a given statistical power. These two resource requirements must be considered separately. In single factor experiments, the number of subjects required to perform the experiment is directly proportional to the number of experimental conditions to be implemented. However, when comparing different designs in a multi-factor framework this is not the case. For instance, a complete factorial may require many more experimental conditions than the corresponding individual experiments or single factor approach, yet require fewer total subjects.

Table 4 shows how to compute a comparison of the number of experimental conditions required by each of the four design alternatives. As Table 4 indicates, the individual experiments, single factor and fractional factorial approaches are more economical than the complete factorial approach in terms of number of experimental conditions that must be implemented. In general, the single factor approach requires the fewest experimental conditions.

Number experimental conditionsNumber subjects
Complete factorial2
Individual experiments2
Single factor + 1( + 1)
Fractional factorial2 or fewer

Table 4 also provides a comparison of the minimum number of subjects required to maintain the same level of statistical power. Suppose a total of k factors are to be investigated, with the smallest effect size among them equal to d , and that a total minimum sample size of N is required in order to maintain a desired level of statistical power at a particular Type I error rate. The effect size d might be the expected normalized difference between two means, or it might be the smallest normalized difference considered clinically or practically significant. (Note that in practice there must be at least one subject per experimental condition, so at a minimum N must at least equal the number of experimental conditions. This may require additional subjects beyond the number needed to achieve a given level of power when implementing complete factorial designs with large k .) Table 4 shows that the complete factorial and fractional factorial designs are most economical in terms of sample size requirements. In any balanced factorial design each main effect is estimated using all subjects, averaging across the other main effects. In the hypothetical three-factor example, the main effects of choose , breath and prep are each based on all N subjects, with the subjects sorted differently into treatment and control groups for each main effect estimate. For example, Table 2 shows that in both the complete and fractional factorial designs a subject assigned to experimental condition 3 is in the Off group for the purpose of estimating the main effects of choose and prep but in the On group for the purpose of estimating the main effect of breath .

Essentially factorial designs “recycle” subjects by placing every subject in one of the levels of every factor. As long as the sample sizes in each group are balanced, orthogonality is maintained, so that estimation and testing for each effect can be treated as independent of the other effects. (The idea of “balance” here assumes that each level of each factor is assigned exactly the same amount of subjects, which may not hold true in practice; however, the benefits associated with balance hold approximately even if there are slight imbalances in the number of subjects per experimental condition.) Because they “recycle” subjects while keeping factors mutually orthogonal to each other, balanced factorial designs make very efficient use of experimental subjects. In fact, this means that an increase in the number of factors in a factorial experiment does not necessarily require an increase in the total sample size in order to maintain approximately the same statistical power for testing main effects. This efficiency applies only to main effects, though. For example, given a fixed sample size N , the more experimental conditions there are, the fewer subjects will be in each experimental condition and the less power there will be for, say, pairwise comparisons of particular experimental conditions.

By contrast, the individual experiments approach sometimes requires many more subjects than the complete factorial experiment to obtain a given level of statistical power, because it cannot reuse subjects to test different orthogonal effect estimates simultaneously as balanced factorial experiments can. As Table 4 shows, if a factorial experiment with k factors requires an overall sample size of N to achieve a desired level of statistical power for detecting a main effect of size d at a particular Type I error rate, the comparable individual experiments approach requires kN subjects to detect a simple effect of the same size at the same Type I error rate. This is because the first experiment requires N subjects, the second experiment requires another N subjects, and so on, for a total of kN . In other words, in the individual experiments approach subjects are used in a single experiment to estimate a single effect, and then discarded. The extra subjects provide neither increased Type I error protection nor appreciably increased power, relative to the test of a simple effect in the single factor approach or the test of a main effect in the factorial approach. Unless there is a special need to obtain results from one experiment before beginning another, the extra subjects are largely wasted resources.

As Table 4 shows, if a factorial experiment with k factors requires an overall sample size of N to achieve a desired level of statistical power for detect a main effect of size d at a particular Type I error rate, the comparable single factor approach requires a sample size of ( k + 1)( N /2) to detect a simple effect of the same size at the same Type I error rate. This is because in the single factor approach, to maintain power each mean comparison must be based on two experimental conditions including a total of N subjects. Thus N /2 subjects per experimental condition would be required. However, this single factor experiment would be adequately powered for k simple effects, whereas the comparable factorial experiment with N subjects, although adequately powered for k main effects, would be underpowered for k simple effects. This is because estimating a simple effect in a factorial experiment essentially requires selecting a subset of experimental conditions and discarding the remaining conditions along with the subjects that have been assigned to them. This would bring the sample size considerably below N for each simple effect.

Subject, condition, and overall costs

In order to compare the resource requirements of the four design alternatives it is helpful to draw a distinction between per-subject costs and per-condition overhead costs. Examples of subject costs are recruitment and compensation of human subjects, and housing, feeding and care of laboratory animals. Condition overhead costs refer to costs required to plan, implement, and manage each experimental condition in a design, beyond the cost of the subjects assigned to that condition. Examples of condition overhead costs are training and salaries of personnel to run an experiment, preparation of differing versions of materials needed for different experimental conditions, and cost of setting up and taking down laboratory equipment. Thus, the overhead cost associated with an experimental condition may be either more or less than the cost of a subject. Because the absolute and relative costs in these two domains vary considerably according to the situation, the absolute and relative costs associated with the four designs considered here can vary considerably as well.

One possible scenario is one in which both per-condition overhead costs and per-subject costs are low. For example, consider a social psychology experiment in which experimental conditions consist of different written materials, the experimenters are graduate students on stipends, and a large departmental subject pool is at their disposal. This represents the happy circumstance in which a design can be chosen on purely scientific grounds with little regard to financial costs. Another possible scenario is one in which per-condition overhead costs are low but per-subject costs are high, as might occur if an experiment is to be conducted via the Internet. In this study perhaps adding an experimental condition is a fairly straightforward computer programming task, but substantial cash incentives are required to ensure subject participation. Another example might be an experiment in which individual experimental conditions are not difficult to set up, but the subjects are laboratory animals whose purchase, feeding and care is very costly. Per-condition costs might roughly equal per-subject costs in a similar scenario in which each experimental condition involves time-intensive and complicated reconfiguring of laboratory equipment by a highly-paid technician. Per-condition overhead costs might greatly exceed per-subject costs when subjects are drawn from a subject pool and are not monetarily compensated, but each new experimental condition requires additional training of personnel, preparation of elaborate new materials, or difficult reconfiguration of laboratory equipment.

Comparing relative estimated overall costs across designs

In this section we demonstrate a comparison of relative financial costs across the four design alternatives, based on the expressions in Table 4 . In the demonstration we consider four different situations: effect sizes of d = .2 or d = .5 (corresponding to Cohen's (1988) benchmark values for small and medium, respectively), and k = 6 or k = 10 two-level independent variables. The starting point for the cost comparison is the number of experimental conditions required by each design, and the sample sizes required to achieve statistical power of at least .8 for testing the effect of each factor in the way that seemed appropriate for the design. Specifically, for the full and fractional factorial designs, we calculated the total sample size N needed to have a power of .80 for each main effect. For the individual experiments and single factor designs, we calculated the N needed for a power of .80 for each simple effect of interest. These are shown in Table 5 . As the table indicates, the fractional factorial designs used for k = 6 and k = 10 are both Resolution IV.

= .2 = .5
Number of experimental conditions per experimental conditionOverall per experimental conditionOverall
=6
Complete factorial6413832 2128
Individual experiments12394472864768
Single factor7394275864448
Fractional factorial Resolution IV(2 )1650800 8128
=10
Complete factorial102411024 11024
Individual experiments203947880641280
Single factor11394433464704
Fractional factorial Resolution IV(2 )3225800 4128

A practical issue arose that influenced the selection of the overall sample sizes N that are listed in Table 5 . Let N min designate the minimum overall N required to achieve a desired level of statistical power. In the cases marked with an asterisk the overall N that was actually used exceeds N min , because experimental conditions cannot have fractional numbers of subjects. Let n designate the number of subjects in each experimental condition, assuming equal n 's are to be assigned to each experimental condition. In theory the minimum n per experimental condition for a particular design would be N min divided by the number of experimental conditions. However, in some of the cases in Table 5 this would have resulted in a non-integer n . In these cases the per-condition n was rounded up to the nearest integer. For example, consider the complete factorial design with k =10 factors and d = .2. In theory a per-factor power of ≥ .8 would be maintained with N min = 788. However, the complete factorial design required 1024 experimental conditions, so the minimum N that could be used was 1024. All cost comparisons reported here are based on the overall N listed in Table 5 .

For purposes of illustration, per-subject cost will be defined here as the average incremental cost of adding a single research subject to a design without increasing the number of experimental conditions, and condition overhead cost will be defined as the average incremental cost of adding a single experimental condition without increasing the number of subjects. (For simplicity we assume per subject costs do not differ dramatically across conditions.) Then a rough estimate of total costs can be computed as follows, providing a basis for comparing the four design alternatives:

Figure 1 illustrates total costs for experiments corresponding to the situations and designs in Table 5 , for experiments in which per-subject costs equal or exceed per-condition overhead costs. In order to compute total costs on the y -axis, per-condition costs were arbitrarily fixed at $1. Thus the x -axis can be interpreted as the ratio of per-subject costs to per-condition costs; for example, the “4” on the x -axis means that per-subject costs are four times per-condition costs.

An external file that holds a picture, illustration, etc.
Object name is nihms148234f1.jpg

Costs of different experimental design options when per-subject costs exceed per-condition overhead costs. Total costs are computed with per-condition costs fixed at $1.

In the situations considered in Figure 1 , fractional factorial designs were always either least expensive or tied with complete factorial designs for least expensive. As the ratio of per-subject costs to per-condition costs increased, the economy of complete and fractional factorial designs became increasingly evident. Figure 1 shows that when per-subject costs outweighed per-condition costs, the single factor approach and, in particular, the individual experiments approach were often much more expensive than even complete factorial designs, and fractional factorials were often the least expensive.

Figure 2 examines the same situations as in Figure 1 , but now total costs are shown on the y -axis for experiments in which per-condition overhead costs equal or exceed per-subject costs. In order to compute total costs, per-subject costs were arbitrarily fixed at $1. Thus the x -axis represents the ratio of per-condition costs to per-subject costs; in this figure the “40” on the x -axis means that per-condition costs are forty times per-subject costs.

An external file that holds a picture, illustration, etc.
Object name is nihms148234f2.jpg

Costs of different experimental design options when per-condition overhead costs exceed per-subject costs. Total costs are computed with per-subject costs fixed at $1.

The picture here is more complex than that in Figure 1 . For the most part, in the four situations considered here the complete factorial was the most expensive design, frequently by a wide margin. The complete factorial requires many more experimental conditions than any of the other design alternatives, so it is not surprising that it was expensive when condition costs were relatively high. It is perhaps more surprising that the individual experiments approach, although it requires many fewer experimental conditions than the complete factorial, was usually the next most expensive. The individual experiments approach even exceeded the cost of the complete factorial under some circumstances when the effect sizes were small. This is because the reduction in experimental conditions afforded by the individual experiments approach was outweighed by much greater subject requirements (see Table 4 ). Figure 2 shows that the least expensive approaches were usually the single factor and fractional factorial designs. Which of these two was less expensive depended on effect size and the ratio of per-condition costs to per-subject costs. When the effect sizes were large and the ratio of per-condition costs to per-subject costs was less than about 20, fractional factorial designs tended to be more economical; the single factor approach was most economical once per-condition costs exceeded about 20 times per-subject costs. However, when effect sizes were small, fractional factorial designs were cheaper until the ratio of per-condition costs to per-subject costs substantially exceeded 100.

A brief tutorial on selecting a fractional factorial design

In this section we provide a brief tutorial intended to familiarize investigators with the basics of choosing a fractional factorial design. The more advanced introduction to fractional factorial designs provided by Kirk (1995) and Kuehl (1999) and the detailed treatment in Wu and Hamada (2000) are excellent resources for further reading.

When the individual experiments and single factor approaches are used, typically the choice of experimental conditions is made on intuitive grounds, with aliasing per se seldom an explicit basis for choosing a design. By contrast, when fractional factorial designs are used aliasing is given primary consideration. Usually a design is selected to achieve a particular aliasing structure while considering cost. Although the choice of experimental conditions for fractional factorials may be less intuitively obvious, this should not be interpreted as meaning that the selection of a fractional factorial design has no conceptual basis. On the contrary, fractional factorial designs are carefully chosen with key research questions in mind.

There are many possible fractional factorial designs for any set of k factors. The designs vary in how many experimental conditions they require and the nature of the aliasing. Fortunately, the hard work of determining the number of experimental conditions and aliasing structure of fractional factorial designs has largely been done. The designs can be found in books (e.g. Box et al., 1978 ; Wu & Hamada, 2000 ) and on the Internet (e.g. National Institute of Standards and Technology/SEMATECH, 2006 ), but the easiest way to choose a fractional factorial design is by using computer software. Here we demonstrate the use of PROC FACTEX ( SAS Institute, Inc., 2004 ). Using this approach the investigator specifies the factors in the experiment, and may specify which effects are in the Estimate, Negligible and Non-negligible categories, the desired design resolution, maximum number of experimental conditions (sometimes called “runs”), and other aspects relevant to choice of a design. The software returns a design that meets the specified criteria, or indicates that such a design does not exist. Minitab (see Ryan, Joiner, & Cryer, 2004 ; Mathews, 2005 ) and S-PLUS ( Insightful Corp., 2007 ) also provide software for designing fractional factorial experiments.

To facilitate the presentation, let us increase the size of the hypothetical example. In addition to the factors (1) choose , (2) breath , and (3) prep , the new six-factor example will also include factors corresponding to whether or not (4) an audience is present besides just the investigator ( audience ); (5) the subject is promised a monetary reward if the speech is judged good enough ( stakes ); and (6) the subject is allowed to speak from notes ( notes ). A complete factorial experiment would require 2 6 = 64 experimental conditions. Three different ways of choosing a fractional factorial design using SAS PROC FACTEX are illustrated below.

Specifying a desired resolution

One way to use software to choose a fractional factorial design is to specify a desired resolution and instruct the software to find the smallest number of experimental conditions needed to achieve it. For example, suppose the investigator in the hypothetical example finds it acceptable to alias main effects with interactions as low as three-way, and to alias two-way interactions with other two-way interactions and higher-order interactions. A design of Resolution IV will meet these criteria and may be requested as follows:

SAS will find a design with these characteristics if it can, print information on the aliasing and design matrix, and save the design matrix in the dataset dataset1. The ALIASING(6) command requests a list of all aliasing up to six-way interactions, and DESIGN asks for the effect codes for each experimental condition in the design to be printed.

Table 6 shows the effect codes from the SAS output for this design. The design found by SAS requires only 16 experimental conditions; that is, the design is a 2 6−2 , or a one-quarter fractional factorial because it requires only 2 −2 = 1/4 = 16/64 of the experimental conditions in the full experiment. In a one-quarter fraction each source of variance has four aliases. This means that each main effect is aliased with three other effects. Because this is a Resolution IV design, all of these other effects are three-way interactions or any higher-order interactions; they will not be main effects or two-way interactions. Similarly, each two-way interaction is aliased with three other effects. Because this is a Resolution IV design, these other effects may be any interactions.

Conditionbreathaudiencechooseprepnotesstakes
1-1-1-1-1-1-1
2-1-1-1111
3-1-11-111
4-1-111-1-1
5-11-1-11-1
6-11-11-11
7-111-1-11
8-11111-1
91-1-1-1-11
101-1-111-1
111-11-11-1
121-111-11
1311-1-111
1411-11-1-1
15111-1-1-1
16111111

Different fractional factorial designs, even those with the same resolution, have different aliasing structures, some of which may appeal more to an investigator than others. SAS simply returns the first one it can find that fits the desired specifications. There is no feature in SAS, to the best of our knowledge, that automatically returns multiple possible designs with the same resolution, but it is possible to see different designs by arbitrarily changing the order in which the factors are listed in the FACTORS statement. Another possibility is to use the MINABS option to request a design that meets the “minimum aberration” criterion, which is a mathematical definition of least-aliased (see Wu & Hamada, 2000 ).

Specifying which effects are in which categories

The above methods of identifying a suitable fractional factorial design did not require specification of which effects are of primary scientific interest, which are negligible, and which are non-negligible, although the investigator would have to have determined this in order to decide that a Resolution IV design was desired. Another way to identify a fractional factorial design is to specify directly which effects fall in each of these categories, and instruct the software to find the smallest design that does not alias effects of primary interest either with each other or with effects in the non-negligible category. This method enables a little more fine-tuning.

Suppose in addition to the main effects, the investigator wants to be able to estimate all two-way interactions involving breath . The remaining two-way interactions and all three-way interactions are not of scientific interest but may be sizeable, so they are designated non-negligible. In addition, one four-way interaction, breath × prep × notes × stakes might be sizeable, because those factors are suspected in advance to be the most powerful factors, and so their combination might lead to a floor or ceiling effect, which could act as an interaction. This four-way interaction is placed in the non-negligible category. All remaining effects are designated negligible. Given these specifications, a design with the smallest possible number of experimental conditions is desired. The following code will produce such a design:

  
  
  

The ESTIMATE statement designates the effects that are of primary scientific interest and must be aliased only with effects expected to be negligible. The NONNEGLIGIBLE statement designates effects that are not of scientific interest but may be sizeable; these effects must not be aliased with effects mentioned in the ESTIMATE statement. It is necessary to specify only effects to be estimated and those designated non-negligible; any remaining effects are assumed negligible.

The SAS output (not shown) indicates that the result is a 2 6−1 design, which has 32 experimental conditions, and that this design is Resolution VI. Because this design is a one-half fraction of the complete factorial, each source of variation has two aliases, or, in other words, each main effect and interaction is aliased with one other effect. The output provides a complete account of the aliasing, indicating that each main effect is aliased with a five-way interaction, and each two-way interaction is aliased with a four-way interaction. This aliasing is characteristic of Resolution VI designs, as was shown in Table 3 . Because the four-way interaction breath × prep × notes × stakes has been placed in the non-negligible category, the design aliases it with another interaction in this category, audience × choose , rather than with one of the two-way interactions in the Estimate category.

Specifying the maximum number of experimental conditions

Another way to use software to choose a design is to specify the number of experimental conditions in the design, and let the software return the aliasing structure. This approach may make sense when resource constraints impose a strict upper limit on the number of experimental conditions that can be implemented, and the investigator wishes to decide whether key research questions can be addressed within this limit. Suppose in our hypothetical example the investigator can implement no more than eight experimental conditions; in other words, we need a 2 6−3 design. The investigator can use the following code:

In this case, the SAS output suggests a design with Resolution III. Because this Resolution III design is a one-eighth fraction, each source of variance has eight aliases. Each main effect is aliased with seven other effects. These effects may be any interaction; they will not be main effects.

A comparison of results for several different experiments

This section contains direct comparisons among the various experimental designs discussed in this article, based on artificial data generated using the same model for all the designs. This can be imagined as a situation in which after each experiment, time is turned back and the same factors are again investigated with the same experimental subjects, but using a different experimental design.

Let us return to the hypothetical example with six factors (breath , audience , choose , prep , notes , stakes ), each with two levels per factor, coded -1 for Off and +1 for On. Suppose there are a total of 320 subjects, with five subjects randomly assigned to each of the 64 experimental conditions of a 2 6 full factorial design, and the outcome variable is a reverse-scaled questionnaire about public speaking anxiety, that is, a higher score indicates less anxiety. Data were generated so that the score of participant j in the i th experimental condition was modeled as μ i + ε ij where the μ i are given by

and the errors are N (0, 2 2 ). Because the outcome variable in ( 1 ) is reverse-scored, helpful (anxiety-reducing) main effects can be called “positive” and harmful ones can be called “negative.” The standard deviation of 2 was used so that the regression coefficients above can also be interpreted as Cohen's d 's despite the -1/+1 metric for effect coding. Thus, the main effects coefficients in ( 1 ) represent half the long-run average raw difference between participants receiving the Off and On levels of the factor, and also represent the normalized difference between the -1 and +1 groups.

The example was deliberately set up so as not to be completely consistent with the investigator's ideas as expressed in the previous section. In the model above, anxiety is reduced on average by doing the breathing relaxation exercise, by being able to choose one's own topic, by having extra preparation time, and by having notes available. There is a small anxiety-increasing effect of higher stakes. The audience factor had zero main effect on anxiety. The first two positive two-way interactions indicate that longer preparation time intensified the effects of the breathing exercise or notes, or equivalently, that shorter preparation time largely neutralized their effects (as the subjects had little time to put them into practice). The third interaction indicates that higher stakes were energizing for those who were prepared, but anxiety-provoking for the less prepared. The first pair of negative two-way interactions indicate that the breath intervention was somewhat redundant with the more conventional aids of having notes and having one's choice of topic, or equivalently that breathing relaxation was more important when those aids were not available. There follow several other small higher-order nuisance interactions with no clear interpretability, as might occur in practice.

Data were generated using the above model for the following seven experimental designs: Complete factorial; individual experiments; two single factor designs (comparative treatment and constructive treatment); and the Resolution III, IV, and VI designs arrived at in the previous section. The total number of subjects used was held constant at 320 for all of the designs. For the individual experiments approach, six experiments, each with either 53 or 54 subjects, were simulated. For the single factor designs, experiments were simulated assigning either 45 or 46 subjects to each of seven experimental conditions. The comparative treatment design included a no-treatment control (i.e. all factors set to Off) and six experimental conditions, each with one factor set to On and the others set to Off. The constructive treatment design included a no-treatment control and six experimental conditions, each of which added a factor set to On in order from left to right, e.g. in the first treatment condition only breath was set to On, in the second treatment condition breath and audience were set to On and the remaining factors were set to Off, and so on until in the seventh experimental condition all six factors were set to On. To simulate data for the Resolution III, IV, and VI fractional factorial designs, 40, 20, and 10 subjects, respectively, were assigned to each experimental condition. In simulating data for each of the seven design alternatives, the μ i 's were recalculated accordingly but the vector of ε's was left the same.

ANOVA models were fit to each data set in the usual way using SAS PROC GLM. For example, the code used to fit an ANOVA model to the data set corresponding to the Resolution III fractional factorial design was as follows:

This model contained no interactions because they cannot be estimated in a Resolution III design. An abbreviated version of the SAS output corresponding to this code appears in Figure 3 . In the comparative treatment strategy each of the treatment conditions was compared to the no-treatment control. In the constructive treatment strategy each treatment condition was compared to the condition with one fewer factor set to On; for example, the condition in which breath and audience were set to On was compared to the condition in which only breath was set to On.

An external file that holds a picture, illustration, etc.
Object name is nihms148234f3.jpg

Partial output from SAS PROC GLM for simulated Resolution III data set.

Table 7 contains the regression coefficients corresponding to the effects of each factor for each of the seven designs. For reference, the true values of the regression coefficients used in data generation are shown at the top of the table.

Factor:breathaudiencechooseprepnotesstakes
Population main effect
(see ):
0.250.000.500.300.30-0.10
Complete factorial0.24 0.18 0.69 0.40 0.51 -0.07
Individual experiments0.51 0.161.14 -0.390.10-0.39
Single factor designs
 Comparative treatment0.32 0.260.79 -0.32 0.31-0.19
 Constructive treatment0.32 0.240.180.090.38 0.25
Fractional factorial designs
 Resolution III0.44 0.43 0.69 -0.150.64 -0.35
 Resolution IV0.24 0.18 0.69 0.40 0.42 -0.05
 Resolution VI0.24 0.18 0.69 0.40 0.51 -0.24

In the complete factorial experiment, breath , choose , prep , and notes were significant. The true main effect of stakes was small; with N = 320 this design had little power to detect it. Audience was marginally significant at α = .15, although the data were generated with this effect set at exactly zero. In the individual experiments approach, only choose was significant, and breath was marginally significant. The results for the comparative treatment experiment were similar to those of the individual experiments approach, as would be expected given that the two have identical aliasing. An additional effect was marginally significant in the comparative treatment approach, reflecting the additional statistical power associated with this design as compared to the individual experiments approach. In the constructive treatment experiment none of the factors were significant at α = .05. There were two marginally significant effects, breath and notes .

In the Resolution III design every effect except prep was significant. One of these, the significant effect of audience , was a spurious result (probably caused by aliasing with the prepare × stakes interaction). By contrast, results of the Resolution IV and VI designs were very similar to those of the complete factorial, except that in the Resolution VI design stakes was significant. In the individual experiments and single factor approaches, the estimates of the coefficients varied considerably from the true values. In the fractional factorial designs the estimates of the coefficients tended to be closer to the true values, particularly in the Resolution IV and Resolution VI designs.

Table 8 shows estimates of interactions from the designs that enable such estimates, namely the complete factorial design and the Resolution IV and Resolution VI factorial designs. The breath × prep interaction was significant in all three designs. The breath × choose interaction was significant in the complete factorial and the Resolution VI fractional factorial but was estimated as zero in the Resolution IV design. In general the coefficients for these interactions were very similar across the three designs. An exception was the coefficient for the breath × choose interaction, and, to a lesser degree, the coefficient for the breath × notes interaction.

Interaction: breath×audiencechooseprepnotesstakes
Truth:0.00-0.150.25-0.150.00
Complete factorial-0.03-0.25 0.29 -0.07-0.03
Res. IV fractional-0.030.000.29 -0.16-0.02
Res. VI fractional0.02-0.25 0.29 -0.070.04

Differences observed among the designs in estimates of coefficients are due to differences in aliasing plus a minor random disturbance due to reallocating the error terms when each new experiment was simulated, as described above. In general, more aliasing was associated with greater deviations from the true coefficient values. No effects were aliased in the complete factorial design, which had coefficient estimates closest to the true values. In the Resolution IV design each effect was aliased with three other effects, all of them interactions of three or more factors, and in the Resolution VI design each effect was aliased with one other effect, an interaction of four or more factors. These designs had coefficient estimates that were also very close to the true values. The Resolution III fractional factorial design, which aliased each effect with seven other effects, had coefficient estimates somewhat farther from the true values. The coefficient estimates associated with the individual and single factor approaches were farthest from the true values of the main effect coefficients. In the individual experiments and single factor approaches each effect was aliased with 15 other effects (the main effect of a factor was aliased with all the interactions involving that factor, from the two-way up to the six-way). The comparative treatment and constructive treatment approach aliased the same number of effects but differed in the coding of the aliased effects (as can be seen in Table 2 ), which is why their coefficient estimates differed.

Although the seven experiments had the same overall sample size N , they differed in statistical power. The complete and fractional factorial experiments, which had identical statistical power, were the most powerful. Next most powerful were the comparative treatment and constructive treatment designs. The individual experiments approach was the least powerful. These differences in statistical power, along with the differences in coefficient estimates, were reflected in the effects found significant at various levels of α across the designs. Among the designs examined here, the individual experiments approach and the two single factor designs showed the greatest disparities with the complete factorial.

Given the differences among them in aliasing, it is perhaps no surprise that these designs yielded different effect estimates and hypothesis tests. The research questions that motivate individual experiments and single factor designs, which often involve pairwise contrasts between individual experimental conditions, may not require estimation of main effects per se , so the relatively large differences between the coefficient estimates obtained using these designs and the true main effect coefficients may not be important. Instead, what may be more noteworthy is how few effects these designs detected as significant as compared to the factorial experiments.

General discussion

Some overall recommendations.

Despite the situation-specific nature of most design decisions, it is possible to offer some general recommendations. When per-subject costs are high in relation to per-condition overhead costs, complete and fractional factorials are usually the most economical designs. When per-condition costs are high in relation to per-subject costs, usually either a fractional factorial or single factor design will be most economical. Which is most economical will depend on considerations such as the number of factors, the sample size required to achieve the desired statistical power, and the particular fractional factorial design being considered.

In the limited set of situations examined in this article, the individual experiments approach emerged as the least economical. Although the individual experiments approach requires many fewer experimental conditions than a complete factorial and usually requires fewer than a fractional factorial, it requires more experimental conditions than a single factor experiment. In addition, it makes the least efficient use of subjects of any of the designs considered in this article. Of course, an individual experiments approach is necessary whenever the results of one experiment must be obtained first in order to inform the design of a subsequent experiment. Except for this application, in general the individual experiments approach is likely to be the least appealing of the designs considered here. Investigators who are planning a series of individual experiments may wish to consider whether any of them can be combined to form a complete or fractional factorial experiment, or whether a single factor design can be used.

Although factorial experiments with more than two or three factors are currently relatively rare in psychology, we recommend that investigators give such designs serious consideration. All else being equal, the statistical power of a balanced factorial experiment to detect a main effect of a given size is not reduced by the presence of other factors, except to a small degree caused by the reduction of error degrees of freedom in the model. In other words, if main effects are of primary scientific interest and interactions are not of great concern, then factors can be added without needing to increase N appreciably.

An interest in interactions is not the only reason to consider using factorial designs; investigators may simply wish to take advantage of the economy these designs afford, even when interactions are expected to be negligible or are not of scientific interest. In particular, investigators who undergo high subject costs but relatively modest condition costs may find that a factorial experiment will be much more economical than other design alternatives. Investigators faced with an upper limit on the availability of subjects may even find that a factorial experiment enables them to investigate research questions that would otherwise have to be set aside for some time. As Oehlert (2000 , p. 171) explained, “[t]here are thus two times when you should use factorial treatment structure—when your factors interact, and when your factors do not interact.”

One of the objectives of this article has been to demonstrate that fractional factorial designs merit consideration for use in psychological research alongside other reduced designs and complete factorial designs. Previous authors have noted that fractional factorial designs may be useful in a variety of areas within the social and behavioral sciences ( Landsheer & van den Wittenboer, 2000 ) such as behavioral medicine (e.g. Allore, Peduzzi, Han, & Tinetti, 2006 ; Allore, Tinettia, Gill, & Peduzzi, 2005 ), marketing research (e.g. Holland & Cravens, 1973 ), epidemiology ( Taylor et al., 1994 ), education ( McLean, 1966 ), human factors ( Simon & Roscoe, 1984 ), and legal psychology ( Stolle, Robbennolt, Patry, & Penrod, 2002 ). Shaw (2004) and Shaw, Festing, Peers, & Furlong (2002) noted that factorial and fractional factorial designs can help to reduce the number of animals that must be used in laboratory research. Cutler, Penrod, and Martens (1987) used a large fractional factorial design to conduct an experiment studying the effect of context variables on the ability of participants to identify the perpetrator correctly in a video of a simulated robbery. Their experiment included 10 factors, with 128 experimental conditions, but only 290 subjects.

An important special case: Development and evaluation of behavioral interventions

As discussed by Allore et al. (2006) , Collins, Murphy, Nair, and Strecher (2005) , Collins, Murphy, and Strecher (2007) , and West et al. (1993) , behavioral intervention scientists could build more potent interventions if there was more empirical evidence about which intervention components are contributing to program efficacy, which are not contributing, and which may be detracting from overall efficacy. However, as these authors note, generally behavioral interventions are designed a priori and then evaluated by means of the typical randomized controlled trial (RCT) consisting of a treatment group and a control group (e.g. experimental conditions 8 and 1, respectively, in Table 2 ). This all-or-nothing approach, also called the treatment package strategy ( West et al., 1993 ), involves the fewest possible experimental conditions, so in one sense it is a very economical design. The trade-off is that all main effects and interactions are aliased with all others. Thus although the treatment package strategy can be used to evaluate whether an intervention is efficacious as a whole, it does not provide direct evidence about any individual intervention component. A factorial design with as many factors as there are distinct intervention components of interest would provide estimates of individual component effects and interactions between and among components.

Individual intervention components are likely to have smaller effect sizes than the intervention as a whole ( West & Aiken, 1997 ), in which case sample size requirements will be increased as compared to a two-experimental-condition RCT. One possibility is to increase power by using a Type I error rate larger than the traditional α = .05, in other words, to tolerate a somewhat larger probability of mistakenly choosing an inactive component for inclusion in the intervention in order to reduce the probability of mistakenly rejecting an active intervention component. Collins et al. (2005 , 2007) recommended this and similar tactics as part of a phased experimental strategy aimed at selecting components and levels to comprise an intervention. In this phased experimental strategy, after the new intervention is formed its efficacy is confirmed in a RCT at the conventional α = .05. As Hays (1994 , p. 284) has suggested, “In some situations, perhaps, we should be far more attentive to Type II errors and less attentive to setting α at one of the conventional levels.”

One reason for eschewing a factorial design in favor of the standard two-experimental-condition RCT may be a shortage of resources needed to implement all the experimental conditions in a complete factorial design. If this is the primary obstacle, it is possible that it can be overcome by identifying a fractional factorial design requiring a manageable number of experimental conditions. Fractional factorial designs are particularly apropos for experiments in which the primary objective is to determine which factors out of an array of factors have important effects (where “important” can be defined as “statistically significant,” “effect size greater than d ,” or any other reasonable empirical criterion). In engineering these are called screening experiments. For example, suppose an investigator is developing an intervention and wishes to conduct an experiment to ascertain which of a set of possible intervention features are likely to contribute to an overall intervention effect. In most cases an approximate estimate of the effect of an individual factor is sufficient for a screening experiment, as long as the estimate is not so far off as to lead to incorrect inclusion of an intervention feature that has no effect (or, worse, has a negative effect) or incorrect exclusion of a feature that makes a positive contribution. Thus in this context the increased scientific information that can be gained using a fractional factorial design may be an acceptable tradeoff against the somewhat reduced estimation precision that can accompany aliasing. (For a Monte Carlo simulation examining the use of a fractional factorial screening experiment in intervention science, see Collins, Chakroborty, Murphy, & Strecher, in press .)

It must be acknowledged that even very economical fractional factorial designs typically require more experimental conditions than intervention scientists routinely consider implementing. In some areas in intervention science, there may be severe restrictions on the number of experimental conditions that can be realistically handled in any one experiment. For example, it may not be reasonable to demand of intervention personnel that they deliver different versions of the intervention to different subsets of participants, as would be required in any experiment other than the treatment package RCT. Or, the intervention may be so complex and demanding, and the context in which it must be delivered so chaotic, that implementing even two experimental conditions well is a remarkable achievement, and trying to implement more would surely result in sharply diminished implementation fidelity ( West & Aiken, 1997 ). Despite the undeniable reality of such difficulties, we wish to suggest that they do not necessarily rule out the use of complete and, in particular, fractional factorial designs across the board in all areas of intervention science. There may be some areas in which a careful analysis of available resources and logistical strategies will suggest that a factorial approach is feasible. One example is Strecher et al. (2008) , who described a 16-experimental-condition fractional factorial experiment to investigate five intervention components in a smoking cessation intervention. Another example can be found in Nair et al. (2008) , who described a 16-experimental-condition fractional factorial experiment to investigate five features of decision aids for women choosing among breast cancer treatments. Commenting on the Strecher et al. article, Norman (2008) wrote, “The fractional factorial design can provide considerable cost savings for more rapid prototype testing of intervention components and will likely be used more in future health behavior change research” (p. 450). Collins et al. (2005) and Nair et al. (2008) have provided some introductory information on the use of fractional factorial designs in intervention research. Collins et al. (2005 , 2007) discussed the use of fractional factorial designs in the context of a phased experimental strategy for building more efficacious behavioral interventions.

One interesting difference between the RCT on the one hand and factorial and fractional factorial designs on the other is that as compared to the standard RCT, a factorial design assigns a much smaller proportion of subjects to an experimental condition that receives no treatment. In a standard two-arm RCT about half of the experimental subjects will be assigned to some kind of control condition, for example a wait list or the current standard of care. By contrast, in a factorial experiment there is typically only one experimental condition in which all of the factors are set to Off. Thus if the design is a 2 3 factorial, say, seventh-eighths of the subjects will be assigned to a condition in which at least one of the factors is set to On. If the intervention is sought-after and assignment to a control condition is perceived as less desirable than assignment to a treatment condition, there may be better compliance because most subjects will receive some version of an intervention. In fact, it often may be possible to select a fractional factorial design in which there is no experimental condition in which all factors are set to Off.

Investigating interactions between individual characteristics and experimental factors in factorial experiments

Investigators are often interested in determining whether there are interactions between individual subject characteristics and any of the factors in a factorial or fractional factorial experiment. As an example, suppose an investigator is interested in determining whether gender interacts with the six independent variables in the hypothetical example used in this article. There are two ways this can be accomplished; one is exploratory, and the other is a priori (e.g. Murray, 1998 ).

In the exploratory approach, after the experiment has been conducted gender is coded and added to the analysis of variance as if it were another factor. Even if the design was originally perfectly balanced, such an addition nearly always results in a substantial disruption of balance. Thus the effect estimates are unlikely to be orthogonal, and so care must be taken in estimating the sums of squares. If a reduced design was used, it is important to be aware of what effects, if any, are aliased with the interactions being examined. In most fractional factorial experiments the two-way interactions between gender and any of the independent variables are unlikely to be aliased with other effects, but three-way and higher-order interactions involving gender are likely to be aliased with other effects.

In the a priori approach, gender is built into the design as an additional factor before the experiment is conducted, by ensuring that it is crossed with every other factor. Orthogonality will be maintained and power for detecting gender effects will be optimized if half of the subjects are male and half are female, with randomization done separately within each gender, as if gender were a blocking variable. However, in blocking it is assumed that there are no interactions between the blocking variable and the independent variables; the purpose of blocking is to control error. By contrast, in the a priori approach the interactions between gender and the manipulated independent variables are of particular interest, and the experiment should be powered accordingly to detect these interactions. As compared to the exploratory approach, with the a priori approach it is much more likely that balance can be maintained or nearly maintained. Variables such as gender can easily be incorporated into fractional factorial designs using the a priori approach. These variables can simply be listed with the other independent variables when using software such as PROC FACTEX to identify a suitable fractional factorial design. A fractional factorial design can be chosen so that important two-way and even three-way interactions between, for example, gender and other independent variables are aliased only with higher-order interactions.

How negligible is negligible?

To the extent that an effect placed in the negligible category is nonzero, the estimate of any effect of primary scientific interest that is aliased with it will be different from an estimate based on a complete factorial experiment. Thus a natural question is, “How small should the expected size of an interaction be for the interaction to be placed appropriately in the negligible category?”

The answer depends on the field of scientific endeavor, the value of the scientific information that can be gained using a reduced design, and the kind of decisions that are to be made based on the results of the experiment. There are risks associated with assuming an effect is negligible. If the effect is in reality non-negligible and positive, it can make a positive effect aliased with it look spuriously large, or make a negative effect aliased with it look spuriously zero or even positive. If an effect placed in the negligible category is non-negligible and negative, it can make a positive effect aliased with it look spuriously zero or even negative, or make a negative effect aliased with it look spuriously large.

Placing an effect in the negligible category is not the same as assuming it is exactly zero. Rather, the assumption is that the effect is small enough not to be very likely to lead to incorrect decisions. If highly precise estimates of effects are required, it may be that few or no effects are deemed small enough to be eligible for placement in the negligible category. If the potential gain of additional scientific information obtained at a cost of fewer resources offsets the risk associated with reduced estimation precision and the possibility of some spurious effects, then effects expected to be nonzero, but small, may more readily be designated negligible.

Some limitations of this article

The discussion of reduced designs in this article is limited in a number of ways. One limitation of the discussion is that it has focused on between-subjects designs. It is straightforward to extend every design here to incorporate repeated measures, which will improve statistical power. However, all else being equal, the factorial designs will still have more power than the individual experiments and single factor approaches. There have been a few examples of the application of within-subjects fractional designs in legal psychology ( Cutler, Penrod, & Dexter, 1990 ; Cutler, Penrod, & Martens, 1987 ; Cutler, Penrod, & Stuve, 1988 ; O'Rourke, Penrod, Cutler, & Stuve, 1989 ; Smith, Penrod, Otto, & Park, 1996 ) and in other research on attitudes and choices (e.g., van Schaik, Flynn & van Wersch, 2005 ; Sorenson & Taylor, 2005 ; Zimet et al., 2005 ) in which a fractional factorial structure is used to construct the experimental conditions assigned to each subject. In fact, the Latin squares approach for balancing orders of experimental conditions in repeated-measures studies is a form of within-subjects fractional factorial. Within-subjects fractional designs of this kind could be seen as a form of planned missingness design (see Graham, Taylor, Olchowski, & Cumsille, 2006 ).

Another limitation of this article is the focus on factors with only two levels. Designs involving exclusively two-level factors are very common, and factorial designs with two levels per factor tend to be more economical than those involving factors with three or more levels, as well as much more interpretable in practice, due to their simpler interaction structure ( Wu & Hamada, 2000 ). However, any of the designs discussed here can incorporate factors with more than two levels, and different factors may have different numbers of levels. Factors with three or more levels, and in particular an array of factors with mixed numbers of levels, adds complexity to the aliasing in fractional factorial experiments. Although this requires careful attention, it can be handled in a straightforward manner using software like SAS PROC FACTEX.

This article has not discussed what to do when unexpected difficulties arise. One such difficulty is unplanned missing data, for example, an experimental subject failing to provide outcome data. The usual concerns about informative missingness (e.g. dropout rates that are higher in some experimental conditions than in others) apply in complete and reduced factorial experiments just as they do in other research settings. In any complete or reduced design unplanned missingness can be handled in the usual manner, via multiple imputation or maximum likelihood (see e.g. Schafer & Graham, 2002 ). If experimental conditions are assigned unequal numbers of subjects, use of a regression analysis framework can deal with the resulting lack of orthogonality of effects with very little extra effort (e.g. PROC GLM in SAS). Another unexpected difficulty that can arise in reduced designs is evidence that assumptions about negligible interactions are incorrect. If this occurs, one possibility is to implement additional experimental conditions to address targeted questions, in an approach often called sequential experimentation ( Meyer, Steinberg, & Box, 1996 ).

The resource management perspective: Strategic weighing of resource requirements and expected scientific benefit

According to the resource management perspective, the choice of an experimental design requires consideration of both resource requirements and expected scientific benefit; the preferred research design is the one expected to provide the greatest scientific benefit in relation to resources required. Although aliasing may sometimes be raised as an objection to the use of fractional factorial designs, it must be remembered that aliasing in some form is inescapable in any and all reduced designs, including individual experiments and single factor designs. We recommend considering all feasible designs and making a decision taking a resource management perspective that weighs resource demands against scientific costs and benefits.

Paramount among the considerations that drive the choice of an experimental design is addressing the scientific question motivating the research. At the same time, if this scientific question can be addressed only by a very resource-intensive design, but a closely related question can be addressed by a much less resource-intensive design, the investigator may wish to consider reframing the question to conserve resources. For example, when research subjects are expensive or scarce, it may be prudent to consider whether scientific questions can be framed in terms of main effects rather than simple effects so that a factorial or fractional factorial design can be used. Or, when resource limitations preclude implementing more than a very few experimental conditions, it may be prudent to consider framing research questions in terms of simple effects rather than main effects. When a research question is reframed to take advantage of the economy offered by a particular design, it is important that the interpretation of effects be consistent with the reframing, and that this consistency be maintained not only in the original research report but in subsequent citations of the report, as well as integrative reviews or meta-analyses that include the findings.

Resource requirements can often be estimated objectively, as discussed above. Tables like Table 5 may be helpful and can readily be prepared for any N and k . (A SAS macro to perform these computations can be found on the web site http:\\methodology.psu.edu .) In contrast, assessment of expected scientific benefit is much more subjective, because it represents the investigator's judgment of the value of the scientific knowledge proffered by an experimental design in relation to the plausibility of any assumptions that must be made. For this reason, weighing resource requirements against expected scientific benefit can be challenging. Because expected scientific benefit usually cannot be expressed in purely financial terms, or even readily quantified, a simple benefit to cost ratio is unlikely to be helpful in choosing among alternative designs. For many social and behavioral scientists, the decision may be simplified somewhat by the existence of absolute upper limits on the number of subjects that are available, number of experimental conditions that can be handled logistically, availability of qualified personnel to run experimental conditions, number of hours shared equipment can be used, and so on. Designs that would exceed these limitations are immediately ruled out, and the preferred design now becomes the one that is expected to provide the greatest scientific benefit without exceeding available resources. This requires careful planning to ensure that the design of the study clearly addresses the scientific questions of most interest.

For example, suppose an investigator who is interested in six two-level independent variables has the resources to implement an experiment with at most 16 experimental conditions. One possible strategy is a “complete” factorial design involving four factors and holding the remaining two factors constant at specified levels. Given that six factors are of scientific interest, this “complete” factorial design is actually a reduced design. This approach enables estimation of the main effects and all interactions involving the four factors included in the experiment, but these effects will be aliased with interactions involving the two omitted factors. Therefore in order to draw conclusions either these effects must be assumed negligible, or interpretation must be restricted to the levels at which the two omitted factors were set. Another possible strategy is a Resolution IV fractional factorial design including all six factors, which enables investigation of all six main effects and many two-way interactions, but no higher-order interactions. Instead, this design requires assuming that all three-way and higher-order interactions are negligible. Thus, both designs can be implemented within available resources, but they differ in the kind of scientific information they provide and the assumptions they require. Which option is better depends on the value of the information provided by each experiment in relation to the research questions. If the ability to estimate the higher-order interactions afforded by the four-factor factorial design is more valuable than the ability to estimate the six main effects and additional two-way interactions afforded by the fractional factorial design, then the four-factor factorial may have greater expected scientific benefit. On the other hand, if the investigator is interested primarily in main effects of all six factors and selected two-way interactions, the fractional factorial design may provide more valuable information.

Strategic use of reduced designs involves taking calculated risks. To assess the expected scientific benefit of each design, the investigator must also consider the risk associated with any necessary assumptions in relation to the value of the knowledge that can be gained by the design. In the example above, any risk associated with making the assumptions required by the fractional factorial design must be weighted against the value associated with the additional main effect and two-way interaction estimates. If other, less powerful reduced designs are considered, any increased risk of a Type II error must also be considered. If an experiment is an exploratory endeavor intended to determine which factors merit further study in a subsequent experiment, the ability to investigate many factors may be of paramount importance and may outweigh the risks associated with aliasing. A design that requires no or very safe assumptions may not have a greater net scientific benefit than a riskier design if the knowledge it proffers is meager or is not at the top of the scientific agenda motivating the experiment. Put another way, the potential value of the knowledge that can be gained in a design may offset any risk associated with the assumptions it requires.

Acknowledgments

The authors would like to thank Bethany C. Bray, Michael J. Cleveland, Donna L. Coffman, Mark Feinberg, Brian R. Flay, John W. Graham, Susan A. Murphy, Megan E. Patrick, Brittany Rhoades, and David Rindskopf for comments on an earlier draft. This research was supported by NIDA grants P50 DA10075 and K05 DA018206.

1 Assuming orthogonality is maintained, adding a factor to a factorial experiment does not change estimates of main effects and interactions. However, the addition of a factor does change estimates of error terms, so hypothesis tests can be slightly different.

2 In the social and behavioral sciences literature the term “fractional factorial” has sometimes been applied to reduced designs that do not maintain the balance property, such as the individual experiments and single factor designs. In this article we maintain the convention established in the statistics literature (e.g. Wu & Hamada, 2000 ) of reserving the term “fractional factorial” for the subset of reduced designs that maintain the balance property.

Contributor Information

Linda M. Collins, The Methodology Center and Department of Human Development and Family Studies, The Pennsylvania State University.

John J. Dziak, The Methodology Center, The Pennsylvania State University.

Runze Li, Department of Statistics and The Methodology Center, The Pennsylvania State University.

  • Allore H, Peduzzi P, Han L, Tinetti M. Using the SAS system for experimental designs for multicomponent interventionsin medicine (No. 127-31) SAS white paper. 2006. see www2.sas.com/proceedings/sugi31/127-31.pdf .
  • Allore HG, Tinettia ME, Gill TM, Peduzzi PN. Experimental designs for multicomponent interventions among persons with multifactorial geriatric syndromes. Clinical Trials. 2005; 2 :13–21. [ PubMed ] [ Google Scholar ]
  • Bolger N, Amarel D. Effects of social support visibility on adjustment to stress: Experimental evidence. Journal of Personality and Social Psychology. 2007; 92 :458–475. [ PubMed ] [ Google Scholar ]
  • Box G, Hunter JS. The 2 k−p fractional factorial designs. Technometrics. 1961; 3 :311–351. 449–458. [ Google Scholar ]
  • Box G, Meyer R. An analysis for unreplicated fractional factorials. Technometrics. 1986; 28 :11–18. [ Google Scholar ]
  • Box GEP, Hunter WG, Hunter JS. Statistics for experimenters: An introduction to design, data analysis, and model building. New York: Wiley; 1978. [ Google Scholar ]
  • Cohen J. Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum Associates; 1988. [ Google Scholar ]
  • Collins L, Chakroborty B, Murphy S, Strecher V. Comparison of a phased experimental approach and a single randomized clinical trial for developing multicomponent behavioral interventions. Clinical Trials in press. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Collins LM, Murphy SA, Nair V, Strecher V. A strategy for optimizing and evaluating behavioral interventions. Annals of Behavioral Medicine. 2005; 30 :65–73. [ PubMed ] [ Google Scholar ]
  • Collins LM, Murphy SA, Strecher V. The Multiphase Optimization Strategy (MOST) and the SequentialMultiple Assignment Randomized Trial (SMART): New methods formore potent e-health interventions. American Journal of Preventive Medicine. 2007; 32 :S112–S118. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cutler BL, Penrod SD, Dexter HR. Juror sensitivity to eyewitness identification evidence. Law and Human Behavior. 1990; 14 :185–191. [ Google Scholar ]
  • Cutler BL, Penrod SD, Martens TK. Improving the reliability of eyewitness identification: Putting context into context. Journal of Applied Psychology. 1987; 71 :629–637. [ Google Scholar ]
  • Cutler BL, Penrod SD, Stuve TE. Juror decision making in eyewitness identification cases. Law and Human Behavior. 1988; 12 :41–55. [ Google Scholar ]
  • Graham JW, Taylor BJ, Olchowski AE, Cumsille PE. Planned missing data designs in psychological research. Psychological Methods. 2006; 11 :323–343. [ PubMed ] [ Google Scholar ]
  • Green PE, Rao VR. Conjoint measurement for quantifying judgmental data. Journal of Marketing Research. 1971; 8 :355–363. [ Google Scholar ]
  • Hays WL. Statistics. Orlando, Florida: Harcourt Brace & Company; 1994. [ Google Scholar ]
  • Holland CW, Cravens DW. Fractional factorial experimental designs in marketing research. Journal of Marketing Research. 1973; 10 :270–276. [ Google Scholar ]
  • Insightful Corporation. S-PLUS® 8 for Windows® user's guide. Seattle, WA: Insightful Corporation; 2007. [ Google Scholar ]
  • Kirk R. Experimental design: Procedures for the behavioral sciences. 3rd. Pacific Grove, CA: Brooks/Cole; 1995. [ Google Scholar ]
  • Kuehl RO. Design of experiments: Statistical principles of research design and analysis. 2nd. Pacific Grove, CA: Duxbury/Thomson; 1999. [ Google Scholar ]
  • Landsheer JA, van den Wittenboer G. Fractional designs: a simulation study of usefulness in the social sciences. Behavior Research Methods. 2000; 32 :528–36. [ PubMed ] [ Google Scholar ]
  • Mathews PG. Design of experiments with Minitab. Milwaukee, WI: Quality Press; 2005. [ Google Scholar ]
  • McLean LD. Phantom classrooms. The School Review. 1966; 74 :139–149. [ Google Scholar ]
  • Meyer RD, Steinberg DM, Box GEP. Follow-up designs to resolve confounding in multifactor experiments. Technometrics. 1996; 38 :303–313. [ Google Scholar ]
  • Murray DM. Design and analysis of group-randomized trials. New York: Oxford University Press; 1998. [ Google Scholar ]
  • Nair V, Strecher V, Fagerlin A, Ubel P, Resnicow K, Murphy S, et al. Screening Experiments and the Use of Fractional Factorial Designs in Behavioral Intervention Research. American Journal of Public Health. 2008; 98 (8):1354. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • National Institute of Standards and Technology/SEMATECH. e-Handbook of statistical methods. 2006. [July 17, 2007]. http://www.itl.nist.gov/div898/handbook/ Available from http://www.itl.nist.gov/div898/handbook/
  • Norman GJ. Answering the “What works?” question in health behavior change. American Journal of Preventive Medicine. 2008; 34 :449–450. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Oehlert GW. A first course in design and analysis of experiments. New York: W. H. Freeman; 2000. [ Google Scholar ]
  • O'Rourke TE, Penrod SD, Cutler BL, Stuve TE. The external validity of eyewitness identification research: Generalizing across subject populations. Law and Human Behavior. 1989; 13 :385–398. [ Google Scholar ]
  • Ryan BF, Joiner BL, Cryer JD. Minitab handbook. 5th. Belmont, CA: Duxbury/Thomson; 2004. [ Google Scholar ]
  • SAS Institute Inc. SAS/QC® 9.1 user's guide. Cary, NC: Author; 2004. [ Google Scholar ]
  • Schafer JL, Graham JW. Missing data: Our view of the state of the art. Psychological Methods. 2002; 7 :147–177. [ PubMed ] [ Google Scholar ]
  • Shaw R. Reduction in laboratory animal use by factorial design. Alternatives to Laboratory Animals. 2004; 32 :49–51. [ PubMed ] [ Google Scholar ]
  • Shaw R, Festing MFW, Peers I, Furlong L. Use of factorial designs to optimize animal experiments and reduce animal use. Institute for Laboratory Animal Research Journal. 2002; 43 :223–232. [ PubMed ] [ Google Scholar ]
  • Simon CW, Roscoe SN. Application of a multifactor approach to transfer of training research. Human Factors. 1984; 26 :591–612. [ Google Scholar ]
  • Smith BC, Penrod SD, Otto AL, Park RC. Jurors' use of probabilistic evidence. Law and Human Behavior. 1996; 20 :49–82. [ Google Scholar ]
  • Sorenson SB, Taylor CA. Female aggression toward male intimate partners: An examination of social norms in a community-based sample. Psychology of Women Quarterly. 2005; 29 :78–96. [ Google Scholar ]
  • Stolle DP, Robbennolt JK, Patry M, Penrod SD. Fractional factorial designs for legal psychology. Behavioral Sciences and the Law. 2002; 20 :5–17. [ PubMed ] [ Google Scholar ]
  • Strecher VJ, McClure JB, Alexander GL, Chakraborty B, Nair VN, Konkel JM, et al. Web-based smoking-cessation programs: Results of a randomized trial. American Journal of Preventive Medicine. 2008; 34 :373–381. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Taylor PR, Li B, Dawsey SM, Li J, Yang CS, Gao W, et al. Prevention of esophageal cancer: The nutrition intervention trials in Linxian, China. Cancer Research. 1994; 54 :2029s–2031s. [ PubMed ] [ Google Scholar ]
  • van Schaik P, Flynn D, van Wersch A. Influence of illness script components and medical practice on medical decision making. Journal of Experimental Psychology: Applied. 2005; 11 :187–199. [ PubMed ] [ Google Scholar ]
  • West SG, Aiken LS. Toward understanding individual effects in multicomponent prevention programs: Design and analysis strategies. In: Bryant K, Windle M, West S, editors. The science of prevention: Methodological advances from alcohol and substanceabuse research. Washington, D.C.: American Psychological Association; 1997. pp. 167–209. chap 6. [ Google Scholar ]
  • West SG, Aiken LS, Todd M. Probing the effects of individual components in multiple component prevention programs. American Journal of Community Psychology. 1993; 21 :571–605. [ PubMed ] [ Google Scholar ]
  • Wu C, Hamada M. Experiments: Planning, analysis, and parameter design optimization. New York: Wiley; 2000. [ Google Scholar ]
  • Zimet GD, Mays RM, Sturm LA, Ravert AA, Perkins SM, Juliar BE. Parental attitudes about sexually transmitted infection vaccination for their adolescent children. Archives of Pediatrics and Adolescent Medicine. 2005; 159 :132–137. [ PubMed ] [ Google Scholar ]

IMAGES

  1. Easy Way to Explain Dependent and Independent Variables

    one independent variable per experiment

  2. Types of Variables in Science Experiments

    one independent variable per experiment

  3. PPT

    one independent variable per experiment

  4. Science Experiment: Independent, Dependent, and Controlled Variables by

    one independent variable per experiment

  5. PPT

    one independent variable per experiment

  6. 8.2 Multiple Independent Variables

    one independent variable per experiment

VIDEO

  1. Multiple regression vs. many correlations?

  2. One way ANOVA independent samples using R

  3. What's the key difference between simple and multiple regression?

  4. 400 Eno per experiment#trending#eno #experiment#viral#myvideo#like#subscribe👍♥️

  5. Variance of the Sum of Independent Random Variables

  6. Scientist ne kiya gorille per Experiment 🧪 #youtubeshorts

COMMENTS

  1. Independent and Dependent Variables Examples

    Independent Variable. The independent variable is the factor the researcher changes or controls in an experiment. It is called independent because it does not depend on any other variable. The independent variable may be called the "controlled variable" because it is the one that is changed or controlled.

  2. 15 Independent and Dependent Variable Examples

    An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV). By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

  3. Guide to Experimental Design

    You manipulate one or more independent variables and measure their effect on one or more dependent variables. Experimental design create a set of procedures to systematically test a hypothesis. A good experimental design requires a strong understanding of the system you are studying. There are five key steps in designing an experiment:

  4. What Is an Independent Variable? Definition and Examples

    The independent variable is the variable that is controlled or changed in a scientific experiment to test its effect on the dependent variable. It doesn't depend on another variable and isn't changed by any factors an experimenter is trying to measure. The independent variable is denoted by the letter x in an experiment or graph.

  5. Independent vs. Dependent Variables

    The independent variable is the cause. Its value is independent of other variables in your study. The dependent variable is the effect. Its value depends on changes in the independent variable. Example: Independent and dependent variables. You design a study to test whether changes in room temperature have an effect on math test scores.

  6. Experimental Design

    The " variables " are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment. An experiment can have three kinds of variables: i ndependent, dependent, and controlled. The independent variable is one single factor that is changed by the scientist followed by ...

  7. Independent and Dependent Variables: Differences & Examples

    For more than one independent variable, it is multiple regression. ... so they often won't use the word "cause." They also don't set the values of the predictors. Some independent variables are the experiment's focus, while others help keep the experimental results valid. ... We are talking a maximum of around $1,000NZD per child per ...

  8. Independent and Dependent Variables: Which Is Which?

    The dependent variable (sometimes known as the responding variable) is what is being studied and measured in the experiment. It's what changes as a result of the changes to the independent variable. An example of a dependent variable is how tall you are at different ages. The dependent variable (height) depends on the independent variable (age).

  9. Independent Variable Definition and Examples

    Here are some examples of an independent variable. A scientist is testing the effect of light and dark on the behavior of moths by turning a light on and off. The independent variable is the amount of light (cause) and the moth's reaction is the dependent variable (the effect). In a study to determine the effect of temperature on plant ...

  10. Independent and Dependent Variables, Explained With Examples

    Independent and Dependent Variables, Explained With Examples. Written by MasterClass. Last updated: Mar 21, 2022 • 4 min read. In experiments that test cause and effect, two types of variables come into play. One is an independent variable and the other is a dependent variable, and together they play an integral role in research design.

  11. Difference Between Independent and Dependent Variables

    The independent variable is the one you control, while the dependent variable depends on the independent variable and is the one you measure. The independent and dependent variables are the two main types of variables in a science experiment. A variable is anything you can observe, measure, and record. This includes measurements, colors, sounds ...

  12. Types of Variables in Research & Statistics

    Parts of the experiment: Independent vs dependent variables. Experiments are usually designed to find out what effect one variable has on another - in our example, the effect of salt addition on plant growth.. You manipulate the independent variable (the one you think might be the cause) and then measure the dependent variable (the one you think might be the effect) to find out what this ...

  13. PDF Variables in Your Science Fair Project

    A variable is any factor, trait, or condition that can exist in differing amounts or types. An experiment usually has three kinds of variables: independent, dependent, and controlled. The independent variable is the one that is changed by the scientist. To insure a fair test, a good experiment has only one independent variable.

  14. What are Variables?

    A properly designed experiment usually has three kinds of variables: independent, dependent, and controlled. What is an Independent Variable? The independent variable is the one that is changed by the scientist. Why just one? Well, if you changed more than one variable it would be hard to figure out which change is causing what you observe.

  15. Independent Variables (Definition + 43 Examples)

    Independent Variable The star of our story, the independent variable, is the one that researchers change or control to study its effects. It's like a chef experimenting with different spices to see how each one alters the taste of the soup. The independent variable is the catalyst, the initial spark that sets the wheels of research in motion.

  16. The Scientific Method/Independent and Dependent Variables

    When formulating a hypothesis in the context of a controlled experiment, it will typically take the form a prediction of how changing one variable effects another, bring a variable any aspect, or collection, open to measurable change. The variable (s) that you alter intentionally in function of the experiment are called independent variables ...

  17. Q: Why is it best to only have one independent variable in an experiment?

    Flexi Says: Having only one independent variable, meaning changing only one factor at a time, makes measurements and interpretation of the data much clearer. If two variables are tested at a time, it is difficult to tell which of the two variables is responsible for the result.

  18. 3 Simple Ways to Identify Dependent and Independent Variables

    Download Article. 1. Create a graph with x and y-axes. Draw a vertical line, which is the y-axis. Then make the x-axis, or a horizontal line that goes from the bottom of the y-axis to the right. The y-axis represents a dependent variable, while the x-axis represents an independent variable. [11]

  19. What Are Levels of an Independent Variable?

    In this example, the independent variable is Studying Technique and it has three levels: Technique 1. Technique 2. Technique 3. In other words, there are the three experimental conditions that the students can potentially be exposed to. The dependent variable in this example is Exam Score, which is "dependent" on the studying technique used ...

  20. 8.2 Multiple Independent Variables

    Overview. By far the most common approach to including multiple independent variables in an experiment is the factorial design. In a factorial design, each level of one independent variable (which can also be called a factor) is combined with each level of the others to produce all possible combinations.Each combination, then, becomes a condition in the experiment.

  21. Can I include more than one independent or dependent variable ...

    In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth: The independent variable is the amount of nutrients added to the crop field. The dependent variable is the biomass of the crops at harvest time.

  22. Design of Experiments with Multiple Independent Variables: A Resource

    The individual experiments approach requires conducting a two-condition experiment for each independent variable, that is, k separate experiments. In the example this would require conducting three different experiments, involving a total of six experimental conditions. ... Another possible scenario is one in which per-condition overhead costs ...