• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

122 The Best Genetics Research Topics For Projects

genetics research topics

The study of genetics takes place across different levels of the education system in academic facilities all around the world. It is an academic discipline that seeks to explain the mechanism of heredity and genes in living organisms. First discovered back in the 1850s, the study of genetics has come a pretty long way, and it plays such an immense role in our everyday lives. Therefore, when you are assigned a genetics research paper, you should pick a topic that is not only interesting to you but one that you understand well.

Choosing Research Topics in Genetics

Even for the most knowledgeable person in the room, choosing a genetics topic for research papers can be, at times, a hectic experience. So we put together a list of some of the most exciting top in genetics to make the endeavor easier for you. However, note, while all the topics we’ve listed below will enable you to write a unique genetic project, remember what you choose can make or break your paper. So again, select a topic that you are both interested and knowledgeable on, and that has plenty of research materials to use. Without further ado, check out the topics below.

Interesting Genetics Topics for your Next Research Paper

  • Genes and DNA: write a beginners’ guide to genetics and its applications
  • Factors that contribute or/and cause genetic mutations
  • Genetics and obesity, what do you need to know?
  • Describe RNA information
  • Is there a possibility of the genetic code being confidential?
  • Are there any living cells present in the gene?
  • Cancer and genetics
  • Describe the role of genetics in the fight against Alzheimer’s disease
  • What is the gene
  • Is there a link between genetics and Parkinson’s disease? Explain your answer.
  • Replacement of genes and artificial chromosomes
  • Explain genetic grounds for obesity
  • Development and disease; how can genetics dissect the developing process
  • Analyzing gene expression – RNA
  • Gene interaction; eye development
  • Advances and developments in nanotechnology to enable therapeutic methods for the treatment of HIV and AIDS.
  • Isolating and identifying the cancer treatment activity of special organic metal compounds.
  • Analyzing the characteristics in certain human genes that can withstand heavy metals.
  • A detailed analysis of genotypes that is both sensitive and able to endure heavy metals.
  • Isolating special growth-inducing bacteria that can assist crops during heavy metal damage and identifying lipid directing molecules for escalating heavy metal endurance in plants.

Hot and Controversial Topics in Genetics

  • Is there a link between genetics and homosexuality? Explain your answer
  • Is it ethical and morally upright to grow human organs
  • Can DNA changes beat aging
  • The history and development of human cloning science
  • How addictive substances alter our genes
  • Are genetically modified foods safe for human and animal consumption?
  • Is depression a genetically based condition?
  • Genetic diagnosis of the fetus
  • Genetic analysis of the DNA structure
  • What impact does cloning have on future generations?
  • What is the link between genetics and autism?
  • Can artificial insemination have any sort of genetic impact on a person?
  • The advancements in genetic research and the bioethics that come with them.
  • Is human organ farming a possibility today?
  • Can genetics allow us to design and build a human to our specifications?
  • Is it ethical to try and tamper with human genetics in any way?

Molecular Genetics Topics

  • Molecular techniques: How to analyze DNA(including genomes), RNA as well as proteins
  • Stem cells describe their potential and shortcomings
  • Describe molecular and genome evolution
  • Describe DNA as the agent of heredity
  • Explain the power of targeted mutagenesis
  • Bacteria as a genetic system
  • Explain how genetic factors increase cancer susceptibility
  • Outline and describe recent advances in molecular cancer genetics
  • Does our DNA sequencing have space for more?
  • Terminal illness and DNA.
  • Does our DNA determine our body structure?
  • What more can we possibly discover about DNA?

Genetic Engineering Topics

  • Define gene editing, and outline key gene-editing technologies, explaining their impact on genetic engineering
  • The essential role the human microbiome plays in preventing diseases
  • The principles of genetic engineering
  • Project on different types of cloning
  • What is whole genome sequencing
  • Explain existing studies on DNA-modified organisms
  • How cloning can impact medicine
  • Does our genetics hold the key to disease prevention?
  • Can our genetics make us resistant to certain bacteria and viruses?
  • Why our genetics plays a role in chronic degenerative diseases.
  • Is it possible to create an organism in a controlled environment with genetic engineering?
  • Would cloning lead to new advancements in genetic research?
  • Is there a possibility to enhance human DNA?
  • Why do we share DNA with so many other animals on the planet?
  • Is our DNA still evolving or have reached our biological limit?
  • Can human DNA be manipulated on a molecular or atomic level?
  • Do we know everything there is to know about our DNA, or is there more?

Controversial Human Genetic Topics

  • Who owns the rights to the human genome
  • Is it legal for parents to order genetically perfect children
  • is genetic testing necessary
  • What is your stand on artificial insemination vs. ordinary pregnancy
  • Do biotech companies have the right to patent human genes
  • Define the scope of the accuracy of genetic testing
  • Perks of human genetic engineering
  • Write about gene replacement and its relationship to artificial chromosomes.
  • Analyzing DNA and cloning
  • DNA isolation and nanotechnology methods to achieve it.
  • Genotyping of African citizens.
  • Greatly mutating Y-STRs and the isolated study of their genetic variation.
  • The analytical finding of indels and their genetic diversity.

DNA Research Paper Topics

The role and research of DNA are so impactful today that it has a significant effect on our daily lives today. From health care to medication and ethics, over the last few decades, our knowledge of DNA has experienced a lot of growth. A lot has been discovered from the research of DNA and genetics.

Therefore, writing a good research paper on DNA is quite the task today. Choosing the right topic can make things a lot easier and interesting for writing your paper. Also, make sure that you have reliable resources before you begin with your paper.

  • Can we possibly identify and extract dinosaur DNA?
  • Is the possibility of cloning just around the corner?
  • Is there a connection between the way we behave and our genetic sequence?
  • DNA research and the environment we live in.
  • Does our DNA sequencing have something to do with our allergies?
  • The connection between hereditary diseases and our DNA.
  • The new perspectives and complications that DNA can give us.
  • Is DNA the reason all don’t have similar looks?
  • How complex human DNA is.
  • Is there any sort of connection between our DNA and cancer susceptibility and resistance?
  • What components of our DNA affect our decision-making and personality?
  • Is it possible to create DNA from scratch under the right conditions?
  • Why is carbon such a big factor in DNA composition?
  • Why is RNA something to consider in viral research and its impact on human DNA?
  • Can we detect defects in a person’s DNA before they are born?

Genetics Topics For Presentation

The subject of genetics can be quite broad and complex. However, choosing a topic that you are familiar with and is unique can be beneficial to your presentation. Genetics plays an important part in biology and has an effect on everyone, from our personal lives to our professional careers.

Below are some topics you can use to set up a great genetics presentation. It helps to pick a topic that you find engaging and have a good understanding of. This helps by making your presentation clear and concise.

  • Can we create an artificial gene that’s made up of synthetic chromosomes?
  • Is cloning the next step in genetic research and engineering?
  • The complexity and significance of genetic mutation.
  • The unlimited potential and advantages of human genetics.
  • What can the analysis of an individual’s DNA tell us about their genetics?
  • Is it necessary to conduct any form of genetic testing?
  • Is it ethical to possibly own a patent to patent genes?
  • How accurate are the results of a genetics test?
  • Can hereditary conditions be isolated and eliminated with genetic research?
  • Can genetically modified food have an impact on our genetics?
  • Can genetics have a role to play in an individual’s sexuality?
  • The advantages of further genetic research.
  • The pros and cons of genetic engineering.
  • The genetic impact of terminal and neurological diseases.

Biotechnology Topics For Research Papers

As we all know, the combination of biology and technology is a great subject. Biotechnology still offers many opportunities for eager minds to make innovations. Biotechnology has a significant role in the development of modern technology.

Below you can find some interesting topics to use in your next biotechnology research paper. Make sure that your sources are reliable and engage both you and the reader.

  • Settlements that promote sustainable energy technology maintenance.
  • Producing ethanol through molasses emission treatment.
  • Evapotranspiration and its different processes.
  • Circular biotechnology and its widespread framework.
  • Understanding the genes responsible for flora response to harsh conditions.
  • Molecule signaling in plants responding to dehydration and increased sodium.
  • The genetic improvement of plant capabilities in major crop yielding.
  • Pharmacogenomics on cancer treatment medication.
  • Pharmacogenomics on hypertension treating medication.
  • The uses of nanotechnology in genotyping.
  • How we can quickly detect and identify food-connected pathogens using molecular-based technology.
  • The impact of processing technology both new and traditional on bacteria cultures linked to Aspalathus linearis.
  • A detailed analysis of adequate and renewable sorghum sources for bioethanol manufacturing in South Africa.
  • A detailed analysis of cancer treatment agents represented as special quinone compounds.
  • Understanding the targeted administering of embelin to cancerous cells.

Tips for Writing an Interesting Genetics Research Paper

All the genetics research topics above are excellent, and if utilized well, could help you come up with a killer research paper. However, a good genetics research paper goes beyond the topic. Therefore, besides choosing a topic, you are most interested in, and one with sufficient research materials ensure you

Fully Understand the Research Paper Format

You may write on the most interesting genetics topics and have a well-thought-out set of ideas, but if your work is not arranged in an engaging and readable manner, your professor is likely to dismiss it, without looking at what you’ve written. That is the last thing you need as a person seeking to score excellent grades. Therefore, before you even put pen to paper, understand what research format is required.

Keep in mind that part of understanding the paper’s format is knowing what words to use and not to use. You can contact our trustful masters to get qualified assistance.

Research Thoroughly and Create an Outline

Whichever genetics research paper topics you decide to go with, the key to having excellent results is appropriately researching it. Therefore, embark on a journey to understand your genetics research paper topic by thoroughly studying it using resources from your school’s library and the internet.

Ensure you create an outline so that you can note all the useful genetic project ideas down. A research paper outline will help ensure that you don’t forget even one important point. It also enables you to organize your thoughts. That way, writing them down in the actual genetics research paper becomes smooth sailing. In other words, a genetics project outline is more like a sketch of the paper.

Other than the outline, it pays to have an excellent research strategy. In other words, instead of looking for information on any random source you come across, it would be wise to have a step-by-step process of looking for the research information.

For instance, you could start by reading your notes to see what they have to say about the topic you’ve chosen. Next, visit your school’s library, go through any books related to your genetics research paper topic to see whether the information on your notes is correct and for additional information on the topic. Note, you can visit the library either physically or via your school’s website. Lastly, browse educational sites such as Google Scholar, for additional information. This way, you’ll start your work with a bunch of excellent genetics project ideas, and at the same time, you’ll have enjoyed every step of the research process.

Get Down to Work

Now turn the genetics project ideas on your outline into a genetics research paper full of useful and factual information.

There is no denying writing a genetics research paper is one of the hardest parts of your studies. But with the above genetics topics and writing tips to guide you, it should be a tad easier. Good luck!

Leave a Reply Cancel reply

132 Genetic Engineering Essay Topic Ideas & Examples

Welcome to our list of genetic engineering essay topics! Here, you will find everything from trending research titles to the most interesting genetic engineering topics for presentation. Get inspired with our writing ideas and bonus samples!

🔝 Top 10 Genetic Engineering Topics for 2024

🏆 best genetic engineering topic ideas & essay examples, ⭐ good genetic engineering research topics, 👍 simple & easy genetic engineering essay topics, ❓ genetic engineering discussion questions, 🔎 genetic engineering research topics, ✅ genetic engineering project ideas.

  • Ethical Issues of Synthetic Biology
  • CRISPR-Cas9 and Its Applications
  • Progress and Challenges in Gene Therapy
  • Applications of Gene Editing in Animals
  • The Process of Genetic Engineering in Plants
  • Genetic Engineering for Human Enhancement
  • Genetic Engineering for Improving Crop Yield
  • Regulatory Issues of Genetic Editing of Embryos
  • Gene Silencing in Humans through RNA Interference
  • Gene Drive Technology for Controlling Invasive Species
  • The Ethical Issues of Genetic Engineering Many people have questioned the health risks that arise from genetically modified crops, thus it is the politicians who have to ensure that the interests of the people are met and their safety is assured. […]
  • Future of Genetic Engineering and the Concept of “Franken-Foods” This is not limited to cows alone but extends to pigs, sheep, and poultry, the justification for the development of genetically modified food is based on the need to feed an ever growing population which […]
  • The Film “Gattaca” and Genetic Engineering In the film, it is convincing that in the near future, science and technology at the back of genetic engineering shall be developed up to the level which makes the film a reality.
  • Gattaca: Ethical Issues of Genetic Engineering Although the world he lives in has determined that the only measure of a man is his genetic profile, Vincent discovers another element of man that science and society have forgotten.
  • The Dangers of Genetic Engineering and the Issue of Human Genes’ Modification In this case, the ethics of human cloning and human genes’ alteration are at the center of the most heated debates. The first reason to oppose the idea of manipulation of human genes lies in […]
  • Changing the world: Genetic Engineering Effects Genes used in genetic engineering have a high impact on health and disease, therefore the inclusion of the genetic process alters the genes that influence human behavior and traits.
  • Human Genetic Engineering: Key Principles and Issues There are many options for the development of events in the field of genetic engineering, and not all of them have been studied. To conclude, human genetic engineering is one of the major medical breakthroughs, […]
  • Mitochondrial Diseases Treatment Through Genetic Engineering Any disorders and abnormalities in the development of mitochondrial genetic information can lead to the dysfunction of these organelles, which in turn affects the efficiency of intracellular ATP production during the process of cellular respiration.
  • Genetic Engineering: Is It Ethical to Manipulate Life? In the case of more complex operations, genetic engineering can edit existing genes to turn on or off the synthesis of a particular protein in the organism from which the gene was taken.
  • Biotechnology and Genetic Engineering Apart from that, there are some experiments that cannot be ethically justified, at least in my opinion, for example, the cloning of human being or the attempts to find the gene for genius.
  • Genetic Engineering in the Movie “Gattaca” by Niccol This would not be right at all since a person should be responsible for their own life and not have it dictated to them as a result of a societal construct created on the basis […]
  • Religious vs Scientific Views on Genetic Engineering With the need to increase the global economy, the field of agriculture is one among the many that have been used to improve the commercial production to take care of the global needs for food […]
  • Genetic Engineering Using a Pglo Plasmid The objective of this experiment is to understand the process and importance of the genetic transformation of bacteria in real time with the aid of extrachromosomal DNA, alternatively referred to as plasmids.
  • Managing Diabetes Through Genetic Engineering Genetic engineering refers to the alteration of genetic make-up of an organism through the use of techniques to introduce a new DNA or eliminate a given hereditable material. What is the role of genetic engineering […]
  • The Role of Plant Genetic Engineering in Global Security Although it can be conveniently stated that the adequacy, abundance and reliability of the global food supply has a major role to play in the enhancement of human life, in the long run, they influence […]
  • Significance of Human Genetic Engineering The gene alteration strategy enables replacing the specific unwanted genes with the new ones, which are more resistant and freer of the particular ailment, hence an essential assurance of a healthy generation in the future.
  • Is the World Ready for Genetic Engineering? The process of manipulating genes has brought scientists to important discoveries, among which is the technology of the production of new kinds of crops and plants with selected characteristics. The problem of the advantages and […]
  • Genome: Bioethics and Genetic Engineering Additionally, towards the end of the documentary, the narrator and some of the interviewed individuals explain the problem of anonymity that is also related to genetic manipulations.
  • Is Genetic Engineering an Environmentally Sound Way to Increase Food Production? According to Thomas & Earl and Barry, genetic engineering is environmentally unsound method of increasing food production because it threatens the indigenous species.
  • A Major Milestone in the Field of Science and Technology: Should Genetic Engineering Be Allowed? The most controversial and complicated aspect of this expertise is Human Genetic Engineering- whereby the genotype of a fetus can be altered to produce desired results.
  • Genetic Engineering Is Ethically Unacceptable However, the current application of genetic engineering is in the field of medicine particularly to treat various genetic conditions. However, this method of treatment has various consequences to the individual and the society in general.
  • Designer Genes: Different Types and Use of Genetic Engineering McKibben speaks of Somatic Gene Therapy as it is used to modify the gene and cell structure of human beings so that the cells are able to produce certain chemicals that would help the body […]
  • A Technique for Controlling Plant Characteristics: Genetic Engineering in the Agriculture A cautious investigation of genetic engineering is required to make sure it is safe for humans and the environment. The benefit credited to genetic manipulation is influenced through the utilization of herbicide-tolerant and pest-safe traits.
  • Genetically Engineered Food Against World Hunger I support the production of GMFs in large quality; I hold the opinion that they can offer a lasting solution to food problems facing the world.
  • Genetic Engineering in Food: Development and Risks Genetic engineering refers to the manipulation of the gene composition of organisms, to come up with organisms, which have different characteristics from the organic ones.
  • Genetic Engineering in the Workplace The main purpose of the paper is to evaluate and critically discuss the ethical concerns regarding the implementation of genetic testing in the workplace and to provide potential resolutions to the dilemmas.
  • Designer Babies Creation in Genetic Engineering The creation of designer babies is an outcome of advancements in technology hence the debate should be on the extent to which technology can be applied in changing the way human beings live and the […]
  • Genetic Engineering and Eugenics Comparison The main idea in genetic engineering is to manipulate the genetic make-up of human beings in order to shackle their inferior traits. The concept of socially independent reproduction is replicated in both eugenics and genetic […]
  • Ecological Effects of the Release of Genetically Engineered Organisms Beneficial soil organisms such as earthworms, mites, nematodes, woodlice among others are some of the soil living organisms that are adversely affected by introduction of genetically engineered organisms in the ecosystem since they introduce toxins […]
  • Proposition 37 and Genetically Engineered Foods The discussion of Proposition 37 by the public is based on the obvious gap between the “law on the books” and the “law in action” because Food Safety Law which is associated with the Proposition […]
  • Is Genetically Engineered Food the Solution to the World’s Hunger Problems? However, the acceptance of GMO’s as the solution to the world’s food problem is not unanimously and there is still a multitude of opposition and suspicion of their use.
  • Benefits of Genetic Engineering as a Huge Part of People’s Lives Genetic Engineering is said to question whether man has the right to manipulate the course and laws of nature and thus is in constant collision with religion and the beliefs held by it regarding life.
  • Perfect Society: The Effects of Human Genetic Engineering
  • Genetic Engineering and Forensic Criminal Investigations
  • Biotechnology Assignment and Genetic Engineering
  • Genetic Engineering and Genetically Modified Organisms
  • Bio-Ethics and the Controversy of Genetic Engineering
  • Health and Environmental Risks of Genetic Engineering in Food
  • Genetic Engineering and the Risks of Enforcing Changes on Organisms
  • Genetic Engineering and How It Affects Globel Warming
  • Cloning and Genetic Engineering in the Food Animal Industry
  • Genetic Engineering and Its Impact on Society
  • Embryonic Research, Genetic Engineering, & Cloning
  • Genetic Engineering: Associated Risks and Possibilities
  • Issues Concerning Genetic Engineering in Food Production
  • Genetic Engineering, DNA Fingerprinting, Gene Therapy
  • Cloning: The Benefits and Dangers of Genetic Engineering
  • Genetic Engineering, History, and Future: Altering the Face of Science
  • Islamic and Catholic Views on Genetic Engineering
  • Gene Therapy and Genetic Engineering: Should It Be Approved in the US
  • Exploring the Real Benefits of Genetic Engineering in the Modern World
  • Genetic Engineering and Food Security: A Welfare Economics Perspective
  • Identify the Potential Impact of Genetic Engineering on the Future Course of Human Immunodeficiency Virus
  • Genetic Engineering and DNA Technology in Agricultural Productivity
  • Human Genetic Engineering: Designing the Future
  • Genetic Engineering and the Politics Behind It
  • The Potential and Consequences of Genetic Engineering
  • Genetic Engineering and Its Effect on Human Health
  • The Moral and Ethical Controversies, Benefits, and Future of Genetic Engineering
  • Gene Therapy and Genetic Engineering for Curing Disorders
  • Genetic Engineering and the Human Genome Project
  • Ethical Standards for Genetic Engineering
  • Genetic Engineering and Cryonic Freezing: A Modern Frankenstein
  • The Perfect Child: Genetic Engineering
  • Genetic Engineering and Its Effects on Future Generations
  • Agricultural Genetic Engineering: Genetically Modified Foods
  • Genetic Engineering: The Manipulation or Alteration of the Genetic Structure of a Single Cell or Organism
  • Analysing Genetic Engineering Regarding Plato Philosophy
  • The Dangers and Benefits of Human Cloning and Genetic Engineering
  • Genetic Engineering: Arguments of Both Proponents and Opponents and a Mediated Solution
  • Genetic and How Genetic Engineering Is Diffusing Individualism
  • Finding Genetic Harmony With Genetic Engineering
  • What Is Genetic Engineering?
  • Do You Think Genetically Modified Food Could Harm the Ecosystems of the Areas in Which They Grow?
  • How Agricultural Research Systems Shape a Technological Regime That Develops Genetic Engineering?
  • Can Genetic Engineering for the Poor Pay Off?
  • How Does Genetic Engineering Affect Agriculture?
  • Do You Think It’s Essential to Modify Genes to Create New Medicines?
  • How Can Genetic Engineering Stop Human Suffering?
  • Can Genetic Engineering Cure HIV/AIDS in Humans?
  • How Has Genetic Engineering Revolutionized Science and the World?
  • Do You Think Genetic Engineering Is Playing God and That We Should Leave Life as It Was Created?
  • What Are Some Advantages and Disadvantages of Genetic Engineering?
  • How Will Genetic Engineering Affect the Human Race?
  • When Does Genetic Engineering Go Bad?
  • What Are the Benefits of Human Genetic Engineering?
  • Does Genetic Engineering Affect the Entire World?
  • How Does the Christian Faith Contend With Genetic Engineering?
  • What Are the Ethical and Social Implications of Genetic Engineering?
  • How Will Genetic Engineering Impact Our Lives?
  • Why Should Genetic Engineering Be Extended?
  • Will Genetic Engineering Permanently Change Our Society?
  • What Are People Worried About Who Oppose Genetic Engineering?
  • Do You Worry About Eating GM (Genetically Modified) Food?
  • What Do You Think of the Idea of Genetically Engineering New Bodily Organs to Replace Yours When You Are Old?
  • Should Genetic Engineering Go Ahead to Eliminate Human Flaws, Such as Violence, Jealousy, Hate, Etc?
  • Does the Government Have the Right to Limit How Far We Modify Ourselves?
  • Why Is Genetic Food Not Well Accepted?
  • What Is the Best in the Genetic Modification of Plants, Plant Cell, or Chloroplasts and Why?
  • How Do You Feel About Human Gene Editing?
  • Does Climate Change Make the Genetic Engineering of Crops Inevitable?
  • What Do You Think About Plant Genetic Modification?
  • Gene Drives and Pest Control
  • The Benefits of Genetically Modified Organisms
  • Challenges of Gene Editing for Rare Genetic Diseases
  • The Use of Genetic Engineering to Treat Human Diseases
  • Ethical Considerations and Possibilities of Designer Babies
  • How Genetic Engineering Can Help Restore Ecosystems
  • Basic Techniques and Tools for Gene Manipulation
  • Latest Advancements in Genetic Engineering and Genome Editing
  • Will Engineering Resilient Organisms Help Mitigate Climate Change?
  • Creation of Renewable Resources through Genetic Engineering
  • Genetic Engineering Approach to Drought and Pest Resistance
  • Genetic Engineering Use in DNA Analysis and Identification
  • Synthetic Microorganisms and Biofactories for Sustainable Bioproduction
  • Stem Cells’ Potential for Regenerative Medicine
  • The Role of Genetic Modification in Vaccine Development
  • Can Genetic Engineering Help Eradicate Invasive Species Responsibly?
  • Genetic Engineering for Enhancing the Body’s Defense Mechanisms
  • Advancements in Transplantation Medicine and Creating Bioengineered Organs
  • Genetic Editing of Microbes for Environmental Cleanup
  • Is It Possible to Develop Living Detection Systems?
  • Infertility Essay Topics
  • Bioethics Titles
  • Genetics Research Ideas
  • Epigenetics Essay Titles
  • Morality Research Ideas
  • Stem Cell Essay Titles
  • Biochemistry Research Topics
  • Evolution Topics
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, February 26). 132 Genetic Engineering Essay Topic Ideas & Examples. https://ivypanda.com/essays/topic/genetic-engineering-essay-topics/

"132 Genetic Engineering Essay Topic Ideas & Examples." IvyPanda , 26 Feb. 2024, ivypanda.com/essays/topic/genetic-engineering-essay-topics/.

IvyPanda . (2024) '132 Genetic Engineering Essay Topic Ideas & Examples'. 26 February.

IvyPanda . 2024. "132 Genetic Engineering Essay Topic Ideas & Examples." February 26, 2024. https://ivypanda.com/essays/topic/genetic-engineering-essay-topics/.

1. IvyPanda . "132 Genetic Engineering Essay Topic Ideas & Examples." February 26, 2024. https://ivypanda.com/essays/topic/genetic-engineering-essay-topics/.

Bibliography

IvyPanda . "132 Genetic Engineering Essay Topic Ideas & Examples." February 26, 2024. https://ivypanda.com/essays/topic/genetic-engineering-essay-topics/.

Grad Coach

Research Topics & Ideas

Biotechnology and Genetic Engineering

Research topics and ideas about biotechnology and genetic engineering

If you’re just starting out exploring biotechnology-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from recent studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan  to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Research topic idea mega list

Biotechnology Research Topic Ideas

Below you’ll find a list of biotech and genetic engineering-related research topics ideas. These are intentionally broad and generic , so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • Developing CRISPR-Cas9 gene editing techniques for treating inherited blood disorders.
  • The use of biotechnology in developing drought-resistant crop varieties.
  • The role of genetic engineering in enhancing biofuel production efficiency.
  • Investigating the potential of stem cell therapy in regenerative medicine for spinal cord injuries.
  • Developing gene therapy approaches for the treatment of rare genetic diseases.
  • The application of biotechnology in creating biodegradable plastics from plant materials.
  • The use of gene editing to enhance nutritional content in staple crops.
  • Investigating the potential of microbiome engineering in treating gastrointestinal diseases.
  • The role of genetic engineering in vaccine development, with a focus on mRNA vaccines.
  • Biotechnological approaches to combat antibiotic-resistant bacteria.
  • Developing genetically engineered organisms for bioremediation of polluted environments.
  • The use of gene editing to create hypoallergenic food products.
  • Investigating the role of epigenetics in cancer development and therapy.
  • The application of biotechnology in developing rapid diagnostic tools for infectious diseases.
  • Genetic engineering for the production of synthetic spider silk for industrial use.
  • Biotechnological strategies for improving animal health and productivity in agriculture.
  • The use of gene editing in creating organ donor animals compatible with human transplantation.
  • Developing algae-based bioreactors for carbon capture and biofuel production.
  • The role of biotechnology in enhancing the shelf life and quality of fresh produce.
  • Investigating the ethics and social implications of human gene editing technologies.
  • The use of CRISPR technology in creating models for neurodegenerative diseases.
  • Biotechnological approaches for the production of high-value pharmaceutical compounds.
  • The application of genetic engineering in developing pest-resistant crops.
  • Investigating the potential of gene therapy in treating autoimmune diseases.
  • Developing biotechnological methods for producing environmentally friendly dyes.

Research topic evaluator

Biotech & GE Research Topic Ideas (Continued)

  • The use of genetic engineering in enhancing the efficiency of photosynthesis in plants.
  • Biotechnological innovations in creating sustainable aquaculture practices.
  • The role of biotechnology in developing non-invasive prenatal genetic testing methods.
  • Genetic engineering for the development of novel enzymes for industrial applications.
  • Investigating the potential of xenotransplantation in addressing organ donor shortages.
  • The use of biotechnology in creating personalised cancer vaccines.
  • Developing gene editing tools for combating invasive species in ecosystems.
  • Biotechnological strategies for improving the nutritional quality of plant-based proteins.
  • The application of genetic engineering in enhancing the production of renewable energy sources.
  • Investigating the role of biotechnology in creating advanced wound care materials.
  • The use of CRISPR for targeted gene activation in regenerative medicine.
  • Biotechnological approaches to enhancing the sensory qualities of plant-based meat alternatives.
  • Genetic engineering for improving the efficiency of water use in agriculture.
  • The role of biotechnology in developing treatments for rare metabolic disorders.
  • Investigating the use of gene therapy in age-related macular degeneration.
  • The application of genetic engineering in developing allergen-free nuts.
  • Biotechnological innovations in the production of sustainable and eco-friendly textiles.
  • The use of gene editing in studying and treating sleep disorders.
  • Developing biotechnological solutions for the management of plastic waste.
  • The role of genetic engineering in enhancing the production of essential vitamins in crops.
  • Biotechnological approaches to the treatment of chronic pain conditions.
  • The use of gene therapy in treating muscular dystrophy.
  • Investigating the potential of biotechnology in reversing environmental degradation.
  • The application of genetic engineering in improving the shelf life of vaccines.
  • Biotechnological strategies for enhancing the efficiency of mineral extraction in mining.

Recent Biotech & GE-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic in biotech, they are fairly generic and non-specific. So, it helps to look at actual studies in the biotech space to see how this all comes together in practice.

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Genetic modifications associated with sustainability aspects for sustainable developments (Sharma et al., 2022)
  • Review On: Impact of Genetic Engineering in Biotic Stresses Resistance Crop Breeding (Abebe & Tafa, 2022)
  • Biorisk assessment of genetic engineering — lessons learned from teaching interdisciplinary courses on responsible conduct in the life sciences (Himmel et al., 2022)
  • Genetic Engineering Technologies for Improving Crop Yield and Quality (Ye et al., 2022)
  • Legal Aspects of Genetically Modified Food Product Safety for Health in Indonesia (Khamdi, 2022)
  • Innovative Teaching Practice and Exploration of Genetic Engineering Experiment (Jebur, 2022)
  • Efficient Bacterial Genome Engineering throughout the Central Dogma Using the Dual-Selection Marker tetAOPT (Bayer et al., 2022)
  • Gene engineering: its positive and negative effects (Makrushina & Klitsenko, 2022)
  • Advances of genetic engineering in streptococci and enterococci (Kurushima & Tomita, 2022)
  • Genetic Engineering of Immune Evasive Stem Cell-Derived Islets (Sackett et al., 2022)
  • Establishment of High-Efficiency Screening System for Gene Deletion in Fusarium venenatum TB01 (Tong et al., 2022)
  • Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops (Tanwar et al., 2022)
  • Genetic research: legal and ethical aspects (Rustambekov et al., 2023). Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts (Thagun et al., 2022)
  • The role of genetic breeding in food security: A review (Sam et al., 2022). Biotechnology: use of available carbon sources on the planet to generate alternatives energy (Junior et al., 2022)
  • Biotechnology and biodiversity for the sustainable development of our society (Jaime, 2023) Role Of Biotechnology in Agriculture (Shringarpure, 2022)
  • Plants That Can be Used as Plant-Based Edible Vaccines; Current Situation and Recent Developments (İsmail, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Put a stop to deadline pressure, and have your homework done by an expert.

60 Interesting Genetic Engineering Topics for Your Next Research Paper

Genetic Engineering Topics

Genetics engineering is one of the popular areas of study today. The discipline was discovered back in 1850 and seeks to analyze the systems of heredity and genes in different species. Therefore, when your professor gives you assignments prompts, it is important to start by picking the right genetics topics for research papers.

However, many students find selecting the best genetics project ideas difficult. So, if you find yourself staring at a blank page for hours, you are not alone. But we are here to help!

To get you started on the right path, we have listed 60 hot genetic engineering topics for your research paper. Furthermore, we have provided you with pro tips for crafting A-rated research papers.

The Best Molecular Genetics Topic Ideas

  • Stem cells: What are their potential and shortcomings?
  • A closer look at the genome evolution.
  • The molecular techniques of analyzing DNA and RNA.
  • Evaluating the power of mutagenesis.
  • DNA as an agent of heredity: A comprehensive analysis.
  • Bacteria and genetics.
  • Genetics: How does it increase the risk of cancer?
  • Contemporary issues in genetic engineering public policy.
  • Molecular cancer genetics: What are the latest advances?

Interesting Genetics Topics

  • What are the main applications of genetics today?
  • Discuss the main causes of genetic mutations.
  • What is the link between genetics and obesity?
  • RNA information.
  • Do we have living cells in genes? Explain.
  • Explain the role of genetics in the fight against Alhzeimer’s disease.
  • An evaluation of genes replacement with artificial chromosomes.
  • Genetics and depression: Are they linked?
  • What are the impacts of genetics on future generations?
  • What is the link between Parkinson’s disease and genetics?
  • Can DNA changes help to beat aging?
  • Discuss the morality of growing human organs.
  • Genetics and homosexuality: Are they linked?
  • A closer look at the history of human cloning.
  • How do addictive substances impact our genes?

Top Genetics Topics for Presentation

  • Should genetic engineering be legalized?
  • What are the principles of genetic engineering?
  • Analyzing the impact of cloning on modern medicine.
  • A review of the latest studies on genetically modified organisms.
  • Do we really need genetics testing?
  • Artificial inseminations vs normal conception: What are your thoughts?
  • Should parents be allowed to order genetically perfect children?
  • A close look at the accuracy in genetic engineering.
  • Should biotech firms be allowed to patent human genes?
  • What are the pros and cons of genetic engineering?
  • How does genetic engineering impact our relationships?
  • Genetic engineering and the sale of human organisms.
  • Ethics of genetic engineering: Should we support cloning of dead people?
  • How is genetic engineering presented in the media today?
  • Should researchers be obliged to share the benefits and burden of their work on genetic engineering?

Hot Topics on Genetics Engineering

  • Are genetically modified foods safe for human consumption?
  • Analyzing the philosophical issues of genetic engineering.
  • Should the US government invest in genetic engineering?
  • Impact of social media on genetically modified organisms discussions.
  • Should using genetically modified foods to fight hunger be allowed?
  • Comparing the genetic engineering policies of the US and UK.
  • Cloning pets: Is it ethically right?
  • Does cloning increase or limit biological diversity?
  • The comprehensive analysis of the 2001 George W. Bush speech on cloning.
  • Discuss the five main ethical dilemmas of genetic cloning.
  • Whole-genome sequencing.
  • Evaluating the top three gene-editing technologies.
  • How does human microbiome work in preventing diseases?
  • Genomic hybridization for enhanced fruits production.
  • A closer look at CCR5 Delta 32 Genetic Mutation.
  • The pros and cons of studies on biological dark matter.
  • Biotic mutation for enhanced bone density.
  • Using genetic mutation to eliminate sickle cell anemia.
  • How does IVF help to prevent babies from inheriting genetic defects?
  • Using genetic engineering to address the problem of genetic engineering.
  • What is the future of cloning?

Special Tips for Writing a Great Research Paper

Once you have selected the preferred genetics topic for research papers, your journey to creating an A-rated paper has just started. Here are some useful tips to help you craft the best research paper on genetic engineering.

  • Research on your selected topic comprehensively. This will help you to develop the right research questions and identify key points to discuss on the paper. Make sure to also capture the counter-arguments on the selected topic.
  • Develop a good paper structure. Once you have picked the best research ideas, you need to craft a good structure so that the paper looks coherent and enjoyable to read. The format will help you to know what point to discuss at any part of the paper.
  • Make sure to read other genetic engineering research papers to understand how experts did it. Here, you can borrow the structure and enrich your arguments from the discussions by other scholars.
  • Proofread your work well. Even if you have the best genetics research topics and a good paper, but fail to proofread it well, there is a danger of scoring poor grade. So, make sure to proofread your work well to identify and correct errors, incomplete sentences, and flow. You can ask a professional to proofread and edit your paper , to ensure that your work is mistake-free.

When you are faced with a genetic engineering assignment, it is important to look at it holistically. So, start by identifying the most interesting genetic topics and use a good structure to craft the best paper.

No time to deal with upcoming assignment? Don’t worry – our geeks can help! Enter promo “ mygeek20 ” and get a 20% discount off your next writing assignment!

earth science topics

Get on top of your homework.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Pitchgrade

Presentations made painless

  • Get Premium

102 Genetic Engineering Essay Topic Ideas & Examples

Inside This Article

Genetic engineering is a rapidly advancing field that holds great potential for solving numerous challenges facing humanity today. From developing new medical treatments to improving crop yields, the possibilities are endless. However, with great power comes great responsibility, and genetic engineering also raises ethical and social concerns. If you're looking for essay topics on genetic engineering, here are 102 ideas and examples to get you started.

  • The ethical implications of designer babies
  • The use of genetic engineering in agriculture
  • The potential risks of gene editing in humans
  • The role of genetic engineering in personalized medicine
  • The impact of genetic engineering on biodiversity
  • The future of genetically modified organisms (GMOs)
  • The ethical considerations of editing the human germline
  • The use of genetic engineering in combating genetic diseases
  • The potential for genetic engineering to address food security issues
  • The implications of gene editing in non-human organisms
  • The intersection of genetic engineering and artificial intelligence
  • The role of genetic engineering in environmental conservation
  • The ethical considerations of gene editing in animals
  • The impact of genetic engineering on society
  • The potential for genetic engineering to enhance human performance
  • The use of genetic engineering in forensic science
  • The implications of genetic engineering on human evolution
  • The role of genetic engineering in synthetic biology
  • The ethical considerations of gene editing in sports
  • The potential for genetic engineering to address climate change
  • The impact of genetic engineering on animal welfare
  • The use of genetic engineering in developing new drugs
  • The implications of gene editing in the military
  • The ethical considerations of gene editing in the criminal justice system
  • The potential risks of genetic engineering in warfare
  • The role of genetic engineering in space exploration
  • The impact of genetic engineering on privacy rights
  • The use of genetic engineering in creating biofuels
  • The implications of gene editing in the fashion industry
  • The ethical considerations of gene editing in the entertainment industry
  • The potential for genetic engineering to create new materials
  • The impact of genetic engineering on the economy
  • The role of genetic engineering in education
  • The use of genetic engineering in disaster response
  • The implications of gene editing in the legal system
  • The ethical considerations of gene editing in the arts
  • The potential for genetic engineering to revolutionize transportation
  • The impact of genetic engineering on social justice
  • The role of genetic engineering in urban planning
  • The use of genetic engineering in public health
  • The implications of gene editing in mental health
  • The ethical considerations of gene editing in the workplace
  • The potential for genetic engineering to improve communication technologies
  • The impact of genetic engineering on global politics
  • The role of genetic engineering in international relations
  • The use of genetic engineering in disaster recovery
  • The implications of gene editing in conflict resolution
  • The ethical considerations of gene editing in humanitarian aid
  • The potential for genetic engineering to address human rights issues
  • The impact of genetic engineering on cultural heritage
  • The role of genetic engineering in addressing inequality
  • The use of genetic engineering in promoting diversity
  • The implications of gene editing in promoting peace
  • The ethical considerations of gene editing in promoting democracy
  • The potential for genetic engineering to promote sustainability
  • The impact of genetic engineering on promoting social cohesion
  • The role of genetic engineering in promoting human dignity
  • The use of genetic engineering in promoting human flourishing
  • The implications of gene editing in promoting human rights
  • The ethical considerations of gene editing in promoting social justice
  • The potential for genetic engineering to promote global citizenship
  • The impact of genetic engineering on promoting intercultural understanding
  • The role of genetic engineering in promoting social responsibility
  • The use of genetic engineering in promoting environmental sustainability
  • The implications of gene editing in promoting economic development
  • The ethical considerations of gene editing in promoting human well-being
  • The potential for genetic engineering to promote peacebuilding
  • The impact of genetic engineering on promoting cultural diversity
  • The role of genetic engineering in promoting social inclusion
  • The use of genetic engineering in promoting social cohesion
  • The implications of gene editing in promoting gender equality
  • The ethical considerations of gene editing in promoting social equity
  • The potential for genetic engineering to promote social justice
  • The impact of genetic engineering on promoting environmental justice
  • The role of genetic engineering in promoting global justice
  • The use of genetic engineering in promoting social sustainability
  • The implications of gene editing in promoting economic justice
  • The ethical considerations of gene editing in promoting human dignity
  • The potential for genetic engineering to promote social equity

Want to create a presentation now?

Instantly Create A Deck

Let PitchGrade do this for me

Hassle Free

We will create your text and designs for you. Sit back and relax while we do the work.

Explore More Content

  • Privacy Policy
  • Terms of Service

© 2023 Pitchgrade

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Genes (Basel)

Logo of genes

Principles of Genetic Engineering

Thomas m. lanigan.

1 Biomedical Research Core Facilities, Vector Core, University of Michigan, Ann Arbor, MI 48109, USA; ude.hcimu@tnaginal (T.M.L.); ude.hcimu@hgnohc (H.C.K.)

2 Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA

Huira C. Kopera

3 Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA

Thomas L. Saunders

4 Biomedical Research Core Facilities, Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA

5 Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI 48109, USA

Genetic engineering is the use of molecular biology technology to modify DNA sequence(s) in genomes, using a variety of approaches. For example, homologous recombination can be used to target specific sequences in mouse embryonic stem (ES) cell genomes or other cultured cells, but it is cumbersome, poorly efficient, and relies on drug positive/negative selection in cell culture for success. Other routinely applied methods include random integration of DNA after direct transfection (microinjection), transposon-mediated DNA insertion, or DNA insertion mediated by viral vectors for the production of transgenic mice and rats. Random integration of DNA occurs more frequently than homologous recombination, but has numerous drawbacks, despite its efficiency. The most elegant and effective method is technology based on guided endonucleases, because these can target specific DNA sequences. Since the advent of clustered regularly interspaced short palindromic repeats or CRISPR/Cas9 technology, endonuclease-mediated gene targeting has become the most widely applied method to engineer genomes, supplanting the use of zinc finger nucleases, transcription activator-like effector nucleases, and meganucleases. Future improvements in CRISPR/Cas9 gene editing may be achieved by increasing the efficiency of homology-directed repair. Here, we describe principles of genetic engineering and detail: (1) how common elements of current technologies include the need for a chromosome break to occur, (2) the use of specific and sensitive genotyping assays to detect altered genomes, and (3) delivery modalities that impact characterization of gene modifications. In summary, while some principles of genetic engineering remain steadfast, others change as technologies are ever-evolving and continue to revolutionize research in many fields.

1. Introduction

Since the identification of DNA as the unit of heredity and the basis for the central dogma of molecular biology [ 1 ] that DNA makes RNA and RNA makes proteins, scientists have pursued experiments and methods to understand how DNA controls heredity. With the discovery of molecular biology tools such as restriction enzymes, DNA sequencing, and DNA cloning, scientists quickly turned to experiments to change chromosomal DNA in cells and animals. In that regard, initial experiments that involved the co-incubation of viral DNA with cultured cell lines progressed to the use of selectable markers in plasmids. Delivery methods for random DNA integration have progressed from transfection by physical co-incubation of DNA with cultured cells, to electroporation and microinjection of cultured cells [ 2 , 3 , 4 ]. Moreover, the use of viruses to deliver DNA to cultured cells has progressed in tandem with physical methods of supplying DNA to cells [ 5 , 6 , 7 ]. Homologous recombination in animal cells [ 8 ] was rapidly exploited by the mouse genetics research community for the production of gene-modified mouse ES cells, and thus gene-modified whole animals [ 9 , 10 ].

This impetus to understand gene function in intact animals was ultimately manifested in the international knockout mouse project, the purpose of which was to knock out every gene in the mouse genome, such that researchers could choose to make knockout mouse models from a library of gene-targeted knockout ES cells [ 11 , 12 , 13 ]. Thousands of mouse models have resulted from that effort and have been used to better understand gene function and the bases of human genetic diseases [ 14 ]. This project required high-throughput pipelines for the construction of vectors, including bacterial artificial chromosome (BAC) recombineering technology [ 13 , 15 , 16 , 17 ]. BACs contain long segments of cloned genomic DNA. For example, the C57BL/6J mouse BAC library, RPCI-23, has an average insert size of 197 kb of genomic DNA per clone [ 18 ]. Because of their size, BACs often carry all of the genetic regulatory elements to faithfully recapitulate the expression of genes contained in them, and thus can be used to generate BAC transgenic mice [ 19 , 20 ]. Recombineering can be used to insert reporters in BACs that are then used to generate transgenic mice to accurately label cells and tissues according to the genes in the BACs [ 21 , 22 , 23 , 24 , 25 , 26 ]. A panoply of approaches to genetic engineering are available for researchers to manipulate the genome. ES cell and BAC transgene engineering have given way to directly editing genes in zygotes, consequently avoiding the need for ES cell or BAC intermediates on the way to an animal model.

Prior to the adaptation of Streptococcus pyogenes Cas9 protein to cause chromosome breaks, three other endonuclease systems were used: (1) rare-cutting meganucleases, (2) zinc finger nucleases (ZFNs), and (3) transcription activator-like effector (TALE) nucleases (TALENs) [ 27 ]. The I-CreI meganuclease recognizes a 22 bp DNA sequence [ 28 , 29 ]. Proof-of-concept experiments demonstrated that the engineered homing endonuclease I-CreI can be used to generate transgenic mice and transgenic rats [ 30 ]. I-CreI specificity can be adjusted to target specific sequences in DNA by protein engineering methodology, although this limits its widespread application to genetic engineering [ 31 ]. Subsequently, ZFN technology was developed to cause chromosome breaks [ 32 ]. A single zinc finger is made up of 30 amino acids that bind three base pairs. Thus, three zinc fingers can be combined to specifically recognize nine base pairs on one DNA strand and a triplet of zinc fingers is made to bind nine base pairs on the opposite strand. Each zinc finger is fused to the DNA-cutting domain of the FokI restriction endonuclease. Because FokI domains only cut DNA when they are present as dimers, a ZFN monomer binding to a chromosome cannot induce a DNA break [ 32 ], instead requiring ZFN heterodimers for sequence-specific chromosome breaks. It is estimated that 1 in every 500 genomic base pairs can be cleaved by ZNFs [ 33 ]. Compared with meganucleases, ZFNs are easier to construct because of publicly available resources [ 34 ]. Additionally, the value of ZFNs in mouse and rat genome engineering was demonstrated in several studies that produced knockout, knockin, and floxed (described below) animal models [ 35 , 36 , 37 ]. The development of transcription activator-like effector nucleases (TALENs) followed after ZFN technology [ 38 ]. TALENs are made up of tandem repeats of 34 amino acids. The central amino acids at positions 12 and 13, named repeat variable di-residues (NVDs), determine the base to which the repeat will bind [ 38 ]. To achieve a specific chromosomal break, 15 TALE repeats assembled and fused to the FokI endonuclease domain (TALEN monomer) are required. Thus, one TALEN monomer binds to 15 base pairs on one DNA strand, and a second TALEN monomer binds to bases on the opposite strand [ 38 ]. When the FokI endonuclease domains are brought together, a double-stranded DNA break occurs. In this way, a TALEN heterodimer can be used to cause a sequence-specific chromosome break. It has been estimated that, within the entire genome, TALENs have potential target cleavage sites every 35 bp [ 39 ]. Compared with ZFNs, TALENs are easier to construct with publicly available resources [ 40 , 41 ], and TALENs have been adopted for use in mouse and rat genome engineering in several laboratories that have produced knockout and knockin animal models [ 42 , 43 , 44 , 45 , 46 ].

The efficiencies of producing specific double-strand chromosome breaks, using prior technologies such as meganucleases, ZFNs, and TALENs [ 28 , 32 , 38 ], were surpassed when CRISPR/Cas9 technology was shown to be effective in mammalian cells [ 47 , 48 , 49 ]. The essential feature that all of these technologies have in common is the production of a chromosome break at a specific location to facilitate genetic modifications [ 50 ]. In particular, the discovery of bacterial CRISPR-mediated adaptive immunity, and its application to genetic modification of human and mouse cells in 2013 [ 47 , 48 , 49 ], was a watershed event to modern science. Moreover, the introduction of CRISPR/Cas9 methodology has revolutionized transgenic mouse generation. This paradigm shift can be seen by changes in demand for nucleic acid microinjections into zygotes, and ES cell microinjections into blastocysts at the University of Michigan Transgenic Core ( Figure 1 ). While previously established principles of genetic engineering using mouse ES cell technology [ 51 , 52 , 53 ] remain applicable, CRISPR/Cas9 methodologies have made it much easier to produce genetically engineered model organisms in mice, rats, and other species [ 54 , 55 ]. Herein, we discuss principles in genetic engineering for the design and characterization of targeted alleles in mouse and rat zygotes, or in cultured cell lines, for the production of animal and cell culture models for biomedical research.

An external file that holds a picture, illustration, etc.
Object name is genes-11-00291-g001.jpg

Recent trends in nucleic acid microinjection in zygotes, and embryonic stem (ES) cell microinjections into blastocysts, for the production of genetically engineered mice at the University of Michigan Transgenic Core. As shown, prior to the introduction of CRISPR/Cas9, the majority of injections were of ES cells, to produce gene-targeted mice, and DNA transgenes, to produce transgenic mice. After CRISPR/Cas9 became available, adoption was slow until 2014, when it was enthusiastically embraced, and the new technology corresponded to a reduced demand for ES cell and DNA microinjections.

2. Principles of Genetic Engineering

2.1. types of genetic modifications.

There are many types of genetic modifications that can be made to the genome. The ability to specifically target locations in the genome has expanded our ability to make changes that include knockouts (DNA sequence deletions), knockins (DNA sequence insertions), and replacements (replacement of DNA sequences with exogenous sequences). Deletions in the genome can be used to knockout gene expression [ 56 , 57 ]. Short deletions in the genome can be used to remove regulatory elements that knockout gene expression [ 58 ], activate gene expression [ 59 ], or change protein structure/function by changing coding sequences [ 60 ].

Insertion of new genomic information can be used to knock in a variety of genetic elements. Knockins are also powerful approaches for modifying genes. Just as genomic deletions can be used to change gene function, knockins can be used to block gene function by inserting fluorescent reporter genes such as eGFP or mCherry, in such a way as to knock out the gene at the insertion point [ 61 , 62 ]. It is also possible to knock in fluorescent protein reporter genes, without knocking out the targeted gene [ 63 , 64 ]. Just as fluorescent proteins can be used to label proteins and cells, short knockins of epitope tags in proteins can be used to label proteins for detection with antibodies [ 64 , 65 ].

Replacement of DNA sequences in the genome can be used to achieve two purposes at the same time, such as blocking gene function, while activating the function of a new gene such as the lacZ reporter [ 66 ]. Large-scale sequence replacements are possible with mouse ES cell technology, such as the replacement of the mouse immunoglobulin locus with the human immunoglobulin locus to produce a “humanized” mouse [ 67 ]. Furthermore, very small replacements of single nucleotides can be used to model point mutations that are suspected of causing human disease [ 68 , 69 , 70 ].

A special type of DNA sequence replacement is the conditional allele. Conditional alleles permit normal gene expression until the site-specific Cre recombinase removes a loxP-flanked critical exon to produce a “floxed” (flanked by loxP) exon. Cre recombinase recognizes 34 bp loxP (locus of recombination) elements, and catalyzes recombination between the two loxP sites [ 71 , 72 ]. Therefore, deletion of the critical exon causes a premature termination codon to occur in the mRNA transcript, triggering its nonsense-mediated decay and failure to make a protein [ 13 , 73 ]. Engineering conditional alleles was the approach used by the international knockout mouse project [ 13 ]. Mice with cell- and tissue-specific Cre recombinase expression are an important resource for the research community [ 74 ].

Other site-specific recombinases, such as FLP, Dre, and Vika, that work on the same principle have also been applied to mouse models [ 75 , 76 , 77 , 78 , 79 , 80 ]. Recombinase knockins can be designed to knock out the endogenous gene or preserve its function [ 81 , 82 ]. A variation in the conditional allele is the inducible allele, which is silent until its expression is activated by Cre recombinase [ 79 ]. For example, reporter models can activate the expression of a fluorescent protein [ 83 ], change fluorescent reporter protein colors from red to green [ 84 ], or use a combinatorial approach to produce up to 90 fluorescent colors [ 85 ]. Another type of inducible allele is the FLEX allele. FLEX genes are Cre-dependent gene switches based on the use of heterotypic loxP sites [ 86 ]. In one application that combined Cre and FLP recombinases, it was demonstrated that a gene inactivated in ES cells by a gene trap could be switched back on and then switched off again [ 87 ]. In another application of heterotypic loxP sites in mouse ES cells, it was demonstrated that genes could be made conditional by inversion (COIN) [ 88 ]. This application has been used to produce mice with conditional genes for point mutations [ 89 ] and has been applied to produce conditional single exon genes that lack critical exons by definition [ 90 ].

2.2. Genetic Engineering with CRISPR/Cas9

The central principle of gene targeting with CRISPR/Cas9, or other directed DNA endonucleases, is that a double-strand DNA break is generated in the cell of interest. Following a chromosomal break, the principal outcomes of interest are nonhomologous end joining (NHEJ) repair [ 91 ] or homology-directed repair (HDR) [ 92 ]. When the break is directed to a coding exon in a gene, the outcome of NHEJ is usually a small insertion or deletion of DNA sequence at the break (indel), causing frame shifts in mRNA transcripts that lead to premature termination codons, causing nonsense-mediated mRNA decay and loss of protein expression [ 73 ]. The HDR pathway copies a template during DNA repair, and thus the insertion of modified genetic sequences in the form of a DNA donor. This DNA donor can introduce new information into the genome flanked by homology arms on either side of the chromosome break. Typical applications of HDR include the use of genetic engineering to abrogate gene expression (gene knockouts), to modify amino acid codons (i.e.; point mutations), to replace genes with new genes (e.g.; knockins of fluorescent reporters, Cre recombinase, cDNA coding sequences), to produce conditional genes (floxed genes that are normally expressed until they are inactivated by Cre recombinase), to produce Cre-inducible genes (genes that are only expressed after Cre recombinase activates them), and to delete DNA from chromosomes (e.g.; delete regulatory elements that control gene expression, delete entire genes, or delete up to a megabase of chromosome segments). The simplest of these modifications is abrogation of gene expression. Multifunctional alleles, such as FLEX alleles, require the cloning or synthesis of multi-element plasmid DNA donors for HDR.

The processes of CRISPR/Cas9-mediated modifications of genes (gene editing) to produce a new cell line or animal model have in common a series of steps to achieve the final product. First, a gene of interest is identified and the final desired allele is specified. The next step is to identify single guide RNA(s) (gRNAs) that will be used to target a chromosomal break in one or more places. There are numerous online websites that can be used for this purpose [ 93 ]. One of the most up-to-date and versatile sites is CRISPOR ( http://crispor.tefor.net ) [ 94 ]. Interestingly, the authors provide evidence that the predictive powers of algorithms vary depending on whether they were based on the analysis of gRNAs delivered as RNA molecules, versus gRNAs delivered as U6-transcribed DNA molecules [ 94 ]. In any event, the selection of a gRNA target (20 nucleotides), adjacent to a protospacer-adjacent motif (PAM; NGG motif), should not be done without the aid of a computer algorithm that minimizes the possibility of off-target hits. After a gRNA target is identified, a decision is made to obtain gRNAs. While it is possible to produce in vitro-transcribed gRNAs, this may be inadvisable in so much as in vitro-transcribed RNAs can trigger innate immune responses and cause cytotoxicity in cells [ 95 ]. Chemically synthesized gRNAs using phosphorothioate modifications that improve gRNA stability may be preferable alternatives to in vitro-transcribed molecules [ 96 , 97 ]. With a gRNA in hand, a Cas9 protein is then selected. There are numerous forms of Cas9 that can be used for different purposes [ 98 ]. For practical purposes, we limit our discussion to Cas9 varieties that are on the market. A number of commercial entities sell wild-type Cas9 protein. When wild type Cas9 is used to target the genome with nonspecific guides, the frequency of off-target genomic hits, besides the desired Cas9 target, is very likely to increase [ 94 , 99 ]. Alternatives to the wild-type protein include enhanced specificity Cas9 from Sigma-Aldrich [ 100 ], and high-fidelity Cas9 from Integrated DNA Technologies [ 101 ]. In addition, there are other versions such as HF1 Cas9 [ 102 ], hyperaccurate Cas9 [ 103 ], and evolved Cas9 [ 104 ], all available in plasmid format from Addgene.org. As may be inferred from the names of these engineered Cas9 versions, they are designed to be more specific than wild type Cas9. Once the gRNAs and Cas9 protein are on hand, then it is a “simple” matter to combine them and deliver them to the target cell to produce a chromosome break and achieve a gene knockout by introducing premature termination codons or DNA sequence deletion of regulatory regions or entire genes.

2.3. Locus-Specific Genetic Engineering Vectors in Mouse and Rat Zygotes

The most challenging type of genetic engineering is the insertion (i.e.; knockin) of a long coding sequence to express a fluorescent reporter protein, Cre recombinase, or conditional allele (floxed gene). In addition to these genetic modifications, numerous other types of specialized reporters can be introduced, each designed to achieve a different purpose. There is great interest in achieving rapid and efficient gene insertions of reporters in animal models with CRISPR/Cas9 technology. It is generally recognized that, the longer the insertion, the less efficient it is to produce a knockin animal. Additional challenges are allele-specific differences that affect efficiency. For example, it is fairly efficient to produce knockins into the genomic ROSA26 locus in mice, while other loci are targeted less efficiently, and thus refractory to knockins. This accessibility to CRISPR/Cas9 complexes mirrors observations in mouse ES cell gene targeting technology, in which it was reported that some genes are not as efficiently targeted as others [ 105 ].

When the purpose of the experiment is to specifically modify the DNA sequence by changing amino acid codons, or introducing new genetic information, then a DNA donor must be delivered to the cells with Cas9 reagents. After the selected gRNAs and Cas9 proteins are demonstrated to produce the desired chromosome break, the DNA donor is designed and procured. The donor should be designed to insert into the genome such that it will not be cleaved by Cas9, usually by mutating the PAM site. The DNA donor may take the form of short oligonucleotides (<200 nt) [ 106 , 107 ], long single-stranded DNA molecules (>200 nt) [ 108 ], or double-stranded linear or circular DNA molecules of varying lengths [ 109 , 110 ].

DNA donor design principles should include the following: (1) nucleotide changes that prevent CRISPR/Cas9 cleavage of the chromosome, after introduction of the DNA donor; (2) insertion of restriction enzyme sites unique to the donor, to simplify downstream genotyping; (3) insertions of reporters or coding sequences, at least 1.5 kb in length, that can be introduced as long single-stranded DNA templates with short 100 base pair arms of homology [ 111 ], or as circular double-stranded DNA plasmids with longer (1.5 or 2 kb) arms of homology [ 63 , 110 ]; and (4) insertions of longer coding sequences, such as Cas9, that use circular double-stranded DNA donors with longer arms of homology [ 63 , 112 ]. It is also possible to use linear DNA fragments as donors [ 63 , 110 , 113 ], although random integration of linear DNA molecules is much higher than those of circular donors, thus requiring careful quality control.

The establishment of genetically modified mouse and rat models can be divided into three phases, after potential founder animals are born from CRISPR/Cas9-treated zygotes. In the first phase, animals with genetic modifications are identified. The first phase requires a sensitive and specific genotyping assay to identify cells or animals harboring the desired knockin. Genotyping potential founder mice for knockins typically begins with a PCR assay using a primer that recognizes the exogenous DNA sequence and a primer in genomic DNA outside of the homology arm in the targeting vector. Accordingly, PCR assays are designed to specifically detect the upstream and downstream junctions of the inserted DNA in genomic DNA. Subsequent assays may be used to confirm that the entire exogenous sequence is intact. Conditional genes represent a special case of insertion, as PCR assays designed to detect correct insertion of loxP-flanked exons will also detect genomic DNA [ 108 ]. In the second phase, founders are mated and G1 pups are identified that inherited the desired mutation [ 114 ]. In the third phase, it is essential to sequence additional genomic regions upstream and downstream of the inserted targeting vector DNA, because Cas9 is very efficient at inducing chromosomal breaks, but has no repair function. Thus, it is not unusual to identify deletions/insertions that flank the immediate vicinity of the Cas9 cut site or inserted targeting vector DNA sequences [ 115 , 116 ]. If such deletions affect nearby exons, gene expression can be disrupted, and confounding phenotypes may arise.

For gene knockouts, PCR amplicons from primers that span the chromosome break site are analyzed by DNA sequencing. Any animals that are wild-type at the allele are not further characterized or used, so as to prevent any off-target hits from entering the animal colony or confounding phenotypes. Animals that show disrupted DNA sequences at the Cas9 cut site are mated with wild-type animals for the transmission of mutant alleles that produce premature termination codons, for gene knockout models [ 57 , 73 ]. As founders from Cas9-treated zygotes are genetic mosaics [ 55 , 115 ], it is essential to mate them to wild-type breeding partners, such that obligate heterozygotes are produced. In the heterozygotes, the wild-type sequence and the mutant sequence can be precisely identified by techniques such as TOPO TA cloning (Invitrogen, CA, USA) or next-generation sequencing (NGS) methods [ 117 , 118 , 119 , 120 ]. Animals carrying a defined indel, with the desired properties, are then used to establish lines for phenotyping. The identical approach is used when short DNA sequences are deleted by two guide RNAs [ 58 ]. Intercrossing mosaic founders will produce offspring carrying two different mutations with different effects on gene expression. These animals are not suitable for line establishment.

2.4. Gene Editing in Immortalized Cell Lines

CRISPR/Cas9 gene editing in immortalized cell lines presents a set of challenges unique from those used in the generation of transgenic animals. Cell lines encompass a wide range of characteristics, resulting in each line being handled differently. Some of these characteristics include phenotype heterogeneity, aberrant chromosome ploidy, varying growth rates, DNA damage response efficiency, transfection efficiency, and clonability. While the principles of CRISPR/Cas9 experimental design, as stated above, remain the same, three major considerations must be taken into account when using cell lines: (1) copy number variation, or the number of alleles of the gene of interest; (2) transfection efficiency of the cell line; and (3) clonal isolation of the modified cell line. In cell lines, all alleles need to be modified in the generation of a null phenotype, or in the creation of a homozygous genotype. Unlike transgenic animals, where single allele gene edits can be bred to homozygosity, CRISPR/Cas9-edited cells must be screened for homozygous gene edits. Copy number variations within the cell line can decrease the efficiency and add labor and time (i.e.; editing 3 or 4 copies versus editing 1 or 2). Furthermore, an aberrant number of chromosomes, deletions, duplications, pseudogenes, and repetitive regions complicate genetic backgrounds for PCR analysis of the CRISPR edits. To help with some of these issues, one common approach is to use NGS on all the clonal isolates for a complete understanding of copy number variations for each clonal cell line generated, and the exact sequence for each allele.

As all cell types are not the same, different CRISPR/Cas9 delivery techniques may need to be tested to identify which method works best. One approach is to use viruses or transposons to deliver CRISPR/Cas9 reagents (detailed below). However, the viruses and transposons themselves will integrate into the genome, as well as allowing long-term expression of CRISPR/Cas9 in the cell. This prolonged expression of gRNAs and Cas9 protein may lead to off-target effects. Moreover, transfection and electroporation can have varying efficiencies, depending on the cell lines and the form of CRISPR/Cas9 reagents (e.g.; DNA plasmids or ribonucleoprotein particles (RNPs)).

Following delivery, clonal isolation is required to identify the edited cell line, and at times, can result in the isolation of a cell phenotype different than that expected, arising from events apart from the desired gene edit. While flow cytometry can aid in isolating individual cells, specific flow conditions, such as pressure, may require adjustment to ensure cell viability. Furthermore, one clonal isolate from a cell line may possess a different number of alleles for the targeted gene than another clonal isolate. Additionally, not all cell lines will grow from a single cell, thus complicating isolation. Growth conditions and cell viability can also change when isolating single cells.

Despite these challenges, new advances in CRISPR technology can likely alleviate some of these difficulties when editing cell lines. For example, fluorescently tagged Cas9 and RNAs help to isolate only transfected cells, which helps to eliminate time wasted on screening untransfected cells. Cas9-variants that harbor mutations that only create single-strand nicks (Cas9-nickases) complexed with two different, but proximal gRNAs can increase HDR-mediated knockin [ 48 , 121 ]. Similarly, fusing Cas9 with base-editing enzymes can also increase the efficiency of editing, without causing double-strand breaks [ 121 ].

2.5. Viruses and Transposons as Genetic Engineering Vectors

Viral and transposon vectors have been engineered to be safe, efficient delivery systems of exogenous genetic material into cells. The natural lifecycle of some viruses and transposons includes the stable integration into the host genome. In the field of genome engineering, these vectors can be used to modify the genome in a non-directed fashion, by inserting cassettes expressing any cDNA, shRNA, miRNA, or any non-coding RNA. The most widely used vectors capable of integrating ectopic genetic material into cells are retroviruses, lentiviruses, and adeno-associated virus (AAV). These viruses are flanked by terminal repeats that mark the boundaries of the integration. In engineering these viruses into recombinant vector systems, all the viral genes are removed from the flanking terminal repeats and supplied in trans for the recombinant virus to be packaged. These “gutted”, nonreplicable viral vectors allow for the packaging, delivery, integration, and expression of cDNAs of interest, shRNAs, and CRISPR/Cas9, without viral replication in various biological targets.

Similar to recombinant viruses, transposon vectors are also “gutted”, separating the transposase from the terminal repeat-flanked genetic material to be inserted into the genome. DNA transposons are mobile elements (“jumping genes”) that integrate into the host genome through a cut-and-paste mechanism [ 122 ]. Transposons, much like viral vectors, are flanked by repeats that mark the region to be transposed [ 123 ]. The enzyme transposase binds the flanking DNA repeats and mediates the excision and integration into the genome. Unlike viral vectors, transposons are not packaged into viral particles, but form a DNA-protein complex that stays in the host cell. Thus, the transgene to be integrated can be much larger than the packaging limits of some viruses.

Two transposons, Sleeping Beauty (SB) and piggybac (PB), have been engineered and optimized for high activity for generating transgenic mammalian cell lines [ 124 , 125 , 126 ]. Sleeping Beauty is a transposable element resurrected from fish genomes. The SB system has been used to generate transgenic HeLa cell lines, T-cells expressing chimeric antigen receptors that recognize tumor-specific antigens, and transgenic primary human stem cells [ 127 , 128 , 129 ]. The insect-derived PB system also has been used to generate transgenic cell lines [ 126 , 130 , 131 ]. The PB system was used to generate induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts, by linking four or five cDNAs of the reprogramming (Yamanaka) factors [ 132 ] with intervening peptide self-cleavage (P2A) sites, thus delivering all of the factors in one vector [ 130 ]. Furthermore, once reprogrammed, the transgene may be removed by another round of PB transposase activity, leaving no genetic trace of integration or excision (i.e.; transgene-free iPSCs). Following PB transposase activity, epigenetic differences remaining at the endogenous promoters of the reprogramming factor genes result in sustained expression and pluripotency, despite transgene removal.

Aside from transgene insertion, Sleeping Beauty (SB) and piggyback (PB) have both been engineered to deliver CRISPR/Cas9 reagents into cells [ 133 , 134 , 135 ]. Similar to lentivirus, the stable integration of CRISPR/Cas9 by transposons could increase the efficacy of targeting and modifying multiple alleles. SB and PB have been used to deliver multiple gRNAs to target multiple genes (instead of just one), aiding in high-throughput screening. Furthermore, owing to the nature of PB excision stated above, the integrated CRISPR/Cas9 can be removed once a clonal cell line is established, to limit off-target effects. However, engineered transposons must be transfected into cells. As stated above, efficiencies vary between different cell lines and transfection methods. One potential solution to overcome this challenge is to merge technologies. For example, instead of transfecting cells with a plasmid harboring a gRNA flanked by SB terminal repeats (SB-CRISPR), the SB-CRISPR may be flanked by recombinant AAV (rAAV) terminal repeats (AAV-SB-CRISPR), allowing for packaging into rAAV. To that end, rAAV-SB-CRISPR has been used to infect primary murine T-cells, and deliver the SB-CRISPR construct [ 136 ].

2.6. Genetic Engineering Using Retroviruses

Retroviruses are RNA viruses that replicate through a DNA intermediate [ 137 ]. They belong to a large family of viruses including both onco-retroviruses, such as the Moloney murine leukemia virus (MMLV) (simply referred to as retrovirus), and lentiviruses, including human immunodeficiency virus (HIV). In all retroviruses, the RNA genome is flanked on both sides by long terminal repeats (LTRs); packaged with viral reverse transcriptase, integrase, and protease, surrounded by a protein capsid; and then enveloped into a lipid-based particle [ 138 ]. Envelope proteins interact with specific host cell surface receptors to mediate entry into host cells through membrane fusion. Then, the RNA genome is reverse-transcribed by the associated viral reverse transcriptase. The proviral DNA is then transported into the nucleus, along with viral integrase, resulting in integration into the host cell genome [ 139 ]. By contrast, the retroviral MMLV pre-integration complex is incapable of crossing the nuclear membrane, thus requiring the cell to undergo mitosis to gain access to chromatin [ 139 ], while lentiviral pre-integration complexes can cross nuclear membrane pores, allowing genome integration in both dividing and non-dividing cells.

Large-scale assessments of genomic material composition have uncovered features associated with retroviral insertion into mammalian genomes [ 140 ]. Although determination of integration target sites remains ill-defined, it does depend on both cellular and viral factors. For retroviruses such as MMLV, integration is preferentially targeted to promoter and regulatory regions [ 140 , 141 , 142 ]. Such preferences can be genotoxic owing to insertional activation of proto-oncogenes in patients undergoing gene therapy treatments for X-linked severe combined immunodeficiency [ 143 , 144 ], Wiskott–Aldrich syndrome [ 143 ], and chronic granulomatous disease [ 145 ]. Likewise, retroviral integration can generate chimeric and read-through transcripts driven by strong retroviral LTR promoters, post-transcriptional deregulation of endogenous gene expression by introducing retroviral splice sites (leading to aberrant splicing), and retroviral polyadenylation signals that lead to premature termination of endogenous transcripts [ 142 , 146 , 147 ].

Unlike retroviruses, lentiviruses prefer to integrate into transcribed portions of expressed genes in gene-rich regions, distanced from promoters and regulatory elements [ 140 , 142 , 148 ]. The cellular protein LEDGF/p75 aids in the target site selection by binding directly to both the active gene and the viral integrase within the HIV pre-integration complex [ 149 ]. Although the propensity of lentivirus to integrate into the body of expressed genes should increase the incidence of post-transcriptional deregulation, deletion of promoter elements from the lentiviral LTR (self-inactivating (SIN) vectors) has been reported to decrease transcriptional termination, but increase the generation of chimeric transcripts [ 149 ]. Overall, it appears that lentiviral SIN vectors are less likely to cause tumors than retroviral vectors with an active LTR promoter [ 148 , 150 , 151 , 152 ].

The 7.5–10 kb packaging limit of lentiviruses can accommodate the packaging, delivery, and stable integration of Cas9 cDNA, gRNAs, or Cas9 and gRNAs (all-in-one) to cells [ 153 , 154 ]. Often, a selectable marker, such as drug resistance, can also be included to isolate transduced cells. The high transduction efficiency of lentivirus can result in an abundance of CRISPR/Cas9-expressing cells to screen, compared with more traditional transfection methods. Stable and prolonged expression of CRISPR/Cas9 can facilitate targeting of multiple alleles of the gene of interest, resulting in more cells harboring homozygous gene modifications. Conversely, stable integration of CRISPR/Cas9 increases potential off-target effects. Moreover, lentiviral integration itself is a factor that may confound cellular phenotypes and should be considered when characterizing CRISPR-edited cell lines.

2.7. Gene Targeting Using Adeno-Associated Virus

Adeno-associated virus (AAV) is a human parvovirus with a single-stranded DNA genome of 4.7 kb, which was originally identified as a contaminant of adenoviral preparations [ 155 ]. The genome is flanked on both sides by inverted terminal repeats (ITR) and contains two genes, rep and cap [ 156 , 157 ]. Different capsid proteins confer serotype and tissue-specific targeting of distinct AAVs, in vivo. AAV cannot replicate on its own, and requires a helper virus, such as adenovirus or herpes simplex virus (HSV), to provide essential proteins in trans. AAV is the only known virus to integrate into the human genome in a site-specific manner at the AAVS1 site on chromosome 19q13.3-qter [ 158 , 159 , 160 ]. Although the precise mechanism is not well understood, the Rep protein functions to tether the virus to the host genome through direct binding of the AAV ITR and the AAVS1 site [ 158 , 160 , 161 ]. In the recombinant AAV (rAAV) vector system, the rep and cap genes are removed from the packaged virus, resulting in the loss of site-specific integration into the AAVS1 site. Despite removal of Rep, it has been shown that rAAV can still integrate, albeit randomly, into the host genome, via nonhomologous recombination, at low frequencies [ 162 , 163 , 164 ]. Furthermore, numerous clinical trials, to date, have shown that rAAV integration is safe and has no genotoxicity [ 165 , 166 , 167 ]. However, this “safety” is controversial, owing to preclinical studies suggesting genotoxicity in mouse models [ 168 , 169 , 170 , 171 ]. More studies are needed to understand the cellular impact of rAAV integration.

rAAVs have been used to deliver one or two CRISPR guide RNAs (gRNAs), in cells and model animals, by taking advantage of different rAAV serotypes to target specific cells or tissue types. Owing to the packaging capacity of rAAV, SpCas9 must be delivered as a separate virus, unlike lentivirus, which can be delivered as an “all-in-one” CRISPR/Cas9 vector. However, alternate, smaller Cas9s can be packaged into rAAVs [ 172 ]. Furthermore, rAAVs can be used to deliver repair templates or single-stranded donor oligonucleotides (ssODNs) for homology-directed repair (HDR), relying on the single-stranded nature of the AAV genome [ 173 , 174 ]. It has also been observed that rAAVs can integrate into the genome at CRISPR/Cas9-induced breaks in various cultured mouse tissue types, including neurons and muscle [ 175 ]. This observation goes against the notion of rAAVs integrating only at the AAVS1 locus, and should be considered when analyzing and characterizing rAAV-mediated CRISPR-edited cells.

3. Conclusions

There are many approaches to inserting new genetic information into chromosomes in cells and animals. At this time, the most appealing method is single copy gene insertion at a defined locus. This approach has numerous advantages, with respect to reproducible transgene expression. Random insertion transgenesis has been effectively used to probe gene function in mouse models [ 176 ]. It is generally accepted that this requires a spontaneous chromosome break [ 176 ]. Recent NGS data suggest that the repair mechanism resembles chromothripsis [ 118 , 177 ]. In addition to unintended gene disruptions owing to chromosome damage, the random insertion of transgenes exposes them to “position effects” in which their expression is controlled by neighboring genes [ 118 , 178 ]. Ideally, the insertion of reporter cDNAs in the genome results in single copy transgene insertions in defined loci in such a way that endogenous genes are not disrupted, and reporters are placed under the control of specific endogenous promoters [ 179 ]. The application of CRISPR/Cas9 technology to address this problem shows it can be used to achieve these goals [ 63 , 82 , 180 ]. The development of CRISPR/Cas9 base editing technology shows that it is possible to make single-nucleotide changes in the genome [ 181 , 182 , 183 , 184 ]. Base editors have the advantage that double-strand chromosome breaks are not produced, thus lessening the chances of undesirable mutations in the genome. A novel approach to small insertions in the genome by the use of a RNA donor sequence fused to the sgRNA in combination with a reverse transcriptase fused to dead Cas9 also avoids the need to produce double-strand breaks on chromosomes. This approach is referred to as “prime editing” [ 185 ]. CRISPR technology that avoids chromosome breaks, while making changes to the genome, is extremely important in clinical applications where unintended changes can adversely affect patients. These advanced versions of CRISPR technology will be important for future research.

The desire to apply CRISPR/Cas9 for the targeted insertion of transgenes is reflected in the profusion of methods directed towards this purpose [ 63 , 108 , 110 , 112 , 186 , 187 ]. Each method was successfully used to engineer mouse and rat genomes ( Table 1 ). Each method was shown to be more cost-effective and rapid than the application of mouse or rat ES cell technology. For the practitioner of the art, the question remains: which method is most efficient? That is to say, which method minimizes the number of animals needed for zygote production and maximizes the number of gene-targeted founders? One approach to this question is to compare the transgenic efficiency of each method [ 188 ]. The results in Table 1 show that the highest efficiency experiments were obtained when long single-stranded DNA donors and Cas9 ribonucleoproteins were used to produce genetically engineered mice. All methods are very effective compared with traditional methods of gene targeting in zygotes. Perhaps future avenues to even more efficient gene targeting lie in the application of small molecule activators for HDR [ 189 , 190 , 191 ].

Analysis of targeting vector knockin by CRISPR/Cas9 in mouse and rat zygotes.

Targeted GenePurpose Cas9 Format DNA Donor Format Efficiency Reference
Pitx1ConditionalRNPssDNA5.3[ ]
Ambra1ConditionalRNPssDNA9.5[ ]
Col12a1ConditionalRNPssDNA3.8[ ]
Ubr5ConditionalRNPssDNA12.5[ ]
Syt1ConditionalRNPssDNA2.2[ ]
Syt9ConditionalRNPssDNA2.4[ ]
PPP2r2aConditionalRNPssDNA9.1[ ]
Fgf8ReporterRNPssDNA7.7[ ]
Slc26a5ReporterRNPssDNA4.5[ ]
MafbReporterRNPssDNA3.8[ ]
OtoaReporterRNPssDNA5.6[ ]
Mmp9ReporterRNPssDNA16.0[ ]
Mmp13ReporterRNPssDNA7.7[ ]
Sox2ReporterCas9 mRNAdsDNA2.0[ ]
NanogReporterCas9-mSA BioPCR2.7[ ]
Gata6ReporterCas9 mRNAdsDNA2.0[ ]
Gata6ReporterCas9-mSA BioPCR5.0[ ]
Cdk9ReporterCas9 mRNAdsDNA4.0[ ]
ROSA26ReporterCas9 mRNAdsDNA1.3[ ]
Cdx2ReporterCas9 mRNAHMEJ5.9[ ]
Cdx2ReporterCas9 mRNATild1.9[ ]
DbhReporterCas9 mRNATild3.6[ ]
Sp8ReporterCas9 mRNAHMEJ3.2[ ]
Sp8ReporterCas9 mRNATild2.0[ ]
TdtomatoReporterCas9 mRNATild3.5[ ]
Nr3c2ConditionalCas9 mRNATild4.8[ ]
Lhx6ConditionalCas9 mRNATild6.3[ ]
Serpina3ConditionalCas9 mRNAssDNA3.5[ ]
TyrConditionalCas9 mRNAssDNA2.0[ ]
mKIAA1322ConditionalCas9 mRNAssDNA3.0[ ]
Serpina3nConditionalCas9 mRNAssDNA1.3[ ]
Mct4ConditionalCas9 mRNAssDNA1.5[ ]
Rat VapbConditionalCas9 mRNAssDNA3.9[ ]
ROSA26ReporterRNPAAV1.2[ ]
ROSA26ReporterRNPAAV4.8[ ]
Rat ROSA26ReporterRNPAAV4.2[ ]
Rat ROSA26ReporterRNPAAV5.4[ ]
ROSA26ReporterCas9 mRNAdsDNA3.4[ ]
ROSA26ReporterCas9 mRNAdsDNA2.1[ ]

1 Conditional: A critical exon was flanked by loxP sites, so as to produce a Cre-dependent knockout allele. Reporter: an exogenous coding sequence, such as for a fluorescent protein, was inserted. 2 RNP: ribonucleoprotein; Cas9 protein was complexed with guide RNA. Cas9 mRNA: in vitro transcribed mRNA from a plasmid containing Cas9 mixed with guide RNA. Cas9-mSa: in vitro transcribed mRNA from a plasmid containing Cas9 fused to monomeric streptavidin. 3 ssDNA: single-stranded DNA repair template. BioPCR: PCR was used to prepare biotinylated PCR amplicons. dsDNA: circular double-stranded DNA repair template. HMEJ: homology-mediated end joining; circular double-stranded DNA repair template incorporating sgRNA targets that flank homology arms. Tild: linear double-stranded DNA repair template. AAV: an adeno-associated vector donor was cultured with zygotes loaded with Cas9 RNP, by electroporation. 4 Efficiency, as calculated as the number of genetically engineered mice or rats produced per 100 zygotes treated with CRISPR/Cas9 reagents and transferred to pseudopregnant females.

Author Contributions

Conceptualization, T.L.S. Writing—review and editing, T.M.L.; H.C.K.; and, T.L.S. All authors have read and agreed to the published version of the manuscript.

This research was supported by Institutional Funds from the University of Michigan Biomedical Research Core Facilities.

Conflicts of Interest

The authors declare no conflict of interest.

Home — Essay Samples — Science — Technology & Engineering — Genetic Engineering

one px

Essays on Genetic Engineering

What makes a good genetic engineering essay topic.

When it comes to writing a captivating genetic engineering essay, the topic you choose is paramount. It not only grabs the reader's attention but also allows for effective exploration of the subject matter. So, how can you brainstorm and select a standout essay topic? Here are some recommendations:

  • Brainstorm: Kickstart your ideas by brainstorming topics related to genetic engineering. Consider the latest advancements, ethical concerns, controversial issues, or potential future applications. Jot down any ideas that come to mind.
  • Research: Once you have a list of potential topics, conduct thorough research to gather relevant information and understand different perspectives. This will help you evaluate the feasibility and depth of each topic.
  • Consider Interest: Choose a topic that genuinely piques your interest. Writing about something you are passionate about will make the entire process more enjoyable and motivate you to delve deeper into the subject matter.
  • Relevance: Ensure that the chosen topic is relevant to genetic engineering. It should align with the scope of the subject and allow you to explore various aspects related to it.
  • Uniqueness: Strive for a unique and imaginative topic that stands out from the ordinary. Steer clear of generic subjects and instead focus on specific areas or emerging trends within genetic engineering.
  • Controversy: Controversial topics often generate more interest and discussion. Consider exploring ethical dilemmas, potential risks, or societal impacts of genetic engineering to add a thought-provoking element to your essay.
  • Depth and Scope: Assess the depth and scope of each topic. Make sure it provides enough material for a comprehensive essay without being too broad or too narrow.
  • Audience Appeal: Keep your target audience in mind. Choose a topic that would captivate readers, whether they are experts in the field or individuals with limited knowledge about genetic engineering.
  • Originality: Strive for originality in your topic selection. Look for unique angles, lesser-known areas, or innovative applications of genetic engineering that can make your essay stand out.
  • Personal Connection: If possible, choose a topic that connects with your personal experiences or future aspirations. This will enhance your engagement and make your essay more meaningful.

Igniting Thought: The Finest Genetic Engineering Essay Topics

Below are some of the most captivating genetic engineering essay topics to consider:

  • Genetic Engineering and the Future of Human Evolution
  • The Ethical Dilemmas of Designer Babies
  • Genetic Engineering in Agriculture: Balancing Benefits and Concerns
  • CRISPR-Cas9: Unleashing Revolutionary Potential in Genetic Engineering
  • The Potential of Genetic Engineering in Cancer Treatment
  • Genetic Engineering's Role in Creating Sustainable Food Sources
  • Genetic Engineering and Animal Welfare: Navigating Ethical Considerations
  • Genetic Engineering and its Impact on Biodiversity
  • The Social and Economic Implications of Genetic Engineering
  • Genetic Engineering's Influence on Human Longevity
  • Enhancing Athletic Performance: The Power of Genetic Engineering
  • Genetic Engineering Techniques for Disease Prevention and Treatment
  • Genetic Engineering's Role in Environmental Conservation
  • Genetic Engineering and the Preservation of Endangered Species
  • The Psychological and Societal Effects of Genetic Engineering
  • The Pros and Cons of Genetic Engineering for Non-Medical Purposes
  • Exploring the Potential Risks and Benefits of Genetic Engineering in Space Exploration
  • Genetic Engineering and the Creation of Biofuels
  • The Morality of Genetic Engineering: Insights from Religious and Philosophical Perspectives
  • Genetic Engineering's Role in Combating Climate Change

Thought-Provoking Genetic Engineering Essay Questions

Consider these stimulating questions for your genetic engineering essay:

  • How does genetic engineering impact the concept of natural selection?
  • What are the potential consequences of genetic engineering on human genetic diversity?
  • Is it ethically justifiable to use genetic engineering for cosmetic purposes?
  • How does genetic engineering contribute to the development of personalized medicine?
  • What are the social implications of genetically modifying animals for human consumption?
  • How does the use of genetic engineering in agriculture affect food security?
  • Should genetic engineering be used to resurrect extinct species?
  • What are the potential risks and benefits of genetically modifying viruses for medical purposes?
  • How does genetic engineering influence the balance between individual rights and societal well-being?
  • Can genetic engineering be the solution to eradicating genetic diseases?

Provocative Genetic Engineering Essay Prompts

Here are some imaginative and engaging prompts for your genetic engineering essay:

  • Imagine a world where genetic engineering has eliminated all hereditary diseases. Discuss the potential benefits and drawbacks of such a scenario.
  • You have been granted the ability to genetically engineer one aspect of yourself. What would you choose and why?
  • Write a fictional story set in a future where genetic engineering is widespread and explore the consequences it has on society.
  • Reflect on the ethical considerations of genetically modifying animals for entertainment purposes, such as creating glow-in-the-dark pets.
  • Create a persuasive argument for or against the use of genetic engineering in enhancing human intelligence.

Answering Your Genetic Engineering Essay Queries

Q: Can I write about the history of genetic engineering?

A: Absolutely! Exploring the historical context of genetic engineering can provide valuable insights and set the foundation for your essay.

Q: How can I make my genetic engineering essay engaging for readers with limited scientific knowledge?

A: Simplify complex concepts and terminologies, provide relevant examples, and use relatable analogies to help readers grasp the information more easily.

Q: Can I express my personal opinion in a genetic engineering essay?

A: Yes, expressing your personal opinion is encouraged as long as you support it with logical reasoning and evidence from reputable sources.

Q: Are there any potential risks associated with genetic engineering that I should discuss in my essay?

A: Yes, incorporating a discussion on the potential risks and ethical concerns surrounding genetic engineering is essential to provide a balanced perspective.

Q: Can I include interviews or case studies in my genetic engineering essay?

A: Absolutely! Interviews or case studies can add depth and real-life examples to support your arguments and make your essay more compelling.

Remember, when writing your genetic engineering essay, let your creativity shine through while maintaining a formal and engaging tone.

Gattaca Dystopia

Genetic engineering, made-to-order essay as fast as you need it.

Each essay is customized to cater to your unique preferences

+ experts online

Ethical Issues of Genetic Engineering

The dangers of genetic engineering to humanity, the use and ethics of genetic engineering, the potential and consequences of genetic engineering, let us write you an essay from scratch.

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

The Issue of The Use of Genetic Modification of Humans

Reasons why genetic engineering should be banned, genetic engineering: an overview of the dna/rna and the crispr/cas9 technology, review of human germline engineering, get a personalized essay in under 3 hours.

Expert-written essays crafted with your exact needs in mind

Positional Cloning of Genetic Disorders

Engineering american society: the lesson of eugenics, bioethical issues related to genetic engineering, cloning and ethical controversies related to it, genetic editing as a possibility of same-sex parents to have children, adhering to natural processes retains the integrity of a natural human race  , genetically modified organisms: soybeans, gene silencing to produce milk with reduced blg proteins, the role of crispr-cas9 gene drive in mosquitoes, the life of gregor mendel and his contributions to science, eugenics, its history and modern development, morphological operation hsv color space tree detetction, cytogenetics: analysis of comparative genomic hybridization and its implications, genetically engineered eucalyptus tree and crispr, review of the process of dna extraction, review of the features of the process of cloning, heterologous gene expression as an approach for fungal secondary metabolite discovery, review of the genetic algorithm searches, genetic engineering: clustered regularly interspaced short palindromic repeats, crispr technology - the potential tool for curing huntington’s disease.

Genetic engineering (also called genetic modification) is a process that uses laboratory-based technologies to alter the DNA makeup of an organism.

Genetic engineering as the direct manipulation of DNA by humans outside breeding and mutations has only existed since the 1970s. In 1972, Paul Berg created the first recombinant DNA molecules by combining DNA from the monkey virus SV40 with that of the lambda virus. The first field trials of genetically engineered plants occurred in France and the US in 1986, tobacco plants were engineered to be resistant to herbicides.

It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. Used in research and industry, genetic engineering has been applied to the production of cancer therapies, brewing yeasts, genetically modified plants and livestock, and more.

Relevant topics

  • Engineering
  • Mathematics in Everyday Life
  • Natural Selection
  • Space Exploration
  • Stephen Hawking
  • Charles Darwin

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

genetic engineering research paper topics

Journal of Genetic Engineering and Biotechnology Cover Image

  • Search by keyword
  • Search by citation

Page 1 of 13

Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria

The contribution of the processes involved and waste generated during gold mining to the increment of heavy metals concentration in the environment has been well established. While certain heavy metals are req...

  • View Full Text

Acetaminophen-traces bioremediation with novel phenotypically and genotypically characterized 2 Streptomyces strains using chemo-informatics, in vivo, and in vitro experiments for cytotoxicity and biological activity

We isolated two novel bacterial strains, active against the environmental pollutant acetaminophen/Paracetamol®. Streptomyces chrestomyceticus (symbol RS2) and Flavofuscus (symbol M33) collected from El-Natrun Val...

Biosoftening of banana pseudostem fiber using cellulase and pectinase enzyme isolated from Aspergillus niger for textile industry

Nowadays, farmers are facing a lot of problems for the disposal of banana pseudostem waste after the harvesting of banana. Banana pseudostem is a rich source of fiber, which is an alternative source of other n...

FolE gene expression for folic acid productivity from optimized and characterized probiotic Lactobacillus delbrueckii

Lactobacillus delbrueckii was one of the most common milk lactic acid bacterial strains (LAB) which characterized as probiotic with many health influencing properties.

genetic engineering research paper topics

Reverse transcription loop-mediated isothermal amplification (RT-LAMP) primer design based on Indonesia SARS-CoV-2 RNA sequence

The COVID-19 pandemic has highlighted the importance of tracking cases by using various methods such as the Reverse transcription loop-mediated isothermal amplification (RT-LAMP) which is a fast, simple, inexp...

In silico analysis of HLA-1 and HLA-2 recognition of a designed recombinant human papillomavirus vaccine based on L1 protein HPV subtype 45

Human leukocyte antigen (HLA) can bind and present the processed antigenic peptide derived from the vaccine to the T cell receptor, and this capability is crucial in determining the effectivity of the vaccine ...

In silico design of an epitope-based vaccine against PspC in Streptococcus pneumoniae using reverse vaccinology

Streptococcus pneumoniae is a major pathogen that poses a significant hazard to global health, causing a variety of infections including pneumonia, meningitis, and sepsis. The emergence of antibiotic-resistant st...

A scalable overexpression of a thermostable recombinant poly-histidine tag carboxyl esterase under lambda promoter: purification, characterization, and protein modelling

As a white biotechnological trend, esterases are thought to be among the most active enzymes’ classes in biocatalysis and synthesis of industrially importance organic compounds. Esterases are used in many appl...

Correction: Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms

The original article was published in Journal of Genetic Engineering and Biotechnology 2023 21 :127

Whole genome sequence and comparative genomics analysis of multidrug-resistant Staphylococcus xylosus NM36 isolated from a cow with mastitis in Basrah city

Staphylococcus xylosus is a coagulase-negative, gram-positive coccus that is found in the environment and as a commensal organism on the skin and mucosal surfaces of animals. Despite the fact that S. xylosus is c...

Immunoinformatics-aided rational design of multiepitope-based peptide vaccine (MEBV) targeting human parainfluenza virus 3 (HPIV-3) stable proteins

Human parainfluenza viruses (HPIVs) are common RNA viruses responsible for respiratory tract infections. Human parainfluenza virus 3 (HPIV-3) is particularly pathogenic, causing severe illnesses with no effect...

Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana

Plant probiotics bacteria are live microbes that promote soil health and plant growth and build the stress-tolerant capacity to the plants. They benefit the plants by increasing nutrient absorption and release...

Exploring structural antigens of yellow fever virus to design multi-epitope subunit vaccine candidate by utilizing an immuno-informatics approach

Yellow fever is a mosquito-borne viral hemorrhagic disease transmitted by several species of virus-infected mosquitoes endemic to tropical regions of Central and South America and Africa. Earlier in the twenti...

Short tandem repeat (STR) variation from 6 cities in Iraq based on 15 loci

One thousand sixty-one individuals were sampled from the cities of Anbar, Baghdad, Basra, Diyala, Najaf, and Wasit in Iraq and typed for 15 forensic STRs to explore the genetic structure of Iraq and develop a ...

The hepato- and neuroprotective effect of gold Casuarina equisetifolia bark nano-extract against Chlorpyrifos-induced toxicity in rats

The bark of Casuarina equisetifolia contains several active phytoconstituents that are suitable for the biosynthesis of gold nanoparticles (Au-NPs). These nanoparticles were subsequently evaluated for their effec...

Cloning and characterization of an acidic lipase from a lipolytic bacterium in tempeh

Lipases have emerged as essential biocatalysts, having the ability to contribute to a wide range of industrial applications. Microbial lipases have garnered significant industrial attention due to their stabil...

Recent advances in genome annotation and synthetic biology for the development of microbial chassis

This article provides an overview of microbial host selection, synthetic biology, genome annotation, metabolic modeling, and computational methods for predicting gene essentiality for developing a microbial ch...

In-silico analysis of potent Mosquirix vaccine adjuvant leads

World Health Organization recommend the use of malaria vaccine, Mosquirix, as a malaria prevention strategy. However, Mosquirix has failed to reduce the global burden of malaria because of its inefficacy. The ...

Influenza vaccine: a review on current scenario and future prospects

Vaccination is a crucial tool in preventing influenza, but it requires annual updates in vaccine composition due to the ever-changing nature of the flu virus. While healthcare and economic burdens have reduced...

Endophytic bacteria Klebsiella spp. and Bacillus spp . from Alternanthera philoxeroides in Madiwala Lake exhibit additive plant growth-promoting and biocontrol activities

The worldwide increase in human population and environmental damage has put immense pressure on the overall global crop production making it inadequate to feed the entire population. Therefore, the need for su...

Immunoinformatics analysis of Brucella melitensis to approach a suitable vaccine against brucellosis

Brucellosis caused by B. melitensis is one of the most important common diseases between humans and livestock. Currently, live attenuated vaccines are used for this disease, which causes many problems, and unfort...

Enhancement effect of AgO nanoparticles on fermentative cellulase activity from thermophilic Bacillus subtilis Ag-PQ

Cellulase is an important bioprocessing enzyme used in various industries. This study was conducted with the aim of improving the biodegradation activity of cellulase obtained from the Bacillus subtilis AG-PQ str...

genetic engineering research paper topics

Studying the pathogenicity of 26 variants characterized in the first molecular analyses of Egyptian aplastic anemia patients

Aplastic anemia (AA) is a bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia which can lead to life-threatening complications. Our objective was to study the telomerase genes ( TER...

Optimizing the generation of mature bone marrow-derived dendritic cells in vitro: a factorial study design

Factorial design is a simple, yet elegant method to investigate the effect of multiple factors and their interaction on a specific response simultaneously. Hence, this type of study design reaches the best opt...

Biodiversity and biological applications of marine actinomycetes—Abu-Qir Bay, Mediterranean Sea, Egypt

The ability of actinomycetes to produce bioactive secondary metabolites makes them one of the most important prokaryotes. Marine actinomycetes are one of the most important secondary metabolites producers used...

A computational simulation appraisal of banana lectin as a potential anti-SARS-CoV-2 candidate by targeting the receptor-binding domain

The ongoing concern surrounding coronavirus disease 2019 (COVID-19) primarily stems from continuous mutations in the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to the e...

Metagenomic analysis reveals diverse microbial community and potential functional roles in Baner rivulet, India

The health index of any population is directly correlated with the water quality, which in turn depends upon physicochemical characteristics and the microbiome of that aquatic source. For maintaining the water...

Mapping of conserved immunodominant epitope peptides in the outer membrane porin (Omp) L of prominent Enterobacteriaceae pathogens associated with gastrointestinal infections

Members of Enterobacteriaceae such as Escherichia coli O 157:H7, Salmonella sp., Shigella sp., Klebsiella sp., and Citrobacter freundii are responsible for the outbreak of serious foodborne illness and other muco...

Dual action of epigallocatechin-3-gallate in virus-induced cell Injury

Viral infections cause damage and long-term injury to infected human tissues, demanding therapy with antiviral and wound healing medications. Consequently, safe phytochemical molecules that may control viral i...

Designing a novel and combinatorial multi-antigenic epitope-based vaccine “MarVax” against Marburg virus—a reverse vaccinology and immunoinformatics approach

Marburg virus (MARV) is a member of the Filoviridae family and causes Marburg virus disease (MVD) among humans and primates. With fatality rates going up to 88%, there is currently no commercialized cure or va...

Bioinformatics study of phytase from Aspergillus niger for use as feed additive in livestock feed

Phytase supplementation in rations can reduce their phytic acid composition in order to enhance their nutritional value. Aspergillus niger is a fungus that can encode phytase. This study aims to determine the cha...

Improved production of Bacillus subtilis cholesterol oxidase by optimization of process parameters using response surface methodology

Cholesterol oxidase has numerous biomedical and industrial applications. In the current study, a new bacterial strain was isolated from sewage and was selected for its high potency for cholesterol degradation ...

Microsatellite diversity and complexity in the viral genomes of the family Caliciviridae

Microsatellites or simple sequence repeats (SSR) consist of 1–6 nucleotide motifs of DNA or RNA which are ubiquitously present in tandem repeated sequences across genome in viruses: prokaryotes and eukaryotes....

Prevalence of Extended Spectrum β-Lactamase Producers (ESBLs) with antibiotic resistance pattern of Gram negative pathogenic bacteria isolated from door handles in hospitals of Pokhara, Western Nepal

The presence of drug-resistant Gram-negative pathogenic bacteria and Extended Spectrum β-Lactamase Producers (ESBLs) in hospital associated fomites like door handles can serve as vehicles in transmission and m...

Application of statistical methodology for the optimization of l -glutaminase enzyme production from Streptomyces pseudogriseolus ZHG20 under solid-state fermentation

Actinomycetes are excellent microbial sources for various chemical structures like enzymes, most of which are used in pharmaceutical and industrial products. Actinomycetes are preferred sources of enzymes due ...

Investigating marine Bacillus as an effective growth promoter for chickpea

Microorganisms have characteristics that aid plant growth and raise the level of vital metabolites in plants for better growth including primary and secondary metabolites as well as several developmental enzym...

The pectinolytic activity of Burkholderia cepacia and its application in the bioscouring of cotton knit fabric

Enzymatic catalysis in different industrial applications is often preferred over chemical methods due to various advantages, such as higher specificity, greater efficiency, and less environmental footprint. Pe...

In silico analysis of a novel hypothetical protein (YP_498675.1) from Staphylococcus aureus unravels the protein of tryptophan synthase beta superfamily (Try-synth-beta_ II)

Staphylococcus aureus is a gram-positive spherical bacteria and the most common cause of nosocomial infections in the world. Given its clinical significance, the genome sequence of S. aureus has been elucidated t...

Nutrigenomics and microbiome shaping the future of personalized medicine: a review article

The relationship between nutrition and genes has long been hinted at and sometimes plainly associated with certain diseases. Now, after many years of research and coincidental findings, it is believed that thi...

Alpha-glucan: a novel bacterial polysaccharide and its application as a biosorbent for heavy metals

This study identified an extracellular bacterial polysaccharide produced by Bacillus velezensis strain 40B that contains more than 90% of the monosaccharide glucose as alpha-glucan. A prominent peak at 1074 cm −1 ,...

De novo assembly and comparative genome analysis for polyhydroxyalkanoates-producing Bacillus sp. BNPI-92 strain

Certain Bacillus species play a vital role in polyhydroxyalkanoate (PHA) production. However, most of these isolates did not properly identify to species level when scientifically had been reported.

Adverse effect of Tamarindus indica and tamoxifen combination on redox balance and genotoxicity of breast cancer cell

Breast cancer is the most significant threat to women worldwide. Most chemotherapeutic drugs cause cancer cell death and apoptosis by inducing oxidative stress and producing reactive oxygen species (ROS). Canc...

In silico molecular and functional characterization of a dual function antimicrobial peptide, hepcidin (GIFT-Hep), isolated from genetically improved farmed tilapia (GIFT, Oreochromis niloticus )

Antimicrobial peptides (AMPs), innate immune response molecules in organisms, are also known for their dual functionality, exemplified by hepcidin—an immunomodulator and iron regulator. Identifying and studyin...

Codon optimization of a gene encoding DNA polymerase from Pyrococcus furiosus and its expression in Escherichia coli

DNA polymerase is an essential component in PCR assay for DNA synthesis. Improving DNA polymerase with characteristics indispensable for a powerful assay is crucial because it can be used in wide-range applica...

Immunoinformatics study to explore dengue (DENV-1) proteome to design multi-epitope vaccine construct by using CD4+ epitopes

Immunoinformatics is an emerging interdisciplinary field which integrates immunology, bioinformatics, and computational biology to study the immune system. In this study, we apply immunoinformatics approaches ...

Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms

At the present time, there is a persistent need to get rid of environmental contaminants by eco-friendly, sustainable, and economical technologies. Uncontrolled disposal practices of domestic and industrial so...

The Correction to this article has been published in Journal of Genetic Engineering and Biotechnology 2023 21 :164

Expression, purification, and characterization of self-assembly virus-like particles of capsid protein L1 HPV 52 in Pichia pastoris GS115

Cervical cancer caused by the human papillomavirus (HPV) is one of the most frequent malignances globally. HPV 52 is a high-risk cancer-causing genotype that has been identified as the most prevalent type in I...

Pangenome diversification and resistance gene characterization in Salmonella Typhi prioritized RfaJ as a significant therapeutic marker

Salmonella Typhi stands as the etiological agent responsible for the onset of human typhoid fever. The pressing demand for innovative therapeutic targets against S. Typhi is underscored by the escalating prevale...

Association between polymorphisms of immune response genes and early childhood caries — systematic review, gene-based, gene cluster, and meta-analysis

Early childhood caries is a significant public health concern affecting about 600 million children globally. The etiology of early childhood caries can be explained as an interplay between genetic and environm...

Experimental and hypothetical appraisal on inhibition of glucose-induced glycation of bovine serum albumin by quercetin

The specificity of protein functions depends on its folding ability into a functional structure. Protein folding is an essential systemic phenomenon that prevents incorrect folding which could result in harmfu...

  • ISSN: 2090-5920 (electronic)

204 Genetics Research Topics & Essay Questions for College and High School

Genetics studies how genes and traits pass from generation to generation. It has practical applications in many areas, such as genetic engineering, gene therapy, gene editing, and genetic testing. If you’re looking for exciting genetics topics for presentation, you’re at the right place! Here are genetics research paper topics and ideas for different assignments.

🧬 TOP 7 Genetics Topics for Presentation 2024

🏆 best genetics essay topics, ❓ genetics research questions, 👍 good genetics research topics & essay examples, 🌟 cool genetics topics for presentation, 🌶️ hot genetics topics to write about, 🔎 current genetic research topics, 🎓 most interesting genetics topics.

  • Advantages and Disadvantages of Genetic Testing
  • The Importance of Heredity and Genetics
  • Should Parents Have the Right to Choose Their Children Based on Genetics?
  • Cause and Effect of Genetically Modified Food
  • Genetically Modified Pineapples and Their Benefits
  • Genetic and Environmental Factors Causing Alcoholism and Effects of Alcohol Abuse
  • Simulating the Natural Selection and Genetic Drift
  • Link Between Obesity and Genetics Obesity affects the lives through limitations implemented on the physical activity, associated disorders, and even emotional pressure.
  • Genetic and Environmental Impacts on Teaching Work If students do not adopt learning materials and the fundamentals of the curriculum well, this is a reason for reviewing the current educational regimen.
  • GMO Use in Brazil and Other Countries The introduction of biotechnology into food production was a milestone. Brazil is one of the countries that are increasingly using GMOs for food production.
  • Human Genetics: Multifactorial Traits This essay states that multifactorial traits in human beings are essential for distinguishing individual characteristics in a population.
  • Genetic and Social Behavioral Learning Theories Learning and behavioral habits in human beings can be influenced by social, environmental and genetic factors. Genetic theory describes how genes help in shaping human behaviors.
  • Genetic Counseling for Cystic Fibrosis Some of the inherited genes may predispose individuals to specific health conditions like cystic fibrosis, among other inheritable diseases.
  • The Potential Benefits of Genetic Engineering Genetic engineering is a new step in the development of the humans’ knowledge about the nature that has a lot of advantages for people in spite of its controversial character.
  • Restricting the Volume of Sale of Fast Foods and Genetically Modified Foods The effects of fast foods and genetically modified foods on the health of Arizona citizens are catastrophic. The control of such outlets and businesses is crucial.
  • Plant Genetic Engineering: Genetic Modification Genetic engineering is the manipulation of the genes of an organism by completely altering the structure of the organism.
  • Genetic Engineering: Dangers and Opportunities Genetic engineering can be defined as: “An artificial modification of the genetic code of an organism. It changes radically the physical nature of the being in question.
  • Genetic Modifications: Advantages and Disadvantages Genetic modifications of fruits and vegetables played an important role in the improvement process of crops and their disease resistance, yields, eating quality and shelf life.
  • Convergent Evolution, Genetics and Related Structures This paper discusses the concept of convergent evolution and related structures. Convergent evolution describes the emergence of analogous or similar traits in different species.
  • DNA and the Birth of Molecular Genetics Molecular genetics is critical in studying traits that are passed through generations. The paper analyzes the role of DNA to provide an ample understanding of molecular genetics.
  • Decision Tree Analysis and Genetic Algorithm Methods Application in Healthcare The paper investigates the application of such methods of data mining as decision tree analysis and genetic algorithm in the healthcare setting.
  • Ban on Genetically Modified Foods Genetically modified (GM) foods are those that are produced with the help of genetic engineering. Such foods are created from organisms with changed DNA.
  • Family Pedigree, Human Traits, and Genetic Testing Genetic testing allows couples to define any severe genes in eight-cell embryos and might avoid implanting the highest risk-rated ones.
  • Technology of Synthesis of Genetically Modified Insulin The work summarizes the technology for obtaining genetically modified insulin by manipulating the E. coli genome.
  • Genetically Modified Food Safety and Benefits Today’s world faces a problem of the shortage of food supplies to feed its growing population. The adoption of GM foods can solve the problem of food shortage in several ways.
  • Genetic Counseling and Hypertension Risks This paper dwells upon the peculiarities of genetic counseling provided to people who are at risk of developing hypertension.
  • Gene Transfer and Genetic Engineering Mechanisms This paper discusses gene transfer mechanisms and the different genetic engineering mechanisms. Gene transfer, a natural process, can cause variation in biological features.
  • Type 1 Diabetes in Children: Genetic and Environmental Factors The prevalence rate of type 1 diabetes in children raises the question of the role of genetic and environmental factors in the increasing cases of this illness.
  • Mendelian Genetics and Chlorophyll in Plants This paper investigates Mendelian genetics. This lab report will examine the importance of chlorophyll in plants using fast plants’ leaves and stems.
  • Genetically Modified Fish: The Threats and Benefits This article’s purpose is to evaluate possible harm and advantages of genetically modified fish. For example, the GM fish can increase farms’ yield.
  • Darwin’s Theory of Evolution: Impact of Genetics New research proved that genetics are the driving force of evolution which causes the revision of some of Darwin’s discoveries.
  • Genetic Diseases: Hemophilia This article focuses on a genetic disorder such as hemophilia: causes, symptoms, history, diagnosis, and treatment.
  • Cystic Fibrosis: Genetic Disorder Cystic fibrosis, also referred to as CF, is a genetic disorder that can affect the respiratory and digestive systems.
  • Advantages of Using Genetically Modified Foods Genetic modifications of traditional crops have allowed the expansion of agricultural land in areas with adverse conditions.
  • Literature Review: Acceptability of Genetic Engineering The risks and benefits of genetic engineering must be objectively evaluated so that modern community could have a better understanding of this problem
  • Genetic Engineering and Cloning Controversy Genetic engineering and cloning are the most controversial issues in modern science. The benefits of cloning are the possibility to treat incurable diseases and increase longevity.
  • Genetics and Autism Development Autism is associated with a person’s genetic makeup. This paper gives a detailed analysis of this condition and the role of genetics in its development.
  • Genetics of Developmental Disabilities The aim of the essay is to explore the genetic causes of DDs, especially dyslexia, and the effectiveness of DNA modification in the treatment of these disorders.
  • How Much Do Genetics Affect Us?
  • What Can Livestock Breeders Learn From Conservation Genetics and Vice Versa?
  • How Do Genetics Affect Caffeine Tolerance?
  • How Dolly Sheep Changed Genetics Forever?
  • What Is the Nature and Function of Genetics?
  • What Are the Five Branches of Genetics?
  • How Does Genetics Affect the Achievement of Food Security?
  • Are Owls and Larks Different in Genetics When It Comes to Aggression?
  • How Do Neuroscience and Behavioral Genetics Improve Psychiatric Assessment?
  • How Does Genetics Influence Human Behavior?
  • What Are Three Common Genetics Disorders?
  • Can Genetics Cause Crime or Are We Presupposed?
  • What Are Examples of Genetics Influences?
  • How Do Genetics Influence Psychology?
  • What Traits Are Influenced by Genetics?
  • Why Tampering With Our Genetics Will Be Beneficial?
  • How Genetics and Environment Affect a Child’s Behaviors?
  • Which Country Is Best for Genetics Studies?
  • How Does the Environment Change Genetics?
  • Can Crop Models Identify Critical Gaps in Genetics, Environment, and Management Interactions?
  • How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing?
  • Can You Change Your Genetics?
  • How Old Are European Genetics?
  • Will Benchtop Sequencers Resolve the Sequencing Trade-off in Plant Genetics?
  • What Can You Study in Genetics?
  • What Are Some Genetic Issues?
  • Does Genetics Matter for Disease-Related Stigma?
  • How Did the Drosophila Melanogaster Impact Genetics?
  • What Is a Genetics Specialist?
  • Will Genetics Destroy Sports?
  • GMO: Some Peculiarities and Associated Concerns Genetically modified organisms are created through the insertion of genes of other species into their genetic codes.
  • The Perspectives of Genetic Engineering in Various Fields Genetic engineering can be discussed as having such potential benefits for the mankind as improvement of agricultural processes, environmental protection, resolution of the food problem.
  • Genetically Modified Foods and Their Impact on Human Health Genetically modified food has become the subject of discussion. There are numerous benefits and risks tied to consumption of genetically modified foods.
  • The Effects of Genetic Modification of Agricultural Products Discussion of the threat to the health of the global population of genetically modified food in the works of Such authors as Jane Brody and David Ehrenfeld.
  • Is ADHD Genetically Passed Down to Family Members? Genetic correlations between such qualities as hyperactivity and inattention allowed us to define ADHD as a spectrum disorder rather than a unitary one.
  • Alzheimer’s Disease: Genetic Risk and Ethical Considerations Alzheimer’s disease is a neurodegenerative disease that causes brain shrinkage and the death of brain cells. It is the most prevalent form of dementia.
  • Behavioral Genetics in “Harry Potter” Books The reverberations of the Theory of Behavioral Genetics permeate the Harry Potter book series, enabling to achieve the comprehension of characters and their behaviors.
  • Environmental Impact of Genetically Modified Crop In 1996, the commercial use of genetically modified (GM) crop production techniques had increasingly been accepted by many farmers.
  • Nutrition: Obesity Pandemic and Genetic Code The environment in which we access the food we consume has changed. Unhealthy foods are cheaper, and there is no motivation to eat healthily.
  • Relation Between Genetics and Intelligence Intelligence is a mental ability to learn from experience, tackle issues and use knowledge to adapt to new situations and the factor g may access intelligence of a person.
  • Genetics in Diagnosis of Diseases Medical genetics aims to study the role of genetic factors in the etiology and pathogenesis of various human diseases.
  • The Morality of Selective Abortion and Genetic Screening The paper states that the morality of selective abortion and genetic screening is relative. This technology should be made available and legal.
  • Environmental Ethics in Genetically Modified Organisms The paper discusses genetically modified organisms. Environmental ethics is centered on the ethical dilemmas arising from human interaction with the nonhuman domain.
  • Does Genetic Predisposition Affect Learning in Other Disciplines? This paper aims to examine each person’s ability to study a discipline for which there is no genetic ability and to understand how effective it is.
  • Detection of Genetically Modified Products Today, people are becoming more concerned about the need to protect themselves from the effects of harmful factors and to buy quality food.
  • Genetically Modified Organisms Solution to Global Hunger It is time for the nations to work together and solve the great challenge of feeding the population by producing sufficient food and using fewer inputs.
  • Genetic Engineering: Cloning With Pet-28A Embedding genes into plasmid vectors is an integral part of molecular cloning as part of genetic engineering. An example is the cloning of the pectate lyase gene.
  • Researching of Genetic Engineering DNA technology entails the sequencing, evaluation and cut-and-paste of DNA. The following paper analyzes the historical developments, techniques, applications, and controversies.
  • Genetically Modified Crops: Impact on Human Health The aim of this paper is to provide some information about genetically modified crops as well as highlight the negative impacts of genetically modified soybeans on human health.
  • Genetic Engineering Biomedical Ethics Perspectives Diverse perspectives ensure vivisection, bio, and genetic engineering activities, trying to deduce their significance in evolution, medicine, and society.
  • Down Syndrome: The Genetic Disorder Down syndrome is the result of a glandular or chemical disbalance in the mother at the time of gestation and of nothing else whatsoever.
  • Genetics of Personality Disorders The genetics of different psychological disorders can vary immensely; for example, the genetic architecture of schizophrenia is quite perplexing and complex.
  • Labeling of Genetically Modified Products Regardless of the reasoning behind the labeling issue, it is ethical and good to label the food as obtained from genetically modified ingredients for the sake of the consumers.
  • Genetic Technologies in the Healthcare One area where genetic technology using DNA works for the benefit of society is medicine, as it will improve the treatment and management of genetic diseases.
  • Are Genetically Modified Organisms Really That Bad? Almost any food can be genetically modified: meat, fruits, vegetables, etc. Many people argue that consuming products, which have GMOs may cause severe health issues.
  • Discussion of Genetic Testing Aspects The primary aim of the adoption process is to ensure that the children move into a safe and loving environment.
  • Ethical Concerns on Genetic Engineering The paper discusses Clustered Regularly Interspaced Short Palindromic Repeats technology. It is a biological system for modifying DNA.
  • The Normal Aging Process and Its Genetic Basis Various factors can cause some genetic disorders linked to premature aging. The purpose of this paper is to talk about the genetic basis of the normal aging process.
  • Defending People’s Rights Through GMO Labels Having achieved mandatory labeling of GMOs, the state and other official structures signal manufacturers of goods about the need to respect customers’ rights.
  • Medicine Is Not a Genetic Supermarket Together with the development of society, medicine also develops, but some people are not ready to accept everything that science creates.
  • Epigenetics: Definition and Family History Epigenetics refers to the learning of fluctuations in creatures induced by gene expression alteration instead of modification of the ‘genetic code itself.
  • Genetically Modified Organisms in Aquaculture Genetically Modified Organisms are increasingly being used in aquaculture. They possess a unique genetic combination that makes them uniquely suited to their environment.
  • Genetic Modification of Organisms to Meet Human Needs Genetic modification of plants and animals for food has increased crop yields as the modified plants and animals have more desirable features such as better production.
  • Discussion of Epigenetics Meanings and Aspects The paper discusses epigenetics – the study of how gene expression takes place without changing the sequence of DNA.
  • Genetic Testing and Bill of Rights and Responsibilities Comparing the Patient Bill of Rights or Patient Rights and Responsibilities of UNMC and the Nebraska Methodist, I find that the latter is much broader.
  • Genetically Modified Products: Positive and Negative Sides This paper considers GMOs a positive trend in human development due to their innovativeness and helpfulness in many areas of life, even though GMOs are fatal for many insects.
  • Overview of African Americans’ Genetic Diseases African Americans are more likely to suffer from certain diseases than white Americans, according to numerous studies.
  • Genetic Linkage Disorders: An Overview A receptor gene in the human chromosome 9 is the causative agent of most blood vessel disorders. Moreover, blood vessel disorders are the major cause of heart ailments.
  • The role of genes in our food preferences.
  • The molecular mechanisms of aging and longevity.
  • Genomic privacy: ways to protect genetic information.
  • The effects of genes on athletic performance.
  • CRISPR-Cas9 gene editing: current applications and future perspectives.
  • Genetic underpinnings of human intelligence.
  • The genetic foundations of human behavior.
  • The role of DNA analysis in criminal justice.
  • The influence of genetic diversity on a species’ fate.
  • Genetic ancestry testing: the process and importance.
  • Natural Selection and Genetic Variation The difference in the genetic content of organisms is indicative that certain group of organisms will stay alive, and effectively reproduce than other organisms residing in the same environment.
  • Genetically Modified Foods: How Safe are they? This paper seeks to address the question of whether genetically modified plants meant for food production confer a threat to human health and the environment.
  • The Genetic Material Sequencing This experiment is aimed at understanding the real mechanism involved in genetic material sequencing through nucleic acid hybridization.
  • Genetically Modified Organisms in Human Food This article focuses on Genetically Modified Organisms as they are used to produce human food in the contemporary world.
  • Genetics and Public Health: Disease Control and Prevention Public health genomics may be defined as the field of study where gene sequences can be used to benefit society.
  • Genetic Disorder Cystic Fibrosis Cystic fibrosis is a genetic disorder. The clinical presentation of the disease is evident in various organs of the body as discussed in this paper.
  • The Study of the Epigenetic Variation in Monozygotic Twins The growth and development of an organism result in the activation and deactivation of different parts due to chemical reactions at strategic periods and locations
  • Human Genome and Application of Genetic Variations Human genome refers to the information contained in human genes. The Human Genome Project (HGP) focused on understanding genomic information stored in the human DNA.
  • Genetic Alterations and Cancer The paper will discuss cancer symptoms, causes, diagnosis, treatment, side-effects of treatment, and also its link with a genetic alteration.
  • Saudi Classic Aniridia Genetic and Genomic Analysis This research was conducted in Saudi Arabia to determine the genetic and genomic alterations that underlie classic anirida.
  • What Makes Humans Mortal Genetically? The causes of aging have been studied and debated about by various experts for centuries, there multiple views and ideas about the reasons of aging and.
  • Genetic Screening and Testing The provided descriptive report explains how genetic screening and testing assists clinicians in determining cognitive disabilities in babies.
  • Neurobiology: Epigenetics in Cocaine Addiction Studies have shown that the addiction process is the interplay of many factors that result in structural modifications of neuronal pathways.
  • Genetic (Single Nucleotide Polymorphisms) Analysis of Genome The advancement of the SNP technology in genomic analysis has made it possible to achieve cheap, effective, and fast methods for analyzing personal genomes.
  • Genetic Tests: Pros and Cons Genetic testing is still undergoing transformations and further improvements, so it may be safer to avoid such procedures under certain circumstances.
  • Case on Preserving Genetic Mutations in IVF In the case, a couple of a man and women want to be referred to an infertility specialist to have a procedure of in vitro fertilization (IVF).
  • Race: Genetic or Social Construction One of the most challenging questions the community faces today is the following: whether races were created by nature or society or not.
  • Huntington’s Chorea Disease: Genetics, Symptoms, and Treatment Huntington’s chorea disease is a neurodegenerative heritable disease of the central nervous system that is eventually leading to uncontrollable body movements and dementia.
  • Genetics: A Frameshift Mutation in Human mc4r This article reviews the article “A Frameshift Mutation in Human mc4r Is Associated With Dominant Form of Obesity” published by C. Vaisse, K. Clement, B. Guy-Grand & P. Froguel.
  • DNA Profiling: Genetic Variation in DNA Sequences The paper aims to determine the importance of genetic variation in sequences in DNA profiling using specific techniques.
  • Genetics: Gaucher Disease Type 1 The Gaucher disease type 1 category is a genetically related complication in which there is an automatic recession in the way lysosomes store some important gene enzymes.
  • Genetic Science Learning Center This paper shall seek to present an analysis of sorts of the website Learn Genetics by the University of Utah.
  • Benefits of Genetic Engineering The potential increase of people’s physical characteristics and lifespan may be regarded as another advantage of genetic engineering.
  • What Is Silencer Rna in Genetics RNA silencing is an evolutionary conserved intracellular surveillance system based on recognition. RNA silencing is induced by double-stranded RNA sensed by the enzyme Dicer.
  • Genetic Testing and Privacy & Discrimination Issues Genetic testing is fraught with the violation of privacy and may result in discrimination in employment, poor access to healthcare services, and social censure.
  • Genetics or New Pharmaceutical Article Within the Last Year Copy number variations (CNVs) have more impacts on DNA sequence within the human genome than single nucleotide polymorphisms (SNPs).
  • Genetic Disorders: Diagnosis, Screening, and Treatment Chorionic villus is a test of sampling done especially at the early stages of pregnancy and is used to identify some problems which might occur to the fetus.
  • Research of Genetic Disorders Types This essay describes different genetic disorders such as hemophilia, turner syndrome and sickle cell disease (SCD).
  • Genetic Mechanism of Colorectal Cancer Colorectal Cancer (CRC) occurrence is connected to environmental factors, hereditary factors, and individual ones.
  • Isolated by Genetics but Longing to Belong The objective of this paper is to argue for people with genetic illnesses to be recognized and appreciated as personages in all institutions.
  • Genetic Association and the Prognosis of Phenotypic Characters The article understudy is devoted to the topic of genetic association and the prognosis of phenotypic characters. The study focuses on such a topic as human iris pigmentation.
  • The Concept of Epigenetics Epigenetics is a study of heritable phenotypic changes or gene expression in cells that are caused by mechanisms other than DNA sequence.
  • PiggyBac Transposon System in Genetics Ideal delivery systems for gene therapy should be safe and efficient. PB has a high transposition efficiency, stability, and mutagenic potential in most mammalian cell lines.
  • A Career in Genetics: Required Skills and Knowledge A few decades ago, genetics was mostly a science-related sphere of employment. People with a degree in genetics can have solid career prospects in medicine and even agriculture.
  • Genetic Factors as the Cause of Anorexia Nervosa Genetic predisposition currently seems the most plausible explanation among all the proposed etiologies of anorexia.
  • Bioethical Issues in Genetic Analysis and Manipulations We are currently far from a point where we can claim that we should be providing interventions to some and not others due to their genetic makeup.
  • Personality Is Inherited Principles of Genetics The present articles discusses the principles of genetics, and how is human temperament and personality formed.
  • Impacts of Genetic Engineering of Agricultural Crops In present days the importance of genetic engineering grew due to the innovations in biotechnologies and Sciences.
  • Genetic foundations of rare diseases.
  • Genetic risk factors for neurodegenerative disorders.
  • Inherited cancer genes and their impact on tumor development.
  • Genetic variability in drug metabolism and its consequences.
  • The role of genetic and environmental factors in disease development.
  • Genomic cancer medicine: therapies based on tumor DNA sequencing.
  • Non-invasive prenatal testing: benefits and challenges.
  • Genetic basis of addiction.
  • The origins of domestication genes in animals.
  • How can genetics affect a person’s injury susceptibility?
  • Genetic Engineering in Food and Freshwater Issues The technology of bioengineered foods, genetically modified, genetically engineered, or transgenic crops, will be an essential element in meeting the challenging population needs.
  • Genetic Engineering and Religion: Designer Babies The current Pope has opposed any scientific procedure, including genetic engineering, in vitro fertilization, and diagnostic tests to see if babies have disabilities.
  • Op-ED Genetic Engineering: The Viewpoint The debate about genetic engineering was started more than twenty years ago and since that time it has not been resolved
  • Genetically Modified Food as a Current Issue GM foods are those kinds of food items that have had their DNA changed by usual breeding; this process is also referred to as Genetic Engineering.
  • All About the Role of Genetic Engineering and Biopiracy The argument whether genetically engineered seeds have monopolized the market in place of the contemporary seeds has been going on for some time now.
  • Biotechnology: Methodology in Basic Genetics The material illustrates the possibilities of ecological genetics, the development of eco-genetical models, based on the usage of species linked by food chain as consumers and producers.
  • Genetics Impact on Health Care in the Aging Population This paper briefly assesses the impact that genetics and genomics can have on health care costs and services for geriatric patients.
  • Concerns Regarding Genetically Modified Food It is evident that genetically modified food and crops are potentially harmful. Both humans and the environment are affected by consequences as a result of their introduction.
  • Family Genetic History and Planning for Future Wellness The patient has a family genetic history of cardiac arrhythmia, allergy, and obesity. These diseases might lead to heart attacks, destroy the cartilage and tissue around the joint.
  • Personal Genetics and Risks of Diseases Concerning genetics, biographical information includes data such as ethnicity. Some diseases are more frequent in specific populations as compared to others.
  • Genetic Predisposition to Alcohol Dependence and Alcohol-Related Diseases The subject of genetics in alcohol dependence deserves additional research in order to provide accurate results.
  • Genetically-Modified Fruits, Pesticides, or Biocontrol? The main criticism of GMO foods is the lack of complete control and understanding behind GMO processes in relation to human consumption and long-term effects on human DNA.
  • Genetic Variants Influencing Effectiveness of Exercise Training Programmes “Genetic Variants Influencing Effectiveness of Exercise Training Programmes” studies the influence of most common genetic markers that indicate a predisposition towards obesity.
  • Eugenics, Human Genetics and Their Societal Impact Ever since the discovery of DNA and the ability to manipulate it, genetics research has remained one of the most controversial scientific topics of the 21st century.
  • Genetic Interference in Caenorhabditis Elegans The researchers found out that the double-stranded RNA’s impact was not only the cells, it was also on the offspring of the infected animals.
  • Start Up Company: Genetically Modified Foods in China The aim of establishing the start up company is to develop the scientific idea of increasing food production using scientific methods.
  • Community Health Status: Development, Gender, Genetics Stage of development, gender and genetics appear to be the chief factors that influence the health status of the community.
  • Homosexuality as a Genetic Characteristic The debate about whether homosexuality is an inherent or social parameter can be deemed as one of the most thoroughly discussed issues in the contemporary society.
  • Autism Spectrum Disorder in Twins: Genetics Study Autism spectrum disorder is a behavioral condition caused by genetic and environmental factors. Twin studies have been used to explain the hereditary nature of this condition.
  • Why Is the Concept of Epigenetics So Fascinating? Epigenetics has come forward to play a significant role in the modern vision of the origin of illnesses and methods of their treatment, which results in proving to be fascinating.
  • Epigenetics and Its Effect on Physical and Mental Health This paper reviews a research article and two videos on epigenetics to developing an understanding of the phenomenon and how it affects individuals’ physical and mental health.
  • Genomics, Genetics, and Nursing Involvement The terms genomics and genetics refer to the study of genetic material. In many cases, the words are erroneously used interchangeably.
  • Genetic and Genomic Healthcare: Nurses Ethical Issues Genomic medicine is one of the most significant ways of tailoring healthcare at a personal level. This paper will explore nursing ethics concerning genetic information.
  • Medical and Psychological Genetic Counseling Genetic counseling is defined as the process of helping people understand and adapt to the medical, psychological, and familial implications of genetic contributions to disease.
  • Patent on Genetic Discoveries and Supreme Court Decision Supreme Court did not recognize the eligibility of patenting Myriad Genetics discoveries due to the natural existence of the phenomenon.
  • Genetic Testing, Its Background and Policy Issues This paper will explore the societal impacts of genetic research and its perceptions in mass media, providing argumentation for support and opposition to the topic.
  • Genetically Modified Organisms and Future Farming There are many debates about benefits and limitations of GMOs, but so far, scientists fail to prove that the advantages of these organisms are more numerous than the disadvantages.
  • Mitosis, Meiosis, and Genetic Variation According to Mendel’s law of independent assortment, alleles for different characteristics are passed independently from each other.
  • Labeling Food With Genetically Modified Organisms The wide public has been concerned about the issue of whether food products with genetically modified organisms should be labeled since the beginning of arguments on implications.
  • Diabetes Genetic Risks in Diagnostics The introduction of the generic risks score in the diagnosis of diabetes has a high potential for use in the correct classification based on a particular type of diabetes.
  • Residence and Genetic Predisposition to Diseases The study on the genetic predisposition of people to certain diseases based on their residence places emphasizes the influence of heredity.
  • Eugenics, Human Genetics and Public Policy Debates Ethical issues associated with human genetics and eugenics have been recently brought to public attention, resulting in the creation of peculiar public policy.
  • Value of the Epigenetics Epigenetics is a quickly developing field of science that has proven to be practical in medicine. It focuses on changes in gene activity that are not a result of DNA sequence mutations.
  • Genetics Seminar: The Importance of Dna Roles DNA has to be stable. In general, its stability becomes possible due to a large number of hydrogen bonds which make DNA strands more stable.
  • Genetically Modified Organisms: Position Against Genetically modified organisms are organisms that are created after combining DNAs of different species to come up with a transgenic organism.
  • Genetically Modified Organisms: Pros and Cons Genetically modified organisms are organisms that are created after combining DNA from a different species into an organism to come up with a transgenic organism.
  • Genetically Modified Organisms and Their Benefits Scientists believe GMOs can feed everyone in the world. This can be achieved if governments embrace the use of this new technology to create genetically modified foods.
  • Food Science and Technology of Genetic Modification Genetically modified foods have elicited different reactions all over the world with some countries banning its use while others like the United States allowing its consumption.
  • How Much can We Control Our Genetics, at What Point do We Cease to be Human? The branch of biology that deals with variation, heredity, and their transmission in both animals and the plant is called genetics.
  • Genetic Engineering: Gene Therapy The purpose of the present study is to discover just what benefits gene therapy might have to offer present and future generations.

Cite this post

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2022, January 16). 204 Genetics Research Topics & Essay Questions for College and High School. https://studycorgi.com/ideas/genetics-essay-topics/

"204 Genetics Research Topics & Essay Questions for College and High School." StudyCorgi , 16 Jan. 2022, studycorgi.com/ideas/genetics-essay-topics/.

StudyCorgi . (2022) '204 Genetics Research Topics & Essay Questions for College and High School'. 16 January.

1. StudyCorgi . "204 Genetics Research Topics & Essay Questions for College and High School." January 16, 2022. https://studycorgi.com/ideas/genetics-essay-topics/.

Bibliography

StudyCorgi . "204 Genetics Research Topics & Essay Questions for College and High School." January 16, 2022. https://studycorgi.com/ideas/genetics-essay-topics/.

StudyCorgi . 2022. "204 Genetics Research Topics & Essay Questions for College and High School." January 16, 2022. https://studycorgi.com/ideas/genetics-essay-topics/.

These essay examples and topics on Genetics were carefully selected by the StudyCorgi editorial team. They meet our highest standards in terms of grammar, punctuation, style, and fact accuracy. Please ensure you properly reference the materials if you’re using them to write your assignment.

This essay topic collection was updated on January 21, 2024 .

Genetic Engineering - Science method

Jameel M. Al-Khayri

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 20 April 2022

Beyond safety: mapping the ethical debate on heritable genome editing interventions

  • Mara Almeida   ORCID: orcid.org/0000-0002-0435-6296 1 &
  • Robert Ranisch   ORCID: orcid.org/0000-0002-1676-1694 2 , 3  

Humanities and Social Sciences Communications volume  9 , Article number:  139 ( 2022 ) Cite this article

21k Accesses

13 Citations

9 Altmetric

Metrics details

  • Medical humanities
  • Science, technology and society

Genetic engineering has provided humans the ability to transform organisms by direct manipulation of genomes within a broad range of applications including agriculture (e.g., GM crops), and the pharmaceutical industry (e.g., insulin production). Developments within the last 10 years have produced new tools for genome editing (e.g., CRISPR/Cas9) that can achieve much greater precision than previous forms of genetic engineering. Moreover, these tools could offer the potential for interventions on humans and for both clinical and non-clinical purposes, resulting in a broad scope of applicability. However, their promising abilities and potential uses (including their applicability in humans for either somatic or heritable genome editing interventions) greatly increase their potential societal impacts and, as such, have brought an urgency to ethical and regulatory discussions about the application of such technology in our society. In this article, we explore different arguments (pragmatic, sociopolitical and categorical) that have been made in support of or in opposition to the new technologies of genome editing and their impact on the debate of the permissibility or otherwise of human heritable genome editing interventions in the future. For this purpose, reference is made to discussions on genetic engineering that have taken place in the field of bioethics since the 1980s. Our analysis shows that the dominance of categorical arguments has been reversed in favour of pragmatic arguments such as safety concerns. However, when it comes to involving the public in ethical discourse, we consider it crucial widening the debate beyond such pragmatic considerations. In this article, we explore some of the key categorical as well sociopolitical considerations raised by the potential uses of heritable genome editing interventions, as these considerations underline many of the societal concerns and values crucial for public engagement. We also highlight how pragmatic considerations, despite their increasing importance in the work of recent authoritative sources, are unlikely to be the result of progress on outstanding categorical issues, but rather reflect the limited progress on these aspects and/or pressures in regulating the use of the technology.

Similar content being viewed by others

genetic engineering research paper topics

Genetics experience impacts attitudes towards germline gene editing: a survey of over 1500 members of the public

genetic engineering research paper topics

Between desire and fear: a qualitative interview study exploring the perspectives of carriers of a genetic condition on human genome editing

The interplay of ethics and genetic technologies in balancing the social valuation of the human genome in unesco declarations, introduction.

The ability to alter a sequence of genetic material was initially developed in microorganisms during the 1970s and 1980s (for an overview: Walters et al., 2021 ). Since then, technological advances have allowed researchers to alter DNA in different organisms by introducing a new gene or by modifying the sequence of bases in the genome. The manipulation of the genome of living organisms (typically plants) continues a course that science embraced more than 40 years ago, and may ultimately allow, if not deliberately curtailed by societal decisions, the possibility of manipulating and controlling genetic material of other living species, including humans.

Genetic engineering can be used in a diverse range of contexts, including research (e.g., to build model organisms), pharmacology (e.g., for insulin production) and agriculture (e.g., to improve crop resistance to environmental pressures such as diseases, or to increase yield). Beyond these applications, modern genetic engineering techniques such as genome editing technologies have the potential to be an innovative tool in clinical interventions but also outside the clinical realm. In the clinical context, genome editing techniques are expected to help in both disease prevention and in treatment (Porteus, 2019 ; Zhang, 2019 ). Nevertheless, genome editing technology raises several questions, including the implications of its use for human germline cells or embryos, since the technology’s use could facilitate heritable genome editing interventions (Lea and Niakan, 2019 ). This possible use has fuelled a heated debate and fierce opposition, as illustrated by the moratoriums proposed by researchers and international institutions on the use of the technology (Lander et al., 2019 ; Baltimore et al., 2015 ; Lanphier et al., 2015 ). Heritable human germline modifications are currently prohibited under various legislations (Baylis et al., 2020 ; Ledford, 2015 ; Isasi et al., 2016 ; König, 2017 ) and surveys show public concerns about such applications, especially without clear medical justification (e.g., Gaskell et al., 2017 ; Jedwab et al., 2020 ; Scheufele et al., 2017 ; Blendon et al., 2016 ).

To analyse some implications of allowing heritable genome editing interventions in humans, it is relevant to explore underlying values and associated ethical considerations. Building on previous work by other authors (e.g., Coller, 2019 ; de Wert et al., 2018 ; van Dijke et al., 2018 ; Mulvihill et al., 2017 ; Ishii, 2015 ), this article aims to provide context to the debates taking place and critically analyse some of the major pragmatic, categorical and sociopolitical considerations raised to date in relation to human heritable genome editing. Specifically, we explore some key categorical and sociopolitical considerations to underline some of the possible barriers to societal acceptance, key outstanding questions requiring consideration, and possible implications at the individual and collective level. In doing so, we hope to highlight the predominance of pragmatic arguments in the scientific debate regarding the permissible use of heritable genome editing interventions compared to categorical arguments relevant to broader societal debate.

Human genome editing: a brief history of CRISPR/Cas9

Human genome editing is an all-encompassing term for technologies that are aimed at making specific changes to the human genome. In humans, these technologies can be used in embryos or germline cells as well as somatic cells (Box 1 ). Concerning human embryos or germline cells, the intervention could introduce heritable changes to the human genome (Lea and Niakan, 2019 ; Vassena et al., 2016 ; Wolf et al., 2019 ). In contrast, an intervention in somatic cells is not intended to result in changes to the genome of subsequent generations. It is worth noting that intergenerational effects occur only when the modified cells are used to establish a pregnancy which is carried to term. Thus, a distinction has been made between germline genome editing (GGE), which may only affect in vitro embryos in research activity, and heritable genome editing (HGE), which is used in reproductive medicine (e.g., Baylis et al., 2020 ). HGE could be used to prevent the transmission of serious genetic disease; however, other applications could be imagined, e.g., creating genetic resistance or even augmenting human functions.

In the last decade, prominent technical advances in genome engineering methods have taken place, including the zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs), making human genome modification a tangible possibility (Gaj et al., 2013 ; Li et al., 2020 ; Gupta and Musunuru, 2014 ). In 2012, a study showed that the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), combined with an enzyme called Cas9, could be used as a genome‐editing tool in human cell culture (Jinek et al., 2012 ). In 2013, the use of CRISPR/Cas9 in mammalian cells was described, demonstrating the application of this tool in the genome of living human cells (Cong et al., 2013 ). In 2014, CRISPR/Cas9 germline modifications were first used in non-human primates, resulting in the birth of gene-edited cynomolgus monkeys (Niu et al., 2014 ). This was followed in 2015 by the first-ever public reported case of genome modification in non-viable human embryos (tripronuclear zygotes) (Liang et al., 2015 ). This study has caused broad concerns in the scientific community (Bosley et al., 2015 ) with leading journals rejecting publication for ethical reasons. Five years after these initial experiments were conducted, more than 10 papers have been published reporting the use of genome editing tools on human preimplantation embryos (for an overview: Niemiec and Howard, 2020 ).

Compared to counterpart genome technologies (e.g., ZFNs and TALENs), CRISPR/Cas9 is considered by many a revolutionary tool due to its efficiency and reduced cost. More specifically, CRISPR/Cas9 seems to provide the possibility of a more targeted and effective intervention in the genome involving the insertion, deletion, or replacement of genetic material (Dance, 2015 ). The potential applicability of CRISPR/Cas9 technique is considered immense, since it can be used on all type of organisms, from bacteria to plants, non-human cells, and human cells (Barrangou and Horvath, 2017 ; Hsu et al., 2014 ; Doudna and Charpentier, 2014 ; Zhang, 2019 ).

Box 1 Difference associated with germline cells and somatic cells.

For the purposes of the analysis presented in this article, one of the main differences is the heritability of genes associated with either type of cell. Germline cells include spermatozoa, oocytes, and their progenitors (e.g., embryonic cells in early development), which can give rise to a new baby carrying a genetic heritage coming from the parents. Thus, germline are those cells in an organism which are involved in the transfer of genetic information from one generation to the next. Somatic cells, conversely, constitute many of the tissues that form the body of living organisms, and do not pass on genetic traits to their progeny.

Germline interventions: the international debate

As a reaction to the 2015 study with CRISPR/Cas9, several commentaries by scientists were published regarding the future use of the technology (e.g., Bosley et al., 2015 ; Lanphier et al., 2015 ; Baltimore et al., 2015 ). Many of them focused on germline applications, due to the possibility of permanent, heritable changes to the human genome and its implications for both individuals and future generations. These commentaries included position statements calling for great caution in the use of genome editing techniques for heritable interventions in humans and suggested a voluntary moratorium on clinical germline applications of CRISPR/Cas9, at least until a broad societal understanding and consensus on their use could be reached (Brokowski, 2018 ; Baltimore et al., 2015 ; Lander, 2015 ). Such calls for a temporary ban were often seen as reminiscent of the “Asilomar ban” on recombinant DNA technology in the mid-1970s (Guttinger, 2017 ). Other commentaries asked for research to be discouraged or halted all together (Lanphier et al., 2015 ). More firmly, the United States (US) National Institutes of Health (NIH) released a statement indicating that the NIH would not fund research using genome editing technologies on human embryos (Collins, 2015 ).

In December 2015, the first International Summit on Human Gene Editing took place, hosted by the US National Academy of Sciences, the US National Academy of Medicine, the UK Royal Society, and the Chinese Academy of Sciences (NASEM). The organizing committee issued a statement about appropriate uses of the technology that included the following: “It would be irresponsible to proceed with any clinical use of germline editing unless and until (i) the relevant safety and efficacy issues have been resolved, based on appropriate understanding and balancing of risks, potential benefits, and alternatives, and (ii) there is broad societal consensus about the appropriateness of the proposed application” (NASEM, 2015 ).

Following this meeting, initiatives from different national bodies were organized to promote debate on the ethical issues raised by the new genome editing technologies and to work towards a common framework governing the development and permissibility of their use in humans. This included an ethical review published in 2016 by the Nuffield Council on Bioethics, addressing conceptual and descriptive questions concerning genome editing, and considering key ethical questions arising from the use of the technology in both human health and other contexts (Nuffield Council on Bioethics, 2016 ). In 2017, a committee on human genome editing set up by the US National Academy of Sciences (NAS) and the National Academy of Medicine (NAM) carried out a so-called consensus study “Human Genome Editing: Science, Ethics, and Governance” (NASEM, 2017 ). This study put forward a series of recommendations on policies and procedures to govern human applications of genome editing. Specifically, the study concluded that HGE could be justified under specific conditions: “In some situations, heritable genome editing would provide the only or the most acceptable option for parents who desire to have genetically related children while minimizing the risk of serious disease or disability in a prospective child” (NASEM, 2017 ). The report stimulated much public debate and was met with support and opposition since it was seen as moving forward on the permissibility of germline editing in the clinical context (Ranisch and Ehni, 2020 ; Hyun and Osborn, 2017 ).

Following the report in 2016, the Nuffield Council on Bioethics published a second report in 2018. Similar to the NASEM 2017 report, this report emphasizes the value of procreative freedom and stresses that in some cases HGE might be the only option for couples to conceive genetically related, healthy offspring. In this document, the Nuffield Council on Bioethics maintains that there are no categorical reasons to prohibit HGE. However, it highlights three kinds of interests that should be recognized when discussing prospective HGE. They are related to individuals directly affected by HGE (parents or children), other parts of society, and future generations of humanity. In this context, two ethical principles are highlighted as important to guide future evaluations of the HGE use in specific interventions: “(...) to influence the characteristics of future generations could be ethically acceptable, provided if, and only if, two principles are satisfied: first, that such interventions are intended to secure, and are consistent with, the welfare of a person who may be born as a consequence, and second, that any such interventions would uphold principles of social justice and solidarity (…)” (Nuffield Council on Bioethics, 2018 ). This report was met with criticism for (implicitly) advocating genetic heritable interventions might be acceptable even beyond the boundaries of therapeutic uses. This is particularly controversial and goes well beyond the position previously reached by the NASEM report (which limited permissible uses of genome editing at preventing the transmission of genetic variants associated to diseases) (Drabiak, 2020 ). On the other hand, others have welcomed the report and, within it, the identification of explicit guiding ethical principles helpful in moving forward the debate on HGE (Gyngell et al., 2019 ).

As a follow-up to the 2015 conference, a second International Summit on Human Gene Editing was scheduled for November 2018 in Hong Kong (National Academies of Sciences, Engineering, and Medicine, 2019 ). The event, convened by the Hong Kong Academy of Sciences, the UK Royal Society, the US National Academy of Sciences and the US National Academy of Medicine, was supposed to focus on the prospects of HGE. Just before the Summit began, news broke that He Jiankui, a Chinese researcher and invited speaker at the Summit, created the world’s first genetically edited babies resulting from the use of CRISPR/Cas9 in embryos (Regalado, 2018 ; Lovell-Badge, 2019 ). Although an independent investigation of the case is still pending, his experiments have now been reviewed in detail by some scholars (e.g., Greely, 2019 , 2021 ; Kirksey, 2020 ; Davies, 2020 ; Musunuru, 2019 ). These experiments were globally criticized, since they did not follow suitable safety procedures or ethical guidelines (Wang and Yang, 2019 ; Lovell-Badge, 2019 ; Krimsky, 2019 ), nor considered the recommendations previously put forward by international reports (NASEM, 2017 ; Nuffield Council on Bioethics, 2018 ) and legal frameworks (Araki and Ishii, 2014 ; Isasi et al., 2016 ). Different reactions were triggered, including another call by scientists for a global moratorium on clinical human genome editing, to allow time for international discussions to take place on its appropriate uses (Lander et al., 2019 ) or an outright ban on the technology (Botkin, 2019 ). There were also calls for a measured analysis of the possible clinical applications of human genome editing, without the imposition of a moratorium (Daley et al., 2019 ; Dzau et al., 2018 ).

Most countries currently have legal frameworks to ban or severely restrict the use of heritable genome editing technologies (Araki and Ishii, 2014 ; Isasi et al., 2016 ; Baylis et al., 2020 ). However, since He’s experiment, the possibility that researchers might still attempt (with some likelihood of success) to use the technology in human embryos, became a growing concern, particularly since some scientists have already announced their interest in further clinical experiments (Cyranoski, 2019 ). For many, He’s experiments highlighted the ongoing risks associated with the use of modern genome editing technology without proper safety protocols and regulatory frameworks at an international level (Ranisch et al., 2020 ). This has triggered the need to develop clear and strict regulations to be implemented if these tools are to be used in the future. This incident also led to the formation of several working groups, including the establishment of an international commission on the Clinical Use of Human Germline Genome Editing set up by the US National Academy of Medicine, the US National Academy of Sciences, and the UK’s Royal Society. In 2020, the commission published a comprehensive report on HGE, proposing a translational pathway from research to clinical use (National Academy of Medicine, National Academy of Sciences, and the Royal Society, 2020 ). Likewise, a global expert Advisory Committee was established by the World Health Organization (WHO) with the goal of developing recommendations on governance mechanisms for human genome editing. Although the committee insisted in an interim recommendation that “it would be irresponsible at this time for anyone to proceed with clinical applications of human germline genome editing” (WHO, 2019 ), it did not express fundamental concerns on the possibility that some forms of HGE will one day become a reality. In 2021, the WHO’s Advisory Committee issued some publications, including a “Framework for governance” report and a “Recommendations” report (WHO, 2021 ). Building on a set of procedural and substantive values and principles, the “Framework for Governance” report discusses a variety of tools and institutions necessary for developing appropriate national, transnational, and international governance and oversight mechanisms for HGE. Specifically, the report considers the full spectrum of possible applications of human genome editing (including epigenetic editing and human enhancement) and addresses specific challenges associated with current, possible and speculative scenarios. These range from somatic gene therapy for the prevention of serious hereditary diseases to potentially more controversial applications reminiscent of the He Jiankui case (e.g., the use of HGE in reproductive medicine outside regulatory controls and oversight mechanisms). Additionally, the “Recommendations” report proposes among other things whistleblowing mechanisms to report illegal or unethical research. It also highlights the need for a global human genome editing registry, that should also cover basic and preclinical research on different applications of genetic manipulation, including HGE. The report also emphasises the need of making possible benefits of human genome editing widely accessible.

The idea of a human genome editing registry has also been supported by the European Group on Ethics in Science and New Technologies (EGE), an advisory board to the President of the European Commission. After an initial statement on genome editing published in 2016, still calling for a moratorium on editing of human embryos (EGE, 2016 ), the EGE published a comprehensive Opinion in 2021 (EGE, 2021 ). Although the focus of this report is on the moral issues surrounding genome editing in animals and plants, HGE is also discussed. Similar to the WHO Advisory Committee, the EGE recommends for HGE not to be introduced prematurely into clinical application and that measures should be taken to prevent HGE’s use for human enhancement.

Overall, when reviewing reports and initiatives produced since 2015, common themes and trajectories can be identified. A key development is the observation that the acceptance of the fundamental permissibility of such interventions appears to be increasing. This constitutes an important change from previous positions, reflecting the fact that human germline interventions have long been considered a ‘red line’ or at least viewed with deep scepticism (Ranisch and Ehni, 2020 ). In particular, while there is agreement that it would be premature to bring HGE into a clinical context, key concerns expressed by authoritative international bodies and committees are now associated with acceptable uses of the technology, rather than its use per se. Consideration is now being given to the conditions and objectives under which germline interventions could be permissible, instead of addressing the fundamental question of whether HGE may be performed at all. The question of permissibility is often linked to the stage of technological development. These developments are remarkable, since the key ethical aspects of genome editing are now frequently confined to questions of safety or cost–benefit ratios, rather than categorical considerations.

Another common issue can also be found in recent reports: the question of involving society in the debate. There is consensus on the fact that the legitimacy and governance of HGE should not be left solely to scientists and other experts but should involve society more broadly. Since germline interventions could profoundly change the human condition, the need for a broad and inclusive public debate is frequently emphasized (Iltis et al., 2021 ; Scheufele et al., 2021 ). The most striking expression of the need for public engagement and a “broad societal consensus” can be found in the final statement by the 2015 International Summit on Human Gene Editing organizing committee, as previously quoted (NASEM, 2015 ). Furthermore, the EGE and others also stresses the need for an inclusive societal debate before HGE can be considered permissible.

The pleas for public engagement are, however, not free of tension. For example, the NASEM’s 2017 report was criticised for supporting HGE bypassing the commitment for the broad societal consensus (Baylis, 2017 ). Regarding HGE, some argue that only a “small but vocal group of scientists and bioethicists now endorse moving forward” (Andorno et al., 2020 ). Serious efforts to engage the public on the permissibility and uses of HGE have yet to be made. This issue not only lacks elaboration on approaches to how successful public participation can occur, but also how stop short of presenting views on how to translate the public’s views into ethical considerations and policy (Baylis, 2019 ).

Potential uses of heritable genome editing technology

HGE is expected to allow a range of critical interventions: (i) preventing the transmission of genetic variants associated with severe genetic conditions (mostly single gene disorders); (ii) reducing the risk of common diseases (mostly polygenic diseases), with the promise of improving human health; and (iii) enhancing human capabilities far beyond what is currently possible for human beings, thereby overcoming human limitations. The identification of different classes of potential interventions has shifted the debate to the applications considered morally permissible beyond the acceptable use of HGE (Dzau et al., 2018 ). Specifically, there are differences in the limits of applicability suggested by some of the key cornerstone publications discussed above. For example, the NASEM ( 2017 ) report suggests limiting the use of HGE to the transmission of genetic variants linked to severe conditions, although in a very regulated context. In a very similar way, the 2020 report from the International Commission on the Clinical Use of Human Germline Genome Editing suggests that the initial clinical use of HGE should be limited to the prevention of serious monogenic diseases. By contrast, the 2018 Nuffield Council on Bioethics Report does not seem to limit the uses of genome editing to specific applications, though suggests that applications should be aligned with fundamental guiding ethical principles and need to have followed public debate (Savulescu et al., 2015 ). The same report also discusses far-reaching and speculative uses of HGE that might achieve “other outcomes of positive value” (Nuffield Council on Bioethics, 2018 ). Some of these more speculative scenarios include “built-in genetic resistance or immunity to endemic disease”; “tolerance for adverse environmental conditions” and “supersenses or superabilities” (Nuffield Council on Bioethics, 2018 , p. 47).

There have been different views on the value of HGE technology. Some consider that HGE should be permissible in the context of therapeutic applications, since it can provide the opportunity to treat and cure diseases (Gyngell et al., 2017 ). For example, intervention in severe genetic disorders is considered as therapeutic and hence morally permissible, or even obligatory. Others consider HGE to be more like a public health measure, which could be used to reduce the prevalence of a disease (Schaefer, 2020 ). However, others maintain that reproductive uses of HGE are not therapeutic because there is no individual in a current state of disease which needs to be treated, rather a prospective individual to be born with a specific set of negative prospective traits (Rulli, 2019 ).

Below, HGE is discussed in the context of reproductive uses and conditions of clinical advantage over existent reproductive technologies. The HGE applications are explored regarding their potential for modifying one or more disease-related genes relevant to the clinical context. Other uses associated with enhancement of physical and mental characteristics, which are considered non-clinical (although the distinction is sometimes blurred), are also discussed.

Single gene disorders

An obvious application of HGE interventions is to prevent the inheritance of genetic variants known to be associated with a serious disease or condition. Its potential use for this purpose could be typically envisaged through assisted reproduction, i.e., as a process to provide reproductive options to couples or individuals at risk of transmitting genetic conditions to their offspring. Critics of this approach often argue that other assisted reproductive technologies (ARTs) and preimplantation screening technologies e.g., preimplantation genetic diagnosis (PGD), not involving the introduction of genetic modifications to germline cells, are already available for preventing the transmission of severe genetic conditions (Lander, 2015 ; Lanphier et al., 2015 ). These existent technologies aim to support prospective parents in conceiving genetically related children without the condition that affect them. In particular, PGD involves the creation of several embryos by in vitro fertilization (IVF) treatment that will be tested for genetic anomalies before being transferred to the uterine cavity (Sermon et al., 2004 ). In Europe, there is a range in the regulation of the PGD technology with most countries having restrictions of some sorts (Soini, 2007 ). The eligibility criteria for the use of PGD also vary across countries, depending on the range of heritable genetic diseases for which it can be used (Bayefsky, 2016 ).

When considering its effectiveness, PGD presents specific limitations, which include the rare cases in which either both prospective parents are homozygous carriers of a recessive genetic disease, or one of the parents is homozygous for a dominant genetic disease (Ranisch, 2020 ). In these cases, all embryos produced by the prospective parents will be affected by the genetic defect, and therefore it will not be possible to select an unaffected embryo after PGD. Currently, beyond adoption of course, the options available for these prospective parents include the use of a third-party egg or sperm donors.

Overall, given the rarity of cases in which it is not applicable, PGD is thought to provide a reliable option to most prospective parents for preventing severe genetic diseases to be transmitted to their offspring, except in very specific cases. HGE interventions have been suggested to be an alternative method to avoid single gene disorders in the rare cases in which selection techniques such as PGD cannot be used (Ranisch, 2020 ). It has also been proposed to use tools such as CRISPR/Cas9 to edit morphologically suitable but genetically affected embryos, and thus increase the number of embryos available for transfer (de Wert et al., 2018 ; Steffann et al., 2018 ). Moreover, HGE interventions are considered by some as a suitable alternative to PGD, even when the use of PGD could be possible. One argument in this respect is that, although not leading to the manifestation of the disease, the selected embryos can still be carriers of it. In this respect, differently from PGD, HGE interventions can be used to eliminate unwanted, potential future consequences of genetic diseases (i.e., by eliminating the critical mutation carried out in the selected embryo), with the advantage of reducing the risks of further propagation of the disease in subsequent future generations (Gyngell et al., 2017 ).

Overall, HGE interventions are thought to offer a benefit over PGD in some situations by providing a broader range of possible interventions, as well as by providing a larger number of suitable embryos. The latter effect is usually important in the cases where unaffected embryos are small in number, making PGD ineffective (Steffann et al., 2018 ). Whether these cases provide a reasonable ground to justify research and development on the clinical use of HGE remain potentially contentious. Some authors have suggested that the number of cases in which PGD cannot be effectively used to prevent transmission of genetic disorders is so marginal that clinical application of HGE could hardly be justified (Mertes and Pennings, 2015 ). Particularly when analyzing economic considerations (i.e., the allocation of already scarce resources towards clinical research involving expensive techniques with limited applicability) and additional risks associated with direct interventions. In either case of HGE being used as an alternative or a complementary tool to PGD, PGD will most likely still be used to identify those embryos that would manifest the disease and would hence require subsequent HGE.

The PGD technique, however, is not itself free of criticism and possible moral advantages of HGE over PGD have also been explored (Hammerstein et al., 2019 ; Ranisch, 2020 ). PGD remains ethically controversial since, identifying an unaffected embryo from the remaining embryos (which will not be used and ultimately discarded) amounts to the selection of ‘healthy’ embryos rather than ‘curing’ embryos affected by the genetic conditions. On the other hand, given a safe and effective application of the technology, the use of HGE is considered by many morally permissible to prevent the transmission of genetic variants known to be associated with serious illness or disability (de Miguel Beriain, 2020 ). One question that remains is whether HGE and PGD have a differing or equal moral permissibility or, at least, comparable. On issues including human dignity and autonomy, it was argued that HGE and PGD interventions can be considered as equally morally acceptable (Hammerstein et al., 2019 ). This equal moral status was, however, only valid if HGE is used under the conditions of existent gene variants in the human gene pool and to promote the child health’s best interest in the context of severe genetic diseases (Hammerstein et al., 2019 ). Because of selection and ‘therapy’, moral assessments resulted in HGE interventions being considered to some extent preferable to PGD, once safety is carefully assessed (Gyngell et al., 2017 ; Cavaliere, 2018 ). Specifically, PGD’s aim is selective and not ‘therapeutic’, which could be said to contradict the aims of traditional medicine (MacKellar and Bechtel, 2014 ). In contrast to PGD’s selectivity, HGE interventions are seen as ‘pre-emptively therapeutic’, and therefore closer to therapy than PGD (Cavaliere, 2018 ). However, it is also argued that HGE does not have curative aims, and thus it is not a therapeutic application, as there is no patient involved in the procedure to be cured (Rulli, 2019 ). On balance, there appears to be no consensus on which of the approaches, HGE and PGD, is morally a better strategy to prevent the transmission of single gene disorders, with a vast amount of literature expressing diverse positions when considering different scenarios (Delaney, 2011 ; Gyngell et al., 2017 ; Cavaliere, 2018 ; Ranisch, 2020 ; Rehmann-Sutter, 2018 ; Sparrow, 2021 ).

Polygenetic conditions

HGE is also argued to have the potential to be used in other disorders which have a polygenic disposition and operate in combination with environmental influences (Gyngell et al., 2017 , 2019 ). Many common diseases, which result from the involvement of several genes and environmental factors, fall into this category. Examples of common diseases of this type includes diabetes, coronary artery disease and different types of cancers, for which many of the genes involved were identified by studies of genome wide association (e.g., Wheeler and Barroso, 2011 ; Peden and Farral, 2011 ). These diseases affect the lives of millions of people globally, severely impacting health and often leading to death. Furthermore, these diseases have a considerable burden on national health systems. Currently, many of these diseases are controlled through pharmaceutical products, although making healthier life choices about diet and exercise can also contribute to preventing and managing some of them. Despite the interest, the use of PGD in polygenic conditions would hardly be feasible, due to the number of embryos needed to select the preferred genotype and available polygenic predictors (Karavani et al., 2019 ; Shulman and Bostrom, 2014 ).

In theory, HGE could be a potentially useful tool to target different genes and decrease the susceptibility to multifactorial conditions in current and future generations. The application of HGE to polygenic conditions is often argued by noting that the range of applicability of the technique (well beyond single gene disorders) would justify and outweigh the cost needed to develop it. However, to do so, a more profound knowledge of genetic interactions, of the role of genes and environmental factors in diverse processes would be needed to be able to modify such interconnected systems with limited risk to the individual (Lander, 2015 ). Besides, it is now understood that, depending on the genetic background, individuals will have different risks of developing polygenetic diseases (risk-associated variants), but hardly any certainty of it. In other words, although at the population level there would most likely be an incidence of the disease, it is not possible to be certain of the manifestation of the disease in any specific individual. As a result, the benefits of targeting a group of genes associated to a disease in a specific individual would have to be assessed in respect to the probability of incidence of the disease. The risk-benefit ratio for HGE is considerably increased for polygenic conditions compared to monogenic disorders. Additionally, the risks of adverse effects, e.g., off-target effects, increases with the number of genes targeted for editing. The latter effects make the potential benefits of HGE in polygenic diseases more uncertain than in single gene disorders.

Genetic enhancement

A widespread concern regarding the use of HGE is that such interventions could be used not only to prevent serious diseases, but also to enhance desirable genetic traits. Currently, our knowledge on how to genetically translate information into specific phenotypes is very limited and some argue that it might never be technically feasible to achieve comprehensive genetic enhancements using current gene editing technologies (Janssens, 2016 ; Ranisch, 2021 ). Similar to many diseases, in which different genetic and other factors are involved, many of the desirable traits to be targeted by any enhancement will most likely be the result of a combination of several different genes influenced by environment and context. Moreover, the implications for future generations of widespread genetic interventions in the human population and its potential impact on our evolutionary path are difficult to assess (Almeida and Diogo, 2019 ). Nevertheless, others argue that genetic enhancement through HGE could be possible in the near future (de Araujo, 2017 ).

There has been much discussion regarding the meaning of the terms and the conceptual or normative difference between ‘therapy’ and ‘enhancement’ (for an early discussion: Juengst, 1997 ; Parens, 1998 ). There are mainly three different meanings of ‘enhancement’ used in the literature. First, ‘enhancement’ is sometimes used to refer to measures that go beyond therapy or prevention of diseases, i.e., that transcend goals of medicine. Second, ‘enhancement’ is used to refer to measures that equip a human with traits or capacities that they typically do not possess. In both cases, the term points to equally controversial and contrasting concepts: on the one hand, those of ‘health’, ‘disease’ or ‘therapy’, and on the other, those of ‘normality’ or ‘naturalness’. Third, ‘enhancement’ is sometimes also used as an umbrella-term describing all measures that have a positive effect on a person’s well-being. According to this definition, the cure, or prevention of a disease is then also not opposed to an enhancement. Here again, this use refers to the controversial concept of ‘well-being’ or a ‘good life’.

It is beyond the scope of this article to provide a detailed review of the complex debate about enhancement (for an overview: Juengst and Moseley, 2019 ). However, three important remarks can be made: first, although drawing a clear line between ‘enhancement’ and ‘therapy’ (or ‘normality’, etc.) will always be controversial, some cases can be clearly seen as human enhancement. This could include modifications to augment human cognition, like having a greater memory, or increasing muscle mass to increase strength, which are not considered essential for human health (de Araujo, 2017 ).

Second, it is far from clear whether a plausible account of human enhancement would, in fact, be an objectivist account. While authors suggest that there is some objectivity regarding the conditions that constitute a serious disease (Habermas, 2003 ), the same might not be true for what constitutes an improvement of human functioning. It may rather turn out that an enhancement for some might be seen as a dis-enhancement for others. Furthermore, the use of the HGE for enhancement purposes can be considered at both an individual and a collective level (Gyngell and Douglas, 2015 ; Almeida and Diogo, 2019 ), with a range of ethical and biological implications. If HGE is to be used for human enhancement, this use will be in constant dependence on what we perceive as ‘normal’ functioning or as ‘health’. Therefore, factors such as cultural and societal norms will have an impact on where such boundaries are drawn (Almeida and Diogo, 2019 ).

Third, it should be noted that from an ethical perspective the conceptual question of what enhancement is, and what distinguishes it from therapy, is less important than whether this distinction is ethically significant in the first place. In this context, it was pointed out that liberal positions in bioethics often doubt that the distinction between therapy and enhancement could play a meaningful role in determining the limits of HGE (Agar, 1998 ). The consideration of genetic intervention for improving or adding traits considered positive by individuals have raised extreme positions. Some welcome the possibility to ameliorate the human condition, whilst others consider it an alarming attempt to erase aspects of our common human ‘nature’. More specifically, some authors consider HGE a positive step towards allowing humans the opportunity to obtain beneficial traits that otherwise would not be achievable through human reproduction, thus providing a more radical interference in human life to overcome human limitations (de Araujo, 2017 ; Sorgner, 2018 ). The advocates of this position are referred to as ‘bioliberals’ or ‘transhumanists’ (Ranisch and Sorgner, 2014 ), and its opponents are referred to as ‘bioconservatives’ (Fukuyama, 2002 ; Leon, 2003 ; Sandel, 2007 ). Transhumanism supports the possibility of humans taking control of their biology and interfering in their evolution with the use of technology. Bioconservatism defends the preservation and protection of ‘human essence’ and expresses strong concerns about the impact of advanced technologies on the human condition (Ranisch and Sorgner, 2014 ).

For the general public, HGE used in a clinical context seems to be less contentious compared when used as a possible human enhancement tool. Specifically, some surveys indicate that the general-public typically exhibits a reduced support for the use of genome editing interventions for enhancement purposes compared to therapeutic purposes (Gaskell et al., 2017 ; Scheufele et al., 2017 ). In contrast, many technologies and pharmaceutical products developed in the medical context to treat patients are already being used by individuals to ‘enhance’ some aspect of their bodies. Some examples include drugs to boost brain power, nutritional supplements, and brain-stimulating technologies to control mood, even though their efficiency and safety is not clear. This could suggest that views on enhancement may vary depending on the context and on what is perceived as an enhancement by individuals. It may be informative to carry out detailed population studies to explore whether real ethical boundaries and concerns exist, or whether these are purely the result of the way information is processed and perceived.

Heritable genome editing: Mapping the ethical debate

Even though genome editing methods have only been developed in the last decade, the normative implication of interventions into the human germline have been discussed since the second half of the 20th century (Walters et al., 2021 ). Some even argue that, virtually, all the ethical issues raised by genetic engineering were already being debated at that time (Paul, 2005 ). This includes questions about the distinction between somatic and germline interventions, as well as between therapy and enhancement (e.g., Anderson, 1985 ). Nevertheless, as it has been widely noted, it is difficult to draw clear lines between these two categories (e.g., McGee, 2020 ; Juengst, 1997 ), and alternative frameworks have been proposed, particularly in the context of HGE (Cwik, 2020 ). Other questions include the normative status of human nature (e.g., Ramsey, 1970 ), the impossibility of consent from future generations (e.g., Lappe, 1991 ), possible slippery slopes towards eugenics (e.g., Howard and Rifkin, 1977 ), or implications for justice and equality (e.g., Resnik, 1994 ).

When discussing the ethics of HGE, roughly three types of considerations can be distinguished: (i) pragmatic, (ii) sociopolitical, and iii) categorical (Richter and Bacchetta, 1998 ; cf. Carter, 2002 ). Pragmatic considerations focus on medical or technological aspects of HGE, such as the safety or efficacy of interventions, risk–benefit ratio, possible alternatives or the feasibility of responsible translational research. Such considerations largely depend on the state of science and are thus always provisional. For example, if high-risk technologies one day evolve into safe and reliable technologies, some former pragmatic considerations may become obsolete. Sociopolitical aspects, on the other hand, are concerned with the possible societal impact of technologies, e.g., how they can promote or reduce inequalities, support or undermine power asymmetries, strengthen, or threaten democracy. Similar to pragmatic considerations, sociopolitical reasons depend on specific contexts and empirical factors. However, these are in a certain sense ‘outside’ the technology—even though technologies and social realities often have a symbiotic relationship. While sociopolitical considerations can generate strong reasons against (or in favour of) implementing certain technologies, most often these concerns could be mitigated by policies or good governance. Categorical considerations are different and more akin to deontic reasons. They emphasise categorical barriers to conduct certain deeds. It could be argued, for instance, that the integrity of the human genome or the impossibility to obtain consent from future generation simply rule out certain options to modify human nature. Such categorical considerations may persist despite technological advances or changing sociopolitical conditions.

Comparing the bioethical literature on genetic engineering from the last century with the ongoing discussions shows a remarkable shift in the ethical deliberation. In the past, scholars from the field of medical ethics, as well as policy reports, used to focus on possible categorical boundaries for germline interventions and on possible sociopolitical consequences of such scenarios. For instance, the influential 1982 report “Splicing Life” from the US President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioural Research prominently discussed concerns about ‘playing God’ against the prospects of genetically engineering human beings, as well as possible adverse consequences of such interventions. Although this study addresses potential harms, pragmatic arguments played only a minor role, possibly due to the technical limitations at the time.

With the upcoming availability of effective genome editing techniques, the focus on the moral perspective seems to have been reversed. Increasingly, the analysis of the permissibility of germline interventions is confined to questions of safety and efficacy. This is demonstrated by the 2020 consensus study report produced by an international commission convened by the US National Academy of Medicine, the US National Academy of Sciences, and the UK’s Royal Society, which aimed at defining a translational pathway for HGE. Although the report recognizes that HGE interventions does not only raise pragmatic questions, ethical aspects were not explicitly addressed (National Academy of Medicine, National Academy of Sciences, and the Royal Society, 2020 ).

Similarly, in 2019, a report on germline interventions published by the German Ethics Council (an advisory body to the German government and parliament) emphasizes that the “previous categorical rejection of germline interventions” could not be maintained (Deutscher Ethikrat, 2019 , p. 5). The German Ethics Council continues to address ethical values and societal consequences of HGE. However, technical progress and the development of CRISPR/Cas9 tools seem to have changed the moral compass in the discussion about germline interventions.

For a comprehensive analysis of HGE to focus primarily on pragmatic arguments such as safety or efficacy would be inadequate. In recent years, developments in the field of genome editing have occurred at an incredibly fast pace. At the same time, there are still many uncertainties about the efficacy of the various gene editing methods and unexpected effects in embryo editing persist (Ledford, 2015 ). Social and political implication also remain largely unknown. To date, it has been virtually impossible to estimate how deliberate interventions into the human germline could shape future societies and to conduct a complete analysis of the safety aspects of germline interventions.

Moreover, as the EGE notes, we should be cautious not to limit the complex process of ethical decision-making to pragmatic aspects such as safety. The “‘safe enough’ narrative purports that it is enough for a given level of safety to be reached in order for a technology to be rolled out unhindered, and limits reflections on ethics and governance to considerations about safety” (EGE, 2021 , p. 20). Consequently, the EGE has highlighted the need to engage with value-laden concepts such as ‘humanness’, ‘naturalness’ or ‘human diversity’ when determining the conditions under which HGE could be justified. Even if a technology has a high level of safety, its application may still contradict ethical values or lead to undesirable societal consequences. Efficacy does not guarantee compatibility with well-established ethical values or cultural norms.

While concepts such as ‘safety’ or ‘risk’ are often defined in scientific terms, this does not take away the decision of what is ethically desirable given the technical possibilities. As Hurlbut and colleagues put it in the context of genome editing: “Limiting early deliberation to narrowly technical constructions of risk permits science to define the harms and benefits of interest, leaving little opportunity for publics to deliberate on which imaginations need widening, and which patterns of winning and losing must be brought into view” (Hurlbut et al., 2015 ). Therefore, if public engagement is to be taken seriously, cultural norms and values of those affected by technologies must also be considered (Klingler et al., 2022 ). This, however, means broadening the narrow focus on pragmatic reasons and allowing categorical as well as sociopolitical concerns in the discourse. Given the current attention on pragmatic reasons in current debates on HGE, it is therefore beneficial to revisit the categorical and sociopolitical concerns that remain unresolved. The following sections provide an overview of relevant considerations that can arise in the context of HGE and that underline many of the societal concerns and values crucial for public engagement.

Human genome ‘integrity’

Heritability seems to be one of the foremost considerations regarding germline genome editing, as it raises relevant questions on a ‘natural’ human genome and its role in ‘human nature’ (Bayertz, 2003 ). This follows an ongoing philosophical debate on ‘human nature’, at least as defined by the human genome. This has ensued a long debate on the value of the human genome and normative implications associated with its modification (e.g., Habermas, 2003 ). Although a comprehensive discussion of these topics goes beyond the scope of this paper, the human genome is viewed by many as playing an important role in defining ‘human nature’ and providing a basis for the unity of the human species (for discussion: Primc, 2019 ). Considering the implications for the individual and the collective, some affirm the right of all humans to inherit an unmodified human genome. For some authors, germline modification is considered unethical, e.g., a “line that should not be crossed” (Collins, 2015 ) or a “crime against humanity” (Annas et al., 2002 ).

The Universal Declaration on the Human Genome and Human Rights (UDHGHR) states that “the human genome underlies the fundamental unity of all members of the human family, as well as the recognition of their inherent dignity and diversity. In a symbolic sense, it is the heritage of humanity” (Article 1, UNESCO, 1997 ). The human genome is viewed as our uniquely human collective ‘heritage’ that needs to be preserved and protected. Critics of heritable genetic interventions argue that germline manipulation would disrupt this natural heritage and therefore would threaten human rights and human equality (Annas, 2005 ). Heritable human genome editing creates changes that can be heritable to future generations. For many, this can represent a threat to the unity and identity of the human species, as these modifications could have an impact on the human’s gene pool. Any alterations would then affect the evolutionary trajectory of the human species and, thus, its unity and identity.

However, the view of the human genome as a common heritage is confronted with observations of the intrinsic dynamism of the genome (Scally, 2016 ). Preservation of the human genome, at least in its current form, would imply that the genome is static. However, the human genome is dynamic and, at least in specific periods of environmental pressure, must have naturally undergone change, as illustrated by human evolution (Fu and Akey, 2013 ). The genome of any individual includes mutations that have occurred naturally. Most of them seem to be neither beneficial nor detrimental to the ability of an individual to live or to his/her health. Others can be detrimental and limiting to their wellbeing. It has been shown that, on average, each human genome has 60 new mutations compared to their parents (Conrad et al., 2011 ). At the human population level, a human genome can have in average 4.1–5 million variants compared to the ‘reference’ genome (Li and Sadler, 1991 ; Genomes Project C, 2015 ). The reference genome itself is thus a statistical entity, representing the statistic distribution of the probability of different gene variants in the whole genome. Human genomic variation is at the basis of the differences in the various physical traits present in humans (e.g., eye colour, height, etc.), as well as specific genetic diseases. Thus, the human population is comprised of genomes with a pattern of variants and not of ‘one’ human genome that needs to be preserved (Venter et al. 2001 ). The human genome has naturally been undergoing changes throughout human history. An essentialist view of nature seems to be the basis for calling for the preservation of genome integrity. However, in many ways, this view is intrinsically challenged by the interpretation portrayed by evolutionary biology of our genetic history already more than a century ago. Nevertheless, despite the dynamic state of the human genome, this in itself cannot justify the possibility of modifying the human genome. It is also worth considering that the integrity of the human genome could also be perceived in a ‘symbolic’ rather than biological literal meaning. Such an interpretation would not require a literally static genome over time, but instead suggest a boundary between ‘naturally’ occurring variation and ‘artificially’ induced change. This is rather a version of the ‘natural’/unnatural argument, rather than an argument for a literally unchanged genetic sequence.

The modification of the human genome raises complex questions about the characterization of the human species genome and if there should be limits on interfering with it. The options to modify the human genome could range from modifying only the genes that are part of the human gene pool (e.g., those genes involved in severe genetic diseases such as Huntington’s disease) to adding new variants to the human genome. Regarding variants which are part of the common range of variation found in the human population (although it is not possible to know all the existent variations), the question becomes whether HGE could also be used in any of them (e.g., even the ones providing some form of enhancement) or only in disease-associated variants and thus be restricted to the prevention of severe genetic diseases. In both cases, the integrity of the human genome is expected to be maintained with no disruption to human lineage. However, it could be argued that this type of modification is defending a somewhat conservative human nature argument, since it is considering that a particular genetic make-up is ‘safe’ or would not involve any relevant trade-offs. In contrast, a different conclusion could be drawn on the integrity of the human genome when introducing genotypical and phenotypical traits that do not lie within the common range of variation found in the population (Cwik, 2020 ). In all cases, since the implications of the technology are intergenerational and consequently, it will be important to carry out an assessment of the risks that we, as a species, are willing to take when dealing with disease and promoting health. For this, we will need to explore societal views, values and cultural norms associated with the human genome, as well as possibly existing perceptions of technology tampering with ‘nature’. To support such an assessment, it would be useful to draw on a firm concept of human nature and the values it implies, beyond what is implied by genetic aspects.

Human dignity

In several of the legally binding and non-binding documents addressing human rights in the biomedical field, human dignity is one of the key values emphasized. There are concerns that heritable genome interventions might conflict with the value of human dignity (Calo, 2012 ; Melillo, 2017 ). The concerns are considered in the context of preserving the human genome (Nordberg et al. 2020 ). More specifically, the recommendation on Genetic Engineering by the Council of Europe (1982) states that “ the rights to life and to human dignity protected by Articles 2 and 3 of the European Convention on Human Rights imply the right to inherit a genetic pattern which has not been artificially changed” (Assembly, 1982 ). This is supported by the Oviedo Convention on Human Rights and Biomedicine (1997), where Article 13 prohibits any genetic intervention with the aim of introducing a modification in the genome of any descendants. The Convention is the only international legally binding instrument that covers human germline modifications among the countries which have ratified it (Council of Europe, 1997 ). However, there have been some authors disputing the continued ban proposed by the Oviedo Convention (Nordberg et al. 2020 ). Such authors have focused on the improvements of safety and efficacy of the technology in contrast to authors focusing on its value for human dignity (Baylis and Ikemoto, 2017 ; Sykora and Caplan, 2017 ). The latter authors seem to highlight the concept of human dignity to challenge heritable interventions to the human genome.

But a question in debate has been to demonstrate how ‘human dignity’, described in such norms, relates to heritable genome interventions. The concept of the human genome as common genetic heritage, distinguishing humans from other species seems one of the main principles implied by such norms. In this view, the human genome determines who belongs to the human species and who does not, and thus confers an individual the dignity of being a human by association. This creates an inherent and strong link between the concept of human genome and the concept of human dignity and its associated legal rights (Annas, 2005 ). It could be argued that a genetic modification to an individual may make it difficult for him/her to be recognized as a human being and therefore, preservation of the human genome being important for human dignity to be maintained. This simple approach, or at least interpretation, however, ignores the fact that the human genome is not a fixed or immutable entity, as exemplified by human evolution (as discussed in the previous section). As a result, the view that HGE interventions are inherently inadmissible based on the need to preserve human dignity is contested (Beriain, 2018 ; Raposo, 2019 ). More broadly, the idea that biological traits are the basis for equality and dignity, supporting the need for the human genome to be preserved, is often challenged (Fenton, 2008 ).

It is argued that to fully assess the impact of the HGE interventions on human dignity, it will be necessary to have a better understanding of the concept of human dignity in the first place (Häyry, 2003 ; Cutas, 2005 ). For some, however, human dignity is a value that underlies questions of equality and justice. Thus, the dignity-based arguments could uncover relevant questions in the discussion of ethical implications on modifying the human genome (Segers and Mertes, 2020 ). In the Nuffield Council on Bioethics Report (2018) principles of social justice and solidarity, as well as welfare, are used to guide the debate on managing HGE interventions. Similarly, the concept of human dignity could, therefore, provide the platform upon which consideration of specific values could be discussed, broaden the debate on HGE to values shared by society.

Right of the child: informed consent

In many modern societies, every individual, including children, have the rights to autonomy and self-determination. Therefore, each person is entitled to decide for themselves in decisions relating to their body. These rights are important for protecting the physical integrity of a person. When assessing the implication of allowing individuals to take (informed) decisions relative to the use of heritable genetic interventions on someone else’s body, it is useful to reflect on the maturity of existing medical practices and, more broadly, on the additional complexities associated with the heritability of any such intervention.

In modern health-care systems, informed consent provides the opportunity for an individual to exercise autonomy and make an informed decision about a medical procedure, based on their understanding of the benefits and risks of such procedure. Informed consent is thus a fundamental principle in medical (research) ethics when dealing with human subjects (Beauchamp and Childress, 2019 ).

Heritable genome interventions present an ethical constraint on the impossibility of future generations of providing consent to an intervention on their genome (Smolenski, 2015 ). In other words, future generations cannot be involved in a decision which could limit their autonomy, since medical or health-related decisions affecting them are placed on the present generation (and, in the case of a child to be born, more specifically, on his/her parents). However, many other actions taken by parents of young children also intentionally influence the lives of those children and have been doing so for millennia (Ranisch, 2017 ). Although these actions may not involve altering their genes, many of such actions can have a long-lasting impact on a child’s life (e.g., education and diet). However, it could be argued that they do not have the irreversible effect that HGE will have in the child and future generations. In cases where parents act to expand the life choices of their children by eliminating disease (e.g., severe genetic diseases), this would normally be thought to outweigh any possible restriction on autonomy. In these cases, if assuming HGE benefits will outweigh risks regarding safety and efficacy, the use of HGE could be expected to contribute to the autonomy of the child, as him/her would be able in the future to have a better life, not constrained by the limitations of the disease. As a result, even if it is accepted that these technologies may in one way reduce the autonomy of future generations, some believe that this will often be outweighed by other effects increasing autonomy (Gyngell et al., 2017 ). In other words, it is reasonable to suppose that, when taken by parents based on good information and understanding of risks and impacts, the limitation in the autonomy of unborn children associated with heritable genetic interventions would be compensated by the beneficial effects of increasing their autonomy when born (Gyngell et al., 2017 ).

It has often been emphasized that possible genetic interventions must not curtail the future possibilities of offspring to live their lives according to their own idea of a good life. This view originated in the liberal tradition and is associated with the “right to an open future”, defended by Joel Feinberg ( 1992 ). That is an anticipatory autonomy right that parents can violate, even though the offspring could exercise it only in the future. Feinberg has discussed the right to an open future in the context of religious education. However, various authors have applied this argument to the question of permissible and desirable genetic interventions (Buchanan et al., 2000 ; Glover, 2006 ; Agar, 1998 ). Accordingly, germline modifications or selection would have to allow the offspring to have a self-determined choice of life plans. It would therefore be necessary to provide offspring with genetic endowments that represent the so-called all-purpose goods. These goods are “useful and valuable in carrying out nearly any plan of life or set of aims that humans typically have” (Buchanan et al., 2000 , p. 167). While this claim is certainly appealing, in reality it will be difficult to identify phenotypes that will only broaden and do not narrow the spectrum of life plans. Take, for example, body size: a physique favourable for a basketball player would at the same time be less favourable in successfully riding horses as a professional jockey and vice versa. Increasing some opportunities often means reducing other ones.

The arguments of informed consent and open future need to be explored outside the realm of severe genetic diseases by considering other scenarios (including scenarios of genetic enhancement). Hereby, the effects of the interventions on the autonomy of future generations can be assessed more comprehensively. As for enhancement, decisions outside the realm of health can be more controversial, as the traits that parents see fit to generate enhancement may inadvertently condition a child’s choices in the future in an undesirable way.

If HGE is to be used, questions on how the consent and information should be provided to parents to fully equip them to decide in the best interests of the child will need to be assessed (Evitt et al., 2015 ). This is evident if considering the informed consent used in the study conducted by He Jiankui. One of the many criticisms of the study was the inadequacy of the informed consent process provided to the parents, which did not meet regulatory or ethical standards (Krimsky, 2019 ; Kirksey, 2020 ). This raises questions on how best to achieve ethical and regulatory compliance regarding informed consent in applications of HGE (Jonlin, 2020 ).

Discrimination of people with disabilities

For many years, there has been an effort to develop selective reproduction technologies to prevent genetic diseases or conditions leading to severe disabilities. These forms of reproductive genetic disease prevention are based on effectively filtering and eradicating embryos or foetuses affected by genetic diseases. There are divergent views regarding the use of these technologies. For example, the disability rights movement argues that the use of technologies such as prenatal testing (PNT) and PGD discriminates against people living with a disability (Scully, 2008 ; Asch and Barlevy, 2012 ). The key arguments presented supporting this view are: (i) the limited value of a genetic trait in respect to the life of an embryo (Parens and Asch, 2000 ) and (ii) the ‘expressivist’ argument (Buchanan, 1996 ; Shakespeare, 2006 ). The first argument is based on the critique that a disabling trait is viewed as being more significant than the life of an embryo/foetus. This argument was initially used in the context of prenatal testing and selective termination, and has also been applied in the context of new technologies like PGD (Parens and Asch, 2000 ). The second, the ‘expressivist’ argument, argues that the use of these technologies expresses negative or discriminatory views on the disabling conditions they are targeting and subsequently on the people living with these conditions (Asch and Wasserman, 2015 ). The expressivist argument, however, has been challenged by stressing the importance of differentiating between the disability itself and the people living with disability (Savulescu, 2001 ). The technology’s use is aimed at reducing the incidence of disability, and it does not have a position of value on the people that have a specific condition.

When applying the same arguments to the use of HGE in comparison with other forms of preventing heritable genetic diseases, some important considerations can be made. Regarding the first argument, in contrast to selective reproduction technologies, HGE may allow the removal of the disabled trait with the aim of ensuring survival of the affected embryo. However, most likely, PGD would be used before and after the editing of the embryos to help the identification of the ones requiring intervention and verifying the efficiency of the genetic intervention (de Miguel Beriain, 2018 ; Ranisch, 2020 ). Similarly, the expressivist argument continues to be challenged if the application of human HGE is envisaged in the context of severe genetic diseases (e.g., Tay-Sachs and Huntington’s disease). It has been argued that the choice to live without a specific genotype neither implies discriminating people living with a respective condition nor considering the life of people living with the disease not worth living or less valuable (Savulescu, 2001 ). In other words, the expressivist argument is not a valid or a sufficiently strong ethical argument for prospective parents not to have the option to have a future child without a genetic disease.

It is worth noting that the debate on the use of reproduction technologies for the prevention of genetic diseases is not at all new, and that modern HGE techniques only serve to highlight ethical concerns that have been expressed for a long time. In the case of preventing genetic diseases, the application of both arguments to HGE intervention could be considered not to provide sufficiently strong ethical arguments to limit the use of the technology in the future. However, it is worth exploring whether scientific innovations like HGE are either ameliorating or reinvigorating ethical concerns expressed so far, for example in creating a future that respects or devalues disability as a part of the human condition. Perhaps even more importantly, given their potential spectrum of possible intervention and efficacy, it is important to reflect on whether the broad use of HGE could have an impact on concepts of disability and ‘normality’ as a whole distorting an already unclear ethical line between clinical and non-clinical interventions. Moreover, research work exploring the relationship between disability and identity indicated that personhood with disability can be an important component to people’s identity and interaction with the world. In the case of heritable human genome editing, it is not yet known how this technology will impact the notions of identity and personhood in people who had their germline genome modified (Boardman and Hale, 2018 ). For further progress on these issues public engagement might be important to gather different views and perceptions on the issue.

Justice and equality

Beside the limits of applicability, another common ethical concern associated with the use of genome editing technologies, as with many new technologies, is the question of accessibility (Baumann, 2016 ). Due to the large investments that will need to be made for continuing development of the technology, there is a (perceived) risk of it becoming an expensive technology that only a few wealthy individuals in any population (and/or only citizens in comparatively rich countries) can access. In addition, there is concern that patenting of genome editing technologies will delay widespread access or lead to unequal distribution of corresponding benefits (Feeney et al., 2018 ). This may, consequently, contribute to further increases in existing disparities, since individuals or countries with the means of accessing better health treatments may have economic advantages (Bosley et al., 2015 ). This could enhance inequality at different levels, depending on the limits of applicability of the technology. Taken to its extreme, the use of the technology could allow germline editing to create and distinguish classes of individuals that could be defined by the quality of their manipulated genome.

The concern that the possibility of germline interventions in humans could entrench or even increase inequalities has accompanied the discussion about ethics of genetic interventions from the very beginning until today (e.g. Resnik, 1994 ). In ‘Remaking Eden’ Lee Silver envisioned a divided future society, consisting of a genetically enhanced class, the “genRich”, and a genetic underclass, the “naturals” (Silver, 1997 ). Françoise Baylis recently echoed such concerns regarding future HGE interventions, namely that “unequal access to genome-editing technologies will both accentuate the vagaries of the natural lottery and introduce an unjust genetic divide that mirrors the current unjust economic and social divide between rich and poor individuals” (Baylis, 2019 , p. 67). At the same time, the possibility to genetically intervene in the ‘natural lottery’ has also been associated with the hope of countering natural inequalities and increase equality of opportunities. Robert Sinsheimer may be among the first to envision such a ‘new’ individualistic type of ‘eugenics’ that “would permit in principle the conversion of all of the unfit to the highest genetic level” (Sinsheimer, 1969 , p. 13). More recently, in the book ‘From chance to choice: Genetics and justice’ (2000) it is argued that “equality of opportunity will sometimes require genetic interventions and that the required interventions may not always be limited to the cure or prevention of disease” (Buchanan et al., 2000 , p. 102). When discussing issues related to justice and equality, it will be important to involve a broad spectrum of stakeholders to better evaluate the economic effects of the commercialization of the technology.

Conclusions

With ongoing technological developments and progress with guiding and regulating its acceptable use, the possibility of HGE interventions in the human genome is closer than ever to becoming a reality. The range of HGE applicability can go from preventing the transmission of genetic variants associated with severe genetic conditions (mostly single gene disorders but also, to a lesser extent, polygenic diseases) to genetic enhancements. The permissibility of HGE has often been considered on the basis of possible uses, with therapeutic uses generally considered more acceptable than non-therapeutic ones (including human enhancement). When compared with other technologies with similar therapeutic uses (e.g., PGD) already in use, HGE presents similarities and differences. However, from an ethical acceptability perspective, there is currently no consensus on whether HGE is more or less acceptable than PGD.

An important conclusion of this study is that, along with the technological development of genome germline editing techniques, a shift in the focus of analyses on its applicability has been observed. More specifically, the emphasis on pragmatic considerations seems to have increased substantially compared with the previous emphasis on categorical and sociopolitical arguments. Many of the most recent publications from authoritative advisory committees and institutions discuss the permissibility of HGE interventions primarily on the basis of pragmatic arguments, in which safety and efficacy are the main focus. Since germline interventions could profoundly change the human condition, the need for a broad and inclusive public debate on this topic has also been frequently emphasized. However, limited consideration has been given to approaches to carry out such action effectively, and on how to consider their outcomes in relevant policies and regulations.

It is currently not entirely clear whether: (i) the pragmatic position championed by such authoritative sources builds on the premise that the ethical debate has reached sufficient maturity to allow a turning point; (ii) the lack of progress has somewhat hampered further consideration of issues still considered controversial; (iii) regulatory pressure is somewhat de facto pushing forward the introduction of such technologies despite critical, unresolved ethical issues. Based on the analysis presented in this paper, a combination of the latter factors (ii and iii) seems more likely. In engaging the public in societal debates on the acceptability of such technologies, unresolved questions are likely to re-emerge. Specifically, it is possible that categorical and sociopolitical considerations will gain renewed focus during public engagement. In other words, when involving the public in discussions on HGE, it is possible that cultural values and norms, not only questions of safety and efficacy, will re-emerge as crucial to the acceptance of the technology (What is meant by natural? What is understood by humanity? etc.).

HGE interventions put into question specific biological and moral views of individuals, including views on the value of the human genome, on human dignity, on informed consent, on disability and on societal equality and justice. The range of ethical issues affected by the introduction of such technology, often still characterised by non-convergent, and at times conflicting, positions, illustrate the importance of further consideration of these issues in future studies and public engagement activities. As a result, society’s moral uncertainties will need to be assessed further to support the regulation of HGE technologies and form a well-informed and holistic view on how they can serve society’s common goals and values.

Data availability

This statement is not applicable.

Agar N (1998) Liberal eugenics. Public Aff Q 12(2):137–155

PubMed   Google Scholar  

Almeida M, Diogo R (2019) Human enhancement: genetic engineering and evolution. Evol Med Public Health 1:183–189. https://doi.org/10.1093/emph/eoz026

Article   Google Scholar  

Anderson WF (1985) Human Gene Therapy: scientific and ethical considerations. J Med Philos 10(3):275–291. https://doi.org/10.1093/jmp/10.3.275

Article   CAS   PubMed   Google Scholar  

Andorno R, Baylis F, Darnovsky M, Dickenson D, Haker H, Hasson K et al. (2020) Geneva statement on heritable human genome editing: the need for course correction. Trends Biotechnol 38(4):351–354

Annas GJ (2005) Bioethics: crossing human rights and health law boundaries. Oxford University Press, New York, NY

Google Scholar  

Annas GJ, Andrews LB, Isasi RM (2002) Protecting the endangered human: toward an international treaty prohibiting cloning and inheritable alterations. Am J Law Med 28(2–3):151–178

Article   PubMed   Google Scholar  

Araki M, Ishii T (2014) International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol 12(1):108–120

Article   CAS   PubMed   PubMed Central   Google Scholar  

Asch A, Barlevy D (2012) Disability and genetics: a disability critique of pre-natal testing and pre-implantation genetic diagnosis. eLS. Wiley, Chichester

Asch A, Wasserman D (2015) Reproductive testing for disability. In: Arras JD, Fenton E, Kukla R (eds.) Routledge companion to bioethics. Routledge, London

Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G et al. (2015) A prudent path forward for genomic engineering and germline gene modification. Science 348(6230):36. https://doi.org/10.1126/science.aab1028

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Baltimore D, Baylis F, Berg P et al. (2015) On human gene editing: international summit statement. News release, December 3, International summit on human gene editing. http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12032015a

Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2(17092):1–9. https://doi.org/10.1038/nmicrobiol.2017.92

Article   CAS   Google Scholar  

Baumann M (2016) CRISPR/Cas9 genome editing: new and old ethical issues arising from a revolutionary technology. Nanoethics 10:139–59

Bayefsky MJ (2016) Comparative preimplantation genetic diagnosis policy in Europe and the USA and its implications for reproductive tourism. Reprod Biomed Soc Online 3:41–47

Bayertz K (2003) Human nature: how normative might it be? J Med Philos 28(2):131–150. https://doi.org/10.1076/jmep.28.2.131.14210

Baylis F (2017) Human germline genome editing and broad societal consensus. Nat Hum Behav 1:0103

Baylis F (2019) Human genome editing: our future belongs to all of us. Issues Sci Technol 35:42–44

Baylis F, Ikemoto L (2017) The Council of Europe and the prohibition on human germline genome editing. EMBO Rep 8(12):2084–2085. https://doi.org/10.15252/embr.201745343

Baylis F, Darnovsky M, Hasson K, Krahn TM (2020) Human Germ Line and Heritable Genome Editing: the global policy landscape. CRISPR J 3(5):365–377. https://doi.org/10.1089/crispr.2020.0082 . PMID: 33095042

Beauchamp TL, Childress JF (2019) Principles of biomedical ethics. Oxford University Press, USA

Blendon RJ, Gorski MT, Benson JM (2016) The public and the gene-editing revolution. New Engl J Med 374(15):1406–1411. https://doi.org/10.1056/NEJMp1602010

Boardman FK, Hale R (2018) How do genetically disabled adults view selective reproduction? Impairment, identity, and genetic screening. Mol Genet Genom Med 6(6):941–956

Bosley KS, Botchan M, Bredenoord AL, Carroll D, Charo RA, Charpentier E et al. (2015) CRISPR germline engineering: the community speaks. Nat Biotechnol 33(5):478–486. https://doi.org/10.1038/nbt.3227

Botkin JR (2019) The case for banning heritable genome editing. Genet Med 22:487–489

Brokowski C (2018) Do CRISPR germline ethics statements cut it? CRISPR J 1(2):115–125. https://doi.org/10.1089/crispr.2017.0024

Article   PubMed   PubMed Central   Google Scholar  

Buchanan A (1996) Choosing who will be disabled: genetic intervention and the morality of inclusion. Soc Philos Policy 13:18–46

Buchanan A, Brock DW, Daniels N, Wikler D (2000) From chance to choice: genetics and justice. Cambridge University Press

Calo Z (2012) Human dignity and health law: personhood in recent bioethical debates. Notre Dame J Law Ethics Public Policy 26:473–499

Carter L (2002) The ethics of germ line gene manipulation—a five dimensional debate. Monash Bioeth Rev 21(4):S66–S81. https://doi.org/10.1007/BF03351288

Cavaliere G (2018) Genome editing and assisted reproduction: curing embryos, society or prospective parents? Med Health Care Phil 21(2):215–25

Coller BS (2019) Ethics of human genome editing. Annu Rev Med 27(70):289–305. https://doi.org/10.1146/annurev-med-112717-094629

Council of Europe (1997) Convention for the protection of human rights and dignity of the human being with regard to the application of biology and medicine: convention on human rights and biomedicine. COE, Oviedo

Collins, F. (2015) Director, National Institutes of Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-nih-funding-research-using-gene-editing-technologieshuman-embryos

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, Zhang Y, Casals F et al. (2011) Variation in genome-wide mutation rates within and between human families. Nat Genet 43(7):712–4. https://doi.org/10.1038/ng.862

Cutas DE (2005) Looking for the meaning of dignity in the bioethics convention and the cloning protocol. Health Care Anal 13(4):303–313

Cwik B (2020) Revising, correcting, and transferring genes. Am J Bioeth 20(8):7–18

Cyranoski D (2019) Russian biologist plans more CRISPR-edited babies. Nature 570(7760):145–147

Article   ADS   CAS   PubMed   Google Scholar  

Daley GQ, Lovell-Badge R, Steffann J (2019) After the storm—a responsible path for genome editing. N Engl J Med 380:897–899

de Araujo M (2017) Editing the genome of human beings: CRISPR-Cas9 and the ethics of genetic enhancement. J Evol Technol 27(1):24–42. http://jetpress.org/v27.1/araujo.pdf

Dance A (2015) Core concept: CRISPR gene editing. Proc Natl Acad Sci USA 112:6245–6246

Davies K (2020) Editing humanity: the CRISPR revolution and the new era of genome editing. Pegasus Books, New York, NY

Delaney JJ (2011) Possible people, complaints, and the distinction between genetic planning and genetic engineering. J Med Ethics 37(7):410–414

Deutscher Ethikrat, (2019) Intervening in the Human Germline. https://www.ethikrat.org/en/publications/publication-details/?tx_wwt3shop_detail%5Bproduct%5D=119&tx_wwt3shop_detail%5Baction%5D=index&tx_wwt3shop_detail%5Bcontroller%5D=Products&cHash=25e88ad52f8b75d311510a9bf7a8dc86

Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

Drabiak K (2020) The Nuffield Council’s green light for genome editing human embryos defies fundamental human rights law. Bioethics 34:223–227

Dzau VJ, McNutt M, Bai C (2018) Wake-up call from Hong Kong. Science 362(6420):1215. https://doi.org/10.1126/science.aaw3127

de Miguel Beriain I (2020) Gene editing and disabled people: a response to Felicity Boardman. J Community Genet 11(3):241–243

de Miguel Beriain I (2018) Human dignity and gene editing. EMBO Rep 19:e46789

de Wert G, Heindryckx B, Pennings G, Clarke A, Eichenlaub-Ritter U, van El CG (2018) Responsible innovation in human germline gene editing: background document to the recommendations of ESHG and ESHRE. Eur J Hum Genet 26(4):450–470. https://doi.org/10.1038/s41431-017-0077-z

EGE (2016) Statement on gene editing. https://ec.europa.eu/info/sites/default/files/research_and_innovation/ege/gene_editing_ege_statement.pdf

EGE (2021) Ethics of genome editing. https://ec.europa.eu/info/sites/default/files/research_and_innovation/ege/ege_ethics_of_genome_editing-opinion_publication.pdf

Evitt NH, Mascharak S, Altman RB (2015) Human germline crispr-cas modification: toward a regulatory framework. Am J Bioeth 15(12):25–29

Feeney O, Cockbain J, Morrison M, Diependaele L, Van Assche K, Sterckx S (2018) Patenting foundational technologies: lessons from CRISPR and other core biotechnologies. Am J Bioeth 18(12):36–48

Fenton E (2008) Genetic enhancement – a threat to human rights? Bioethics 22(1):1–7 https://doi.org/10.1111/j.1467-8519.2007.00564.x

Feinberg J (1992) The child’s right to an open future. In: Feinberg J (ed.) Freedom and fulfillment: philosophical essays. Princeton University Press, Princeton, pp. 6–97

Fu W, Akey JM (2013) Selection and adaptation in the human genome. Annu Rev Genom Hum Genet 14:467–89

Fukuyama F (2002) Our posthuman future: consequences of the biotechnology revolution. Picador, New York, NY

Gaj T, Gersbach CA, Barbas III CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

Gaskell G, Bard I, Allansdottir A, da Cunha RV, Eduard P, Hampel J et al. (2017) Public views on gene editing and its uses. Nat Biotechnol 35(11):1021–1023. https://doi.org/10.1038/nbt.3958

Genomes Project C et al. (2015) A global reference for human genetic variation. Nature 526(7571):68–74

Article   ADS   CAS   Google Scholar  

Greely HT (2019) Human germline genome editing: an assessment. CRISPR J 2(5):253–265. https://doi.org/10.1089/crispr.2019.0038

Glover J (2006) Choosing children: genes, disability, and design. Oxford University Press, Oxford

Book   Google Scholar  

Greely HT (2021) CRISPR people: the science and ethics of editing humans. MIT Press, Cambridge, MA; London, UK

Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Investig 124(10):4154–4161. https://doi.org/10.1172/JCI72992

Gyngell C, Douglas T, Savulescu J (2017) The ethics of germline gene editing. J Appl Philosy 34(4):498–513

Gyngell C, Bowman-Smart H, Savulescu J (2019) Moral reasons to edit the human genome: picking up from the Nuffield report. J Med Ethics 0:1–10. https://doi.org/10.1136/medethics-2018-105084

Gyngell C, Douglas T (2015) Stocking the genetic supermarket: reproductive genetic technologies and collective action problems. Bioethics 29(4):241–250

Guttinger S (2017) Trust in science: CRISPR-Cas9 and the ban on human germline editing. Sci Eng Eth 1–20. https://doi.org/10.1007/s11948-017-9931-1

Habermas J (2003) The future of human nature. Polity Press, Cambridge

Hammerstein AL, Eggel M, Biller-Andorno N (2019) Is selecting better than modifying? An investigation of arguments against germline gene editing as compared to preimplantation genetic diagnosis. BMC Med Eth 83:20

Häyry M (2003) Philosophical arguments for and against human reproductive cloning. Bioethics 17(5–6):447–460

Howard T, Rifkin J (1977) Who should play God? The artificial creation of life and what it means for the future of the human race. Dell Publ. Co

Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

Hurlbut JB, Saha K, Jasanoff S (2015) CRISPR democracy: gene editing and the need for inclusive deliberation. Issues Sci Technol 32(1):25–32

Hyun I, Osborn C (2017) Query the merits of embryo editing for reproductive research now. Nat Biotechnol 35(11):1023–1025. https://doi.org/10.1038/nbt.4000 . PMID: 29121025

Iltis AS, Hoover S, Matthews KRW (2021) Public and stakeholder engagement in developing human heritable genome editing policies: what does it mean and what should it mean? Front Political Sci 3. https://www.frontiersin.org/article/10.3389/fpos.2021.730869

Isasi R, Kleiderman E, Knoppers BM (2016) Genetic technology regulation: editing policy to fit the genome? Science 351(6271):337–339. https://doi.org/10.1126/science.aad6778

Ishii T (2015) Germline genome-editing research and its socio-ethical implications. Trends Mol Med 21(8):473–481. https://doi.org/10.1016/j.molmed.2015.05.006

Janssens AC (2016) Designing babies through gene editing: science or science fiction? Genet Med 18(12):1186–1187. https://doi.org/10.1038/gim.2016.28

Jedwab A, Vears DF, Tse C, Gyngell C (2020) Genetics experience impacts attitudes towards germline gene editing: a survey of over 1500 members of the public. J Hum Genetics65(12):1055–1065

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) Programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

Jonlin EC (2020) Informed consent for human embryo genome editing. Stem Cell Rep 14(4):530–537. https://doi.org/10.1016/j.stemcr.2020.03.010

Juengst ET (1997) Can enhancement be distinguished from prevention in genetic medicine? J Med Philos 22(2):125–142

Juengst, ET, Moseley D (2019) Human enhancement. In: Zalta EN (ed.) The Stanford encyclopedia of philosophy (Summer 2019 Edition), Metaphysics Research Lab, Philosophy Department, Stanford University, Stanford

Karavani E, Zuk O, Zeevi D, Barzilai N, Stefanis NC, Hatzimanolis A et al. (2019) Screening human embryos for polygenic traits has limited utility. Cell 179(6):1424–1435

Kirksey E (2020) The Mutant Project: inside the global race to genetically modify humans. St. Martin’s Press

Klingler C, Wiese L, Arnason G, Ranisch R (2022) Public engagement with brain organoid research and application: lessons from genome editing. Am J Bioeth Neurosci 13(2):98–100. https://doi.org/10.1080/21507740.2022.2048733

König H (2017) The illusion of control in germline-engineering policy. Nat Biotechnol 35(6):502–506. https://doi.org/10.1038/nbt.3884

Krimsky S (2019) Ten ways in which He Jiankui violated ethics. Nat Biotechnol 37(1):19–20. https://doi.org/10.1038/nbt.4337

Lander ES (2015) Brave new genome. N Engl J Med 373(1):5–8

Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C et al. (2019) Adopt a moratorium on heritable genome editing. Nature 567(7747):165–168. https://doi.org/10.1038/d41586-019-00726-5

Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J (2015) Don’t edit the human germ line. Nature 519(7544):410–1. https://doi.org/10.1038/519410a

Lappe M (1991) Ethical issues in manipulating the human germ line. J Med Philos 16(6):621–639. https://doi.org/10.1093/jmp/16.6.621

Lea RA, Niakan KK (2019) Human germline genome editing. Nat Cell Biol 21(12):1479–1489. https://doi.org/10.1038/s41556-019-0424-0

Ledford H (2015) The landscape for human genome editing. Nature 526(7573):310–311

Leon K (2003) Ageless bodies, happy souls: biotechnology and the pursuit of perfection. New Atlantis 1:9–28

Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5(1):1–23

Li WH, Sadler LA (1991) Low nucleotide diversity in man. Genetics 129(2):513–23

Liang P, Xu Y, Zhang X et al. (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372

Lovell-Badge R (2019) CRISPR babies: a view from the centre of the storm. Development 146(3):dev175778

MacKellar C, Bechtel C eds. (2014) The ethics of the new eugenics. Berghahn Books, New York, Oxford

McGee A (2020) Using the therapy and enhancement distinction in law and policy. Bioethics 34(1):70–80

Melillo TR (2017) Gene editing and the rise of designer babies. Vand J Trans Law 50:757–790

Mertes H, Pennings G (2015) Modification of the embryo’s genome: more useful in research than in the clinic. Am J Bioeth 15(12):52–53. https://doi.org/10.1080/15265161.2015.1103813

Mulvihill JJ, Capps B, Joly Y, Lysaght T, Zwart HAE, Chadwick R, International Human Genome Organisation Committee of Ethics Law and Society (2017) Ethical issues of CRISPR technology and gene editing through the lens of solidarity. Br Med Bull 122(1):17–29. https://doi.org/10.1093/bmb/ldx002

Musunuru K (2019) The CRISPR generation: the story of the world’s first gene-edited babies. BookBaby.

National Academies of Sciences, Engineering, and Medicine (2015) International summit on human gene editing: a global discussion. The National Academies Press, Washington

National Academy of Sciences, National Academy of Medicine (2017) Human genome editing: science, ethics and governance. The National Academies Press, Washington, DC

National Academy of Medicine, National Academy of Sciences, and the Royal Society (2020) Heritable human genome editing. The National Academies Press, Washington, DC

Niemiec E, Howard HC (2020) Ethical issues related to research on genome editing in human embryos. Comput Struct Biotechnol J 18:887–896

National Academies of Sciences, Engineering, and Medicine (2019) Second International Summit on human genome editing: continuing the global discussion: proceedings of a workshop in brief. The National Academies Press, Washington

Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L et al. (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156(4):836–843

Nordberg A, Minssen T, Feeney O, de Miguel Beriain I, Galvagni L, Wartiovaara K (2020) Regulating germline editing in assisted reproductive technology: an EU cross‐disciplinary perspective. Bioethics 34(1):16–32

Nuffield Council on Bioethics (2016) Genome Editing: an ethical review. https://www.nuffieldbioethics.org/publications/genome-editing-an-ethical-review

Nuffield Council on Bioethics (2018) Genome editing and human reproduction: social and ethical issues. http://nuffieldbioethics.org/project/genome-editing-human-reproduction

Parens E, Asch A (2000) The disability rights critique of prenatal testing: reflections and recommendations. In: Parens E, Asch A (eds.) Prenatal testing and disability rights. Georgetown University Press, Washington

Parliamentary Assembly (1982) Recommendation on genetic engineering. In Recommendation 934. Council of Europe

Paul D (2005) Genetic engineering and eugenics: the uses of history. In: Baillie HW, Casey TK (eds.) Is human nature obsolete? Genetics, bioengineering, and the future of the human condition. MIT Press, Cambridge Mass

Peden JF, Farrall M (2011) Thirty-five common variants for coronary artery disease: the fruits of much collaborative labour. Hum Mol Genet 20:R198–205

Porteus MH (2019) A new class of medicines through DNA editing. New Engl J Med 380(10):947–959. https://doi.org/10.1056/NEJMra1800729

Parens ET (Ed.) (1998) Enhancing human traits: ethical and social implications. Georgetown University Press, Washington, DC

Primc N (2020) Do we have a right to an unmanipulated genome? The human genome as the common heritage of mankind Bioethics 34(1):41–48

Article   MathSciNet   PubMed   Google Scholar  

Ramsey P (1970) Fabricated man: the ethics of genetic control. Yale University Press, New Haven

Ranisch R (2017) Germline genome editing and the functions of consent. Am J Bioeth 17(12):27–29

Ranisch R (2020) Germline genome editing versus preimplantation genetic diagnosis: Is there a case in favour of germline interventions? Bioethics 34:60–69. https://doi.org/10.1111/bioe.12635

Ranisch R, Ehni HJ (2020) Fading red lines? Bioethics of germline genome editing. Bioethics 34(1):3–6. https://doi.org/10.1111/bioe.12709

Ranisch R, Rudolph T, Cremer HJ, Knoepffler N (2020) Ordo-responsibility for germline gene editing. CRISPR J 3(1):37–43

Ranisch R (2021) When CRISPR meets fantasy: transhumanism and the military in the age of gene editing. In: Transhumanism: the proper guide to a posthuman condition or a dangerous idea?. Springer, Cham, pp. 111–120

Ranisch R, Sorgner SL (2014) Introducing post-and transhumanism. In: Ranisch & Sorgner (eds.) Post-and transhumanism: an introduction. pp. 7–27. Peter Lang Group AG, Switzerland

Raposo VL (2019) Gene editing, the mystic threat to human dignity. Bioeth Inq 16:249–257. https://doi.org/10.1007/s11673-019-09906-4

Regalado A (2018) EXCLUSIVE: Chinese scientists are creating CRISPR babies. MIT Technol Rev. https://www.technologyreview.com/s/612458/exclusive-chinese-scientists-are-creating-crispr-babies/ . Accessed 4 Aug 2021

Rehmann-Sutter C (2018) Why human germline editing is more problematic than selecting between embryos: ethically considering intergenerational relationships. New Bioeth 24(1):9–25. https://doi.org/10.1080/20502877.2018.1441669

Resnik D (1994) Debunking the slippery slope argument against human germ-line gene therapy. J Med Philos 19(1):23–40. https://doi.org/10.1093/jmp/19.1.23

Richter G, Bacchetta MD (1998) Interventions in the human genome: some moral and ethical considerations. J Med Philos 23(3):303–317. https://doi.org/10.1076/jmep.23.3.303.2581

Rulli T (2019) Reproductive CRISPR does not cure disease. Bioethics 33:1072–1082

Sandel M (2007) The case against perfection: ethics in the age of genetic engineering. The Belknap Press of Harvard University Press, Cambridge

Savulescu J (2001) Procreative beneficence: why we should select the best children. Bioethics 15(5–6):413–26

Savulescu J, Pugh J, Douglas T, Gyngell C (2015) The moral imperative to continue gene editing research on human embryos. Protein Cell 6:476–479

Scally A (2016) The mutation rate in human evolution and demographic inference. Curr Opin Genet Dev 41:36–43

Schaefer GO (2020) Can reproductive genetic manipulation save lives? Med Health Care Philos 23(3):381–386

Scheufele DA, Xenos MA, Howell EL, Rose KM, Brossard D, Hardy BW (2017) U.S. attitudes on human genome editing. Science 357(6351):553–554. https://doi.org/10.1126/science.aan3708

Scheufele DA, Krause NM, Freiling I, Brossard D (2021) What we know about effective public engagement on CRISPR and beyond. Proc Natl Acad Sci USA 118(22). https://doi.org/10.1073/pnas.2004835117

Scully JL (2008) Disability and genetics in the era of genomic medicine. Nat Rev Genet 9(10):797–802

Segers S, Mertes H (2020) Does human genome editing reinforce or violate human dignity? Bioethics 34(1):33–40

Sermon K, Van Steirteghem A, Liebaers I (2004) Preimplantation genetic diagnosis. Lancet 363(9421):1633–1641. https://doi.org/10.1016/S0140-6736(04)16209-0

Shakespeare T (2006) Disability rights and wrongs. Routledge, London

Shulman C, Bostrom N (2014) Embryo selection for cognitive enhancement: curiosity or game-changer? Glob Policy 5(1):85–92. https://doi.org/10.1111/1758-5899.12123

Silver LM (1997) Remaking Eden: cloning and beyond in a brave new world. William Morrow, New York, NY

Sinsheimer RL (1969). The prospect for designed genetic change. Am Sci, 57(1):134–142. http://www.jstor.org/stable/27828443

Smolenski J (2015) Crispr/cas9 and germline modification: new difficulties in obtaining informed consent. Am J Bioeth 15(12):35–37

Soini S (2007) Preimplantation genetic diagnosis (PGD) in Europe: diversity of legislation a challenge to the community and its citizens. Med Law 26(2):309–323

ADS   CAS   PubMed   Google Scholar  

Sorgner SL (2018) Genes, CRISPR/Cas 9, and posthumans. In: Sinaci M and Sorgner SL (eds.) Ethics of emerging biotechnologies, pp. 5–17. Trivent Publishing

Sparrow R (2021) Human germline genome editing: on the nature of our reasons to genome edit Am J Bioeth 19:1–12

Steffann J, Jouannet P, Bonnefont JP, Chneiweiss H, Frydman N (2018) Could failure in preimplantation genetic diagnosis justify editing the human embryo genome? Cell Stem Cell 22(4):481–482. https://doi.org/10.1016/j.stem.2018.01.004

Sykora P, Caplan A (2017) The Council of Europe should not reaffirm the ban on germline genome editing in humans. EMBO Rep 18:1871–1872. https://doi.org/10.15252/embr.201745246

UNESCO (1997) Universal declaration on the human genome and human rights. UNESCO, Paris

van Dijke I, Bosch L, Bredenoord AL, Cornel M, Repping S, Hendriks S (2018) The ethics of clinical applications of germline genome modification: a systematic review of reasons Hum Reprod 33(9):1777–1796

Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A (2016) Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 22(4):411–419. https://doi.org/10.1093/humupd/dmw005

Venter JC et al. (2001) The sequence of the human genome. Science 291(5507):1304–51

Walters L, Cook-Deegan RM, Adashi EY (2021) Governing heritable human genome editing: a textual history and a proposal for the future. CRISPR J 4(4):469–476

Wang H, Yang H (2019) Gene-edited babies: what went wrong and what could go wrong. PLoS Biol 17(4). https://doi.org/10.1371/journal.pbio.3000224

Wheeler E, Barroso I (2011) Genome-wide association studies and type 2 diabetes. Brief Funct Genom 10:52–60

WHO (2019) Statement on governance and oversight of human genome editing. https://www.who.int/news/item/26-07-2019-statement-on-governance-and-oversight-of-human-genome-editing

WHO (2021) Human genome editing: position paper. https://www.who.int/publications/i/item/9789240030404

Wolf DP, Mitalipov PA, Mitalipov SM (2019) Principles of and strategies for germline gene therapy. Nat Med 25(6):890–897

Zhang F (2019) Development of CRISPR-Cas systems for genome editing and beyond. Q Rev Biophys 52. https://doi.org/10.1017/s0033583519000052

Download references

Acknowledgements

This work was supported by Fundação para Ciência e a Tecnologia (FCT) of Portugal [UIDP/00678/2020 to M.A]. We thank Dr. Michael Morrison for his comments and Dr. Gustav Preller for his proofreading of this manuscript.

Author information

Authors and affiliations.

Centro de Filosofia das Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal

Mara Almeida

Faculty of Health Sciences Brandenburg, University of Potsdam, Karl-Liebknecht-Str. 24-25, House 16, 14476, Potsdam, Golm, Germany

  • Robert Ranisch

Research Unit “Ethics of Genome Editing”, Institute for Ethics and History of Medicine, University of Tübingen, Gartenstr. 47, 72074, Tübingen, Germany

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Mara Almeida .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

An ethical approval is not applicable.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Almeida, M., Ranisch, R. Beyond safety: mapping the ethical debate on heritable genome editing interventions. Humanit Soc Sci Commun 9 , 139 (2022). https://doi.org/10.1057/s41599-022-01147-y

Download citation

Received : 06 August 2021

Accepted : 28 March 2022

Published : 20 April 2022

DOI : https://doi.org/10.1057/s41599-022-01147-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Clinical translation of wireless soft robotic medical devices.

  • Tianlu Wang
  • Metin Sitti

Nature Reviews Bioengineering (2024)

An analysis of different concepts of “identity” in the heritable genome editing debate

  • Ying-Qi Liaw

Medicine, Health Care and Philosophy (2024)

The need to set explicit goals for human germline gene editing public dialogues

  • Wendy P. Geuverink
  • Diewertje Houtman
  • Sam R. Riedijk

Journal of Community Genetics (2024)

Initial heritable genome editing: mapping a responsible pathway from basic research to the clinic

  • Katharina Trettenbach
  • Gardar Arnason

Medicine, Health Care and Philosophy (2023)

“What if” should precede “whether” and “how” in the social conversation around human germline gene editing

  • Wendy Geuverink
  • Sam Riedijk

Journal of Community Genetics (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

genetic engineering research paper topics

My Paper Done

  • Services Paper editing services Paper proofreading Business papers Philosophy papers Write my paper Term papers for sale Term paper help Academic term papers Buy research papers College writing services Paper writing help Student papers Original term papers Research paper help Nursing papers for sale Psychology papers Economics papers Medical papers Blog

genetic engineering research paper topics

126 High Quality Genetics Research Topics You Can Use

genetics research topics

Most students look for genetics research topics to write about when pursuing biology studies. Developing exciting titles in this subject isn’t everyone’s favorite. Perhaps, that’s because of the technicality of this subject. This article lists interesting genetics topics for learners at different educational levels to consider for their papers. This list is essential because many learners struggle to develop or find titles for their essays but end with ideas that don’t interest educators.

What Is Genetics?

Genetics is the study of genes. In this field, scientists study how individuals pass down genes and traits from one generation to another. Genes carry vital information that impacts an individual’s appearance, health, and personality.

When writing research papers about genetics topics, students should follow several steps to create winning pieces. Here’s how to write an excellent essay in this field.

Pick a topic: Select a topic you’re comfortable researching, analyzing, and writing about to provide relevant and accurate information. Find sources and gather information: Look for reliable information sources, including peer-reviewed articles, journals, and professional books. Also, you can use websites with reliable information about genetics. Gather as much relevant information and analyze it. Outline the paper: Develop a structure to guide your research and writing. A typical outline should have an introduction, body, and conclusion. Write the paper: Use the outline and information from your research to write the essay. Ensure that your ideas and information flow logically.

The first and most vital step is selecting a good topic. Unfortunately, some learners have difficulties picking titles for their papers. Fortunately, the following list has a topic idea you will likely enjoy exploring. Use our online research paper writing servic e and get your paper done fast. 

Interesting Topics In Genetics

Perhaps, you’re looking for an exciting title for your genetics paper. If so, this category has an ideal you will find exciting to explore.

  • How does genetic variation impact the evolution of species?
  • How do genes influence behavior and development?
  • What role do genes play in disease susceptibility?
  • How does the environment interact with genes to influence phenotype?
  • How can we use genetics to improve crop plants or livestock?
  • What is the impact of genetic engineering on society?
  • How will the human genome project impact medicine?
  • What ethical considerations are there in genetics research?
  • How can we use genetics to predict individual risk for disease?
  • What are the implications of personalized medicine?
  • How accurate is genetic engineering?
  • The bioethical and legal aspects of custom medicine based on the genetic composition
  • The diagnostic challenge of newborns with heritable protein C deficiency
  • Epithelial polarity in mammals and flies
  • Risk factors contributions and medical care to trends in cardiovascular mortality
  • Does cloning limit or increase biological diversity
  • Understanding oculopharyngeal muscular dystrophy- is it an under-diagnosed disease?
  • Imputation-based analysis- Quantitative traits and candidate regions
  • Loss-of-function variants- A survey of human protein-coding genes
  • Exploring DNA structural motifs’ thermodynamics

Explore any of these titles in your research, and your educator will find your paper exciting to read.

Controversial Topics In Genetics

Most people find controversial genetics topics exciting to read. Therefore, you can capture your educator’s attention by choosing and investigating a controversial idea in this study field. Here are such ideas to consider.

  • Can animal cloning lead to health problems for humans?
  • Is conducting maternal spindle transfer ethical?
  • Is pronuclear transfer possible without causing mitochondrial disease in the embryo?
  • Who decides the typical traits and which constitutes a disorder or disability?
  • What are the ethical implications of improving human qualities like intelligence, height, and athletic ability?
  • Is it ethical for doctors to alter germline traits using gene therapy?
  • How honest are gene therapy’s protocol guidelines?
  • Is changing a particular gene’s regulation ethical?
  • Gene therapy ethics when curing genetic disease in a fetus
  • How CRISPR-Cas9 gene editing affects a person’s germ line
  • The ethics of genetic engineering
  • The impact of genetic engineering on society
  • The potential for abuse with genetic engineering
  • The safety of genetically modified foods
  • The regulation of genetic engineering
  • The effect of genetic engineering on the environment
  • The future of genetic engineering
  • Is genetics the basis of depression?
  • Can addictive substances change human genes?
  • Can humans beat aging by altering genes?

These are controversial topics genetics students can find worth exploring. Nevertheless, prepare to research extensively to compose a winning paper about any of these ideas.

Human Genetics Topics For Research Papers

Human genetics entails studying inheritance in human beings. Here are some of the exciting human genetics topics for research papers.

  • The Human Genome Project and its significance for understanding human genetics.
  • Chromosomal abnormalities and their effects on human health.
  • The role of genes in human development and behavior.
  • The ethical implications of genetic testing and engineering.
  • The impact of new technologies on the study of human genetics.
  • The potential uses of genetic information in the diagnosis and treatment of disease.
  • The social and economic implications of genetic discrimination.
  • The role of genetics in predicting individual risk for common diseases.
  • The impact of advances in genomic research on our understanding of human evolution.
  • The role of genetics in human identity and individuality
  • The link between human gene changes and diseases
  • Genes coordination in human development
  • How a fertilized egg directs the entire organism’s formation
  • How gene editing to fix gene defects affects a human being
  • How genetic disorders impact the heart’s pathological development
  • Heritable genetic changes’ role in cardiovascular genetics
  • How somatic mutations enhance tumor metastases
  • How inherited genetic changes affect a person
  • Human body processes that affect RNA and DNA sequencing
  • How genetic mutations disrupt the normal cell proliferation regulation occurs in cancer

Consider these exciting human genetics topics if you find this sub-field exciting. Nevertheless, take the time to find sufficient and relevant information to write a comprehensive paper.

Molecular Genetics Topics

Molecular genetics is a biology sub-field addressing how different DNA molecule structures manifest in variations among organisms. Here are molecular genetics research paper topics to consider for your project.

  • Disseminating superior genetics into a commercial population
  • Analyzing linked genetic markets causing phenotypes differences
  • Exploring various genes’ responses to environmental stressors
  • How computer simulation affects molecular genetics
  • Macromolecules that are vital in biological inheritance
  • Molecular biology application in DNA forensics
  • How the hereditary mechanism discovery impacted molecular genetics
  • Tracing the molecular genetics origins from the 1930s
  • Discussing double-helical structure in DNA molecule
  • Ways of producing several copies of a DNA piece in the lab
  • What more can humans possibly learn about DNA?
  • How DNA determines the body structure
  • DNA and terminal illness- Is there a connection?
  • Does NDA sequencing have room for more?
  • Describe and outline the latest molecular cancer genetics developments
  • Explain genetic factors that enhance cancer susceptibility
  • Are bacteria a genetic system?
  • DNA and heredity- What’s the connection?
  • Describe the shortcomings and potentials of stem cells
  • Molecular techniques- Analyzing RNA, DNA, and proteins

Please select one of these titles and develop it into an exciting paper. Nevertheless, prepare to research extensively to fill your report with valuable information.

Current Topics In Genetics

Genetics research has a fascinating landscape with many current topics ripe for exploration. Here are some of the exciting contemporary ideas for research in genetics.

  • Man versus bat’s molecular structure
  • Genomics companies chasing after IPO- What are the impacts?
  • 5G technology and how it affects the human genome
  • Exploring the human microbiome evolution
  • RNA binding and its role in leukemia treatment
  • Analyzing the double-stranded RNA
  • RNA-binding proteins characteristics
  • Exploring the potential use of gene editing in treating COVID-19
  • How drugs development and genes study relate
  • How social engineering affects genetics
  • Differentiating non-ethical and ethical gene therapy
  • Gene therapy could make it for the rich people
  • Why do people do gene testing under false names or anonymously?
  • Insurers should force individuals to undergo testing
  • Does euthanasia apply in the case of diseases?
  • Who should know about different genetic disorders?
  • Is genetic screening an interference with a person’s privacy?
  • Ethical implications of newborn’s prenatal screening
  • Can gene therapy treat a disease?
  • Can gene therapy make people not accept people that are different?

These are good genetics paper topics for learners at various educational levels, especially if they want to write about the latest development in this field. 

Hot Topics In Genetics

Perhaps, while thinking “I must do my term paper” you’re looking for topics that most people will want to read about and understand your viewpoint. In that case, here are genetics research paper topics to consider.

  • Investigating critical molecules in genetic bone disease and bone development
  • Intracellular traffic jams in genetics- Studying the multi-organellar
  • Substance dependence and genetics- Is there a connection?
  • Hereditary ovarian and breast cancers- Exploring preventive measures and causes
  • Exploring gene composition in breast cancer and estrogen metabolism pathway
  • Discuss cancer genetics and the cycle of the Eukaryotic cell
  • Critical research on genetic elements that scientists can transport
  • Genetic challenges in human diseases and RNA metabolism
  • Genetic factors that cause human type 1 diabetes
  • Approaching the relationship between human obesity and genetic susceptibility
  • Is growing human organs morally upright and ethical?
  • Human cloning science- Exploring its development and history
  • Drug addiction and gene alteration
  • Are genetically modified foods safe for animal and human consumption?
  • Exploring fetus and genetic diagnosis
  • DNA structure analysis from the genetic perspective

These are hot titles to explore in research. But like those in the other section, students must research each idea extensively to write high-quality papers.  Contact us with a “ do my research paper ” request and get a winning paper done by professional writer.

Genetics Topics For Presentation

The genetics subject can be complex and broad. Therefore, choosing unique topics in genetics can benefit the learners’ presentations. Here are sample topics to consider for your presentation.

  • The Genetic impact of neurological and terminal diseases
  • Genetic engineering- What are the pros and cons
  • Can humans create an artificial gene using synthetic chromosomes?
  • Will cloning follow genetic engineering and research?
  • The significance and complexity of gene mutation
  • The advantages and unlimited potential of human genetics
  • What does an individual’s DNA analysis say about their genetics?
  • Is conducting genetic testing necessary?
  • Is genes’ patent ownership ethical?
  • Can humans isolate and eliminate hereditary conditions with genetic research?

This list has at least one example of a topic in this study field that you might want to explore. However, pick a title you will comfortably work with and deliver a quality paper that will prompt the educator to award you the top grade.

Get Professional Help With Research Paper

Maybe you have a title but no time to write a winning paper. Perhaps you’ve realized that you need thesis help to compose medical term papers that will impress the educator and earn you the desired grade. In that case, contact us for the best-rated research paper assistance. We offer affordable writing services to learners across educational levels. Contact us now for cheap but quality online help with your research project.

astronomy topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Terms & Conditions Loyalty Program Privacy Policy Money-Back Policy

Copyright © 2013-2024 MyPaperDone.com

Main Logo

  • Vision, Mission and Purpose
  • Focus & Scope
  • Editorial Info
  • Open Access Policy
  • Editing Services
  • Article Outreach
  • Why with us
  • Focused Topics
  • Manuscript Guidelines
  • Ethics & Disclosures
  • What happens next to your Submission
  • Submission Link
  • Special Issues
  • Latest Articles
  • All Articles
  • FOCUSED RESEARCH TOPICS
Twin and family studies
Measured genetic variants
Quasi-experimental designs
Genetic influences on behaviour
Nature of environmental influence
Nature of genetic influence
Psychiatric genetics
Karyotyping
Banding technique
Comparative genome hybridization
FISH (fluorescent in situ hybridization)
Molecular basis
DNA damage
Techniques used to study epigenetics
ChIP-on-chip and ChIP-Seq)
Fluorescent in situ hybridization
Methylation-sensitive restriction enzymes
DNA adenine methyltransferase identification (DamID)
Bisulfite sequencing
Mechanisms
Covalent modifications
RNA transcripts
MicroRNAs
mRNA
sRNAs
Prions
Structural inheritance
Nucleosome positioning
Functions and consequences
Development
Transgenerational
Epigenetics and epigenetic drugs
Neurodegenerative diseases of motor neurons
Amyotrophic lateral sclerosis (ALS)
Spinal Muscular Atrophy (SMA)
Neurodegenerative Diseases of the Central Nervous System
Alzheimer's Disease (AD)
Huntington's Disease (HD)
Parkinson's Disease (PD)
Molecular basis for inheritance
DNA and chromosomes
Reproduction
Recombination and genetic linkage
Gene expression
Genetic code
Gene regulation
Genetic change
Mutations
Natural selection and evolution
Medicine
Research methods
DNA sequencing and genomics
Genetic testing:
Cell-free fetal DNA
Newborn screening
Diagnostic testing
Carrier testing:
Preimplantation genetic diagnosis
Prenatal diagnosis
Predictive and presymptomatic testing
Pharmacogenomics
Non-diagnostic testing:
Forensic testing
Paternity testing
Genealogical DNA test
Research testing
Genome analysis
Sequencing
Shotgun sequencing
High-throughput sequencing
Assembly
Assembly approaches
Finishing
Annotation
Sequencing pipelines and databases
Functional genomics
Structural genomics
Epigenomics
Metagenomics
Pharmacogenomics
Drug-metabolizing enzymes
Predictive prescribing
Polypharmacy
Drug labeling
Mitochondrial genes
Replication, repair, transcription and translation
Mitochondrial disease
Types of genetic disorder:
Single-gene
Autosomal dominant
Autosomal recessive
X-linked dominant
X-linked recessive
Y-linked
Mitochondrial
Causes of genetic disorder
Diagnosis
Treatment / gene therapy
List of genetic disorder:
1p36 deletion syndrome
18p deletion syndrome
21-hydroxylase deficiency
Alpha 1-antitrypsin deficiency
AAA syndrome (achalasia-addisonianism-alacrima)
Aarskog– Scott syndrome
ABCD syndrome
Aceruloplasminemia
Acheiropodia
Achondrogenesis type II
Achondroplasia
Acute intermittent porphyria
Adenylosuccinate lyase deficiency
Adrenoleukodystrophy
Alagille syndrome
Adult syndrome
Albinism
Alexander disease
Alkaptonuria
Alport syndrome
Alternating hemiplegia of childhood
Amyotrophic lateral sclerosis
Alström syndrome
Alzheimer's disease
Amelogenesis imperfecta
Aminolevulinic acid dehydratase deficiency porphyria
Androgen insensitivity syndrome
Angelman syndrome
Apert Syndrome
Arthrogryposis–renal dysfunction–cholestasis syndrome
Ataxia telangiectasia
Axenfeld syndrome
Beare-Stevenson cutis gyrata syndrome
Beckwith–Wiedemann syndrome
Benjamin syndrome
Biotinidase deficiency
Björnstad syndrome
Bloom syndrome
Birt–Hogg–Dubé syndrome
Brody myopathy
Cadasil syndrome
Carasil syndrome
Chronic granulomatous disorder
Campomelic dysplasia
Canavan disease
Carpenter Syndrome
Cerebral dysgenesis–neuropathy–ichthyosis–keratoderma syndrome (SEDNIK)
Cystic fibrosis
Charcot–Marie–Tooth disease
CHARGE syndrome
Chédiak–Higashi syndrome
Cleidocranial dysostosis
Cockayne syndrome
Coffin–Lowry syndrome
Cohen syndrome
Collagenopathy, types II and XI
Congenital insensitivity to pain with anhidrosis (CIPA)
Cowden syndrome
CPO deficiency (coproporphyria)
Cranio–lenticulo–sutural dysplasia
Cri du chat
Crohn's disease
Crouzon syndrome
Crouzonodermoskeletal syndrome (Crouzon syndrome with acanthosis nigricans)
Darier's disease
Dent's disease (Genetic hypercalciuria)
Denys–Drash syndrome
De Grouchy syndrome
Di George's syndrome
Distal hereditary motor neuropathies, multiple types
Ehlers–Danlos syndrome
Emery–Dreifuss syndrome
Erythropoietic protoporphyria
Fanconi anemia (FA)
Fabry disease
Factor V Leiden thrombophilia
Familial adenomatous polyposis
Familial dysautonomia
Feingold syndrome
FG syndrome
Friedreich's ataxia
G6PD deficiency
Galactosemia
Gaucher disease
Gillespie syndrome
Griscelli syndrome
Hailey-Hailey disease
Harlequin type ichthyosis
Hemochromatosis, hereditary
Hemophilia
Hepatoerythropoietic porphyria UROD
Hereditary coproporphyria
Hereditary hemorrhagic telangiectasia (Osler–Weber–Rendu syndrome)
Hereditary Inclusion Body Myopathy
Hereditary multiple exostoses
Hereditary spastic paraplegia (infantile-onset ascending hereditary spastic paralysis)
Hermansky–Pudlak syndrome
Hereditary neuropathy with liability to pressure palsies (HNPP)
Homocystinuria
Huntington's disease
Hunter syndrome
Hurler syndrome
Hutchinson-Gilford progeria syndrome
Hyperoxaluria, primary
Hyperphenylalaninemia
Hypoalphalipoproteinemia (Tangier disease)
Hypochondrogenesis
Hypochondroplasia
Immunodeficiency, centromere instability and facial anomalies syndrome (ICF syndrome)
Incontinentia pigmenti
Isodicentric 15
Jackson– Weiss syndrome
Joubert syndrome
Juvenile Primary Lateral Sclerosis (JPLS)
Keloid disorder
Kniest dysplasia
Kosaki overgrowth syndrome
Krabbe disease
Kufor–Rakeb syndrome
LCAT deficiency
Lesch-Nyhan syndrome)
Li-Fraumeni syndrome
Lynch Syndrome
Lipoprotein lipase deficiency, familial
Marfan syndrome
Maroteaux–Lamy syndrome
McCune–Albright syndrome
McLeod syndrome
MEDNIK syndrome
Mediterranean fever, familial
Menkes disease
Methemoglobinemia
methylmalonic acidemia
Micro syndrome
Microcephaly
Morquio syndrome
Mowat-Wilson syndrome
Muenke syndrome
Multiple endocrine neoplasia (type 1 and type 2)
Muscular dystrophy
Muscular dystrophy, Duchenne and Becker type
Myostatin-related muscle hypertrophy
myotonic dystrophy
Natowicz syndrome
Neurofibromatosis type I
Neurofibromatosis type II
Niemann–Pick disease
Nonketotic hyperglycinemia
nonsyndromic deafness
Noonan syndrome
Ogden syndrome
osteogenesis imperfecta
Pantothenate kinase-associated neurodegeneration
Patau Syndrome (Trisomy 13)
PCC deficiency (propionic acidemia)
Porphyria cutanea tarda (PCT)
Pendred syndrome
Peutz-Jeghers syndrome
Pfeiffer syndrome
phenylketonuria
Pitt–Hopkins syndrome
Polycystic kidney disease
Polycystic Ovarian Syndrome (PCOS)
porphyria
Prader-Willi syndrome
Primary ciliary dyskinesia (PCD)
primary pulmonary hypertension
protein C deficiency
protein S deficiency
Pseudo-Gaucher disease
Pseudoxanthoma elasticum
Retinitis pigmentosa
Rett syndrome
Rubinstein-Taybi syndrome (RSTS)
Sandhoff disease
Sanfilippo syndrome
Schwartz–Jampel syndrome
spondyloepiphyseal dysplasia congenita (SED)
Shprintzen–Goldberg syndrome FBN1
sickle cell anemia
Siderius X-linked mental retardation syndrome
Sideroblastic anemia
Sly syndrome
Smith-Lemli-Opitz syndrome
Smith Magenis Syndrome
Spinal muscular atrophy
Spinocerebellar ataxia (types 1-29)
SSB syndrome (SADDAN)
Stargardt disease (macular degeneration)
Stickler syndrome
Strudwick syndrome (spondyloepimetaphyseal dysplasia, Strudwick type)
Tay-Sachs disease
tetrahydrobiopterin deficiency
thanatophoric dysplasia
Treacher Collins syndrome
Tuberous Sclerosis Complex (TSC)
Turner syndrome
Usher syndrome
Variegate porphyria
von Hippel-Lindau disease
Waardenburg syndrome
Weissenbacher-Zweymüller syndrome
Williams Syndrome
Wilson disease
Woodhouse–Sakati syndrome
Wolf–Hirschhorn syndrome
Xeroderma pigmentosum
X-linked mental retardation and macroorchidism (fragile X syndrome)
X-linked spinal-bulbar muscle atrophy (spinal and bulbar muscular atrophy)
Xp11.22 deletion
X-linked severe combined immunodeficiency (X-SCID)
X-linked sideroblastic anemia (XLSA)
47,XXX (triple X syndrome)
XXXX syndrome (48, XXXX)
XXXXX syndrome (49, XXXXX)
XYY syndrome (47,XYY)
Modern synthesis
Four processes
Selection
Dominance
Epistasis
Mutation
Genetic drift
Gene flow
Horizontal gene transfer
Linkage
Applications
Explaining levels of genetic variation
Detecting selection
Demographic inference
Evolution of genetic systems
Quantitative genetics
Genetic epidemiology
Statistical genetics

Libraries | Research Guides

Genetic engineering, journals and databases.

  • ACS Synthetic Biology ACS Synthetic Biology is a monthly peer-reviewed journal dedicated to research in synthetic biology and biological systems. The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
  • Gene Reports Gene Reports publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses. Some general topics include: DNA organization, replication & evolution; expression and function; and regulation.
  • Journal of Genetic Engineering and Biotechnology Journal of Genetic Engineering and Biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA.
  • PLoS Genetics This link opens in a new window PLoS Genetics reflects the full breadth and interdisciplinary nature of genetics and genomics research by publishing outstanding original contributions in all areas of biology - human studies as well as research on model organisms - from mice and flies, to plants and bacteria.
  • GenETHX: Genetics and Ethics Database This link opens in a new window A database of citations to literature in books, journal articles, book chapters, bills, laws, court decisions, reports, news articles and audiovisuals, relating to ethics and public policy issues in genetics. Links to full-text and abstracts are provided when available.
  • PubMed This link opens in a new window PubMed was developed by the National Center for Biotechnology Information (NCBI). It was developed in conjunction with publishers of biomedical literature as a search tool for accessing literature citations and linking to full-text journals at web sites of participating publishers.

genetic engineering research paper topics

Your Librarian

Profile Photo

  • Last Updated: Jul 6, 2022 11:17 AM
  • URL: https://libguides.northwestern.edu/geneng

logo

200+ Best Engineering Research Paper Topics in 2022

/favicon.jpg

Team Desklib

Published: 2022-10-13

blog_image

Since the dawn of humanity, there have been  engineering issues   and a need to solve them. Without technological understanding, ancient civilizations would not have been feasible because even then, enormous cities were being constructed with the aid of engineering principles.

This list of research issues aims to familiarise anyone interested in real-world engineering with specific scenarios that occur during practically any sort of professional activity of an engineer and call for ethical problem-level solutions.

You should first define the direction of engineering before beginning your research. You can locate an intriguing research topic in a variety of areas and subtopics. Students interested in history can learn more about engineering anthropology and comprehend this field's numerous phenomena and growth.

Genetic engineering might be a topic for those that enjoy biology. Additionally, any student is free to approach the teacher for suggestions on the most delicate subject matter.

You can choose the topic that will help you find a lot of useful technical information with the assistance of someone with years of experience.

There are many intriguing  engineering research paper   themes available in today's technologically advanced world. However, their diversity can also be an issue because it might be difficult to choose the proper one if you want to present high-quality work.

In this post, we provide a list of intriguing research paper topics for engineering students that are both simple to investigate and enjoyable to write about.

But before suggesting you some good engineering research topics we want to teach you how to choose engineering topics for your research paper.

The following procedures and advice will assist you in selecting the appropriate option from the list of options:

  • If there isn't a list of suggested subjects, brainstorm ideas to come up with engaging engineering research topics that are pertinent to both your project and the industry as a whole.  
  • Select a topic that you are familiar with because engineering topics can get very difficult; moreover, ensure that the topic you select is one that you can understand.  
  • Ensure there are enough resources available on the topics; while writing an essay on a specialized subject can produce intriguing content, it can become too difficult if there aren't good information sources available.  
  • Be open-minded while making your choice; instead of limiting yourself to topics you are familiar with, consider what will make your essay compelling and leave an impression on the grader.

The application of scientific principles is a  direct concern of engineering . Because of this, this field has several unique  characteristics that you cannot find elsewhere.

These are the engineering subjects that touch on them:

  • Engineering education issues and suggestions for improvement
  • The idea of engineering optimization
  • Engineering, quality assurance
  • Engineering measurement and data analysis specifics
  • Utilizing optical techniques for engineering analysis
  • Corrosion's impact on engineering
  • Nanotechnology applications in contemporary engineering
  • Value engineering and analysis
  • AI and machine learning applications in engineering
  • Engineering modeling techniques
  • Engineering and upkeep
  • Micromanufacturing and engineering
  • Engineering advancements in Western culture
  • Technical economy
  • Engineering's theoretical underpinnings and their connection to science
  • Engineering material specifics
  • The design and administration of complex systems
  • Reliability's significance in engineering
  • Complex nuclear engineering issues
  • The function of statistics and probability in engineering
  • Trends in the creation of agricultural technology equipment.
  • Technology in the food sector conserves energy and resources.
  • Innovations in the food business that produces little or no waste.
  • Food industry engineering in small businesses.
  • The modern technosphere's high level of complexity and its extensive integration into societal life.
  • Apparatus for heating up food bulk.
  • Hardware for filling and presenting finished goods.
  • Automation and mechanization of technological procedures in the food sector.
  • Food industry construction products.
  • Food industry production lines.
  • Approaches to systems engineering.
  • Theories for making an engineering-related career decision.
  • Professional analysis of an engineer's education and activity.
  • Professional competency is formed and developed during training.
  • An engineer's design and engineering tasks.
  • Engineering organization and management tasks.
  • Engineering production and technological activities.
  • Engineers and inventors from the United States and Europe (in the field of food production).
  • Types of programs for engineering education.
  • American and international engineering training systems integration

Top 8 Engineering Branches and Research Topics

  • Engineering ethics-related research paper topics
  • Genetic engineering research paper topics
  • Biomedical engineering research paper topics
  • Electrical engineering research paper topics
  • Security engineering research paper topics
  • Software engineering research paper topics
  • Mechanical engineering research paper topics
  • Civil engineering research paper topics

20 Best Engineering Ethics-related Research Paper Topics

  • A set of moral guidelines that engineers use in their work.
  • How might a moral engineer benefit society more?
  • What moral ideals ought to guide engineering practice and research?
  • What moral considerations ought every engineer to make before beginning their professional development?
  • The conception of a product in accordance with all moral principles.
  • Problems with ethics in the test and design areas.
  • Ethical problems with goods and services. How can they be fixed?
  • Moral dilemmas in leadership and collaboration.
  • Obeying the law and ethical principles.
  • What are the most crucial moral principles for engineers?
  • How can an engineer maintain morality?
  • Phases of a personality's growth professionally in engineering.
  • Engineering ethics: What is it?
  • How may engineering ethics be followed?
  • The primary functions of engineering psychology and ergonomics.
  • Why is a strong work ethic necessary in an organization?
  • How does a strong work ethic help a company avoid many issues?
  • Humanitarian knowledge's integration into engineering methods.
  • How may human knowledge be related in many ways to technical thinking?
  • The fundamentals of engineering ethics.

20 Best Genetic Engineering Research Paper Topics

  • Genetic engineering and morality
  • Genetic engineering's significance in modern agriculture
  • Using genetic engineering to increase the production of biofuel
  • One of the key tools for genetic engineering is CRISPR-Cas.
  • Manufacture of antibiotics with genetic engineering
  • The global politics of genetic engineering
  • Genetic engineering: Myths and actual risks
  • Genetic modification and organic food production
  • Possibilities of combining conventional breeding with genetic engineering
  • Utilizing genetic engineering to combat pollution
  • Gene therapy in genetic engineering.
  • How much of our genetic makeup is under our control, and when do we stop being human?
  • What are the benefits of genetically modified organisms?
  • Describe the advantages and disadvantages of genetic testing.
  • What are epigenetics and its value?
  • How to label food with genetically modified organisms?
  • Use of genetically modified organisms in future farming.
  • How can we involve nursing in genomics?
  • Explain the genetic characteristics in humans having different traits like homosexuality.
  • Food safety and guidelines for using genetically modified food products.

Top 20 Interesting Biomedical Engineering Research Paper Topics

  • Research On Blood Resistivity-Based Blood Glucose Measurement
  • Using Finite Element Analysis, A Hybrid Artificial Hip Joint Was Designed.
  • Design Of A Clinical Engineering Department's Management Program With a Real-Time Planning System for Recognizing Heart Sounds
  • Design of a Programmed Oxygen Delivery System Improvement: Adaptive Techniques for Cardiac Arrhythmia Detection Using Artificial Neural Networks By looking for a suitable activation function short message technique in health level 7, U-Net for MRI brain tumor segmentation (HL7)
  • A Study of the Optical and Thermal Effects of Gold Nanoparticles for Magnetic Resonance Noise Reduction Image
  • Analysis of Heart Rate Variability Using Statistical Techniques
  • Reflexology for the Early Detection of Stomach Pain
  • Central Medical Waste Treatment Facility Developing an Internet-Based Tele-Pediatric System
  • Conducting polymers are used in biomedical engineering.
  • The greatest successes in contemporary biomedical engineering
  • IoT applications for biomedical engineering
  • Engineering in biomedicine and 3D printing
  • Carbon-based nanomaterials' significance for biomedical engineering
  • Tactile sensing techniques and technologies
  • Techniques for repairing damaged nerves with biomedical engineering
  • Biomedical engineering uses X-rays, terahertz imaging, and spectrography for medical imaging.
  • Potential of biological materials in biomedical engineering
  • Piezoelectricity in systems for biomedical engineering
  • Breast cancer can be detected by using artificial neural networks.
  • Medical waste treatment equipment.

Best 30 Electrical Engineering Research Paper Topics

  • Can general relativity affect the techniques used in electrical engineering?
  • Electrical engineering and computer science integration
  • Methods for electronic control in mechanical engineering
  • Electrical engineering ideas of energy and information
  • Engineering in electrical nonlinear optimization
  • Dielectric materials that work best for electrical engineering
  • Electrical engineering's differential progression
  • Electrical circuits and quantum electrodynamics
  • Optimization's advantages in electrical engineering
  • Electrical engineering uses polymers and nanoparticles
  • High-speed, high-power PM machines.
  • Active voltage equalization using li-ion and supercapacitor cells connected in series.
  • Direct drive in-wheel motor design choice.
  • Inertia Motors.
  • Nanoelectronics.
  • Interaction engineering at the atomic level.
  • Using silicon carbide, graphene, and photovoltaics.
  • Ferroelectricity and piezoelectricity.
  • Analyzing behavior using computer modeling.
  • Computational research on novel materials and technologies.
  • Powerful electronic devices and tools.
  • Motors for electric vehicles and their redesign.
  • Networks of energy and the mathematics supporting them.
  • Engineering for electrical systems using computers.
  • Monitoring for smart grids.
  • Composites made of soft magnets.
  • Gearboxes and motors for electric vehicles.
  • Loss detection of grid events in distributed generating systems using pattern recognition
  • Autonomous power system difficulties
  • Hybrid electric aerospace.

Top 30 Security Engineering Research Paper Topics

  • Patterns used in security engineering
  • Cloud security engineering specifics
  • Security design for distributed or complicated systems
  • Engineering for privacy and security
  • Security requirements analysis's significance
  • Engineering security in the automobile sector
  • Modeling and testing for security analysis
  • A financial viewpoint on security engineering
  • Flexible security measures
  • Using attack graph models to improve network security
  • the development of ransomware in the field of cybersecurity.
  • Digital device denial-of-service attacks.
  • the foundation of the global cybersecurity strategy.
  • Network intrusion detection and remedies.
  • How should the government deal with cybersecurity?
  • A firewall's function in securing networks.
  • the most typical closed weaknesses.
  • After a data breach, what to do?
  • Widespread spectrum sharing for communications in public safety.
  • Digital security and downloaded materials
  • How to efficiently use the Internet.
  • Modern virus encryption technology.
  • Investigating the importance of algorithm encryption.
  • What is digital piracy?
  • How to navigate the efficiency of the internet?
  • Where do the vulnerabilities come from in a wireless mobile data exchange?
  • Describe the evolution of Android malware.
  • How to detect mobile phone hacking?
  • Privacy and security issues come in chatbots.
  • Cybersecurity and malware connection.

20 Interesting Software Engineering Research Paper Topics

  • Software engineering economics
  • Experimental software engineering techniques
  • There are significant disparities between software engineering theory and practice.
  • Software engineering role models
  • Software engineering for industry
  • Testing's significance in software engineering
  • Collaborating when developing software
  • Security through software engineering
  • Problems with embedded software engineering
  • Managerial techniques in software engineering
  • Describe the distribution of anti-virus software.
  • Suggest some software tools for qualitative research.
  • Software development by data scientists.
  • What is an agile software development process?
  • The Capabilities of Compiere Software and How Well It Fits Into Different Industries.
  • WBS completion and software project management.
  • International Software Development's Ethical Challenges: User-Useful Software
  • People with visual impairments face difficulties using assistive application software.
  • Getting to the Ideal Process. Application Development
  • Development of Software with IPR Violations.

Top 25 Mechanical Engineering Research Paper Topics

  • Nonlinear oscillations and mechanical engineering
  • Mechanical engineering education through gaming Techniques for dependable and sustainable design
  • How can the design development cycle for mechanical engineering designs be shortened?
  • appropriate material selection's significance in mechanical engineering
  • Mechanical engineering's use of mechatronics and microcontrollers
  • German mechanical engineering is a benchmark worldwide
  • Modern mechanical engineering techniques for modeling and prototyping
  • System design using numerical calculation techniques
  • What effects has the growth of mechanical engineering had on Western culture?
  •  Machine learning approaches for quality assurance in a manufacturing setting
  • Using a variable speed drive with supervisory control and data acquisition to control an induction motor.
  • Biomechanics.
  • Energy and combustion systems.
  • Fluid mechanics and aerodynamics.
  • Fluid-structure interactions, acoustic, and vibrations.
  • Food industry category for quality.
  • Food industry physical and mechanical procedures.
  • The food sector uses thermal procedures.
  • Food industry physical and chemical processes.
  • Processes of mass transfer in the food business.
  • Food industry biochemical and microbiological processes.
  • the significance of technological chemical regulation in the food sector.
  • Process engineers and mechanical engineers have different jobs in the food industry.
  • Tools for preparing raw materials for the main technical procedures.
  • Equipment for processing food bulk mechanically.

Best 20 Civil Engineering Research Paper Topics

  • Civil engineering's effect on how we live our daily lives
  • Neural networks' use in civil engineering
  • Engineering and vegetation
  • Techniques for inspecting civil engineering components
  • various composite materials' micromechanics in civil engineering
  • Uncertainty's relevance in civil engineering modeling
  • IR thermography's application to civil engineering
  • In civil engineering, cutting-edge materials and adhesives are employed.
  • Risk assessment's significance in civil engineering
  • Sustainability and civil engineering
  • Techniques for enhancing plants' ability to withstand water stress.
  • The most pressing issues in civil engineering and solutions.
  • Building quality is in jeopardy due to a lack of certified professionals.
  • Economics in transportation engineering is significant.
  • Protection at building sites.
  • Modern developments in civil engineering.
  • How can the entropy theory be applied in real life?
  • How can I discover a suitable job offer and how much is civil engineering worth?
  • How can issues in seismically active areas be resolved?
  • What opportunities does civil engineering have?

A theoretical inquiry is part of the  engineering discipline's control task . You must independently choose the pertinent scientific data, process it, and accurately present it in a sequential manner for your answer to be effective.

Scientific research is still a challenging procedure, especially for students who are unable to balance work and school.

You may always get in touch with our business to conduct the study if you find yourself in such a predicament.  Professional artists   create each work particularly for each client, making each piece unique.

Additionally, they can offer planning advice, suggest study topics, and explain the nuances of research methodology.

Get more about research and research topics down here -

  • Top Trending 150+ Accounting Research Topics
  • 130+ Marketing Research Topics for Marketing Students
  • Top 140+ Research Topics for Journalism Students
  • 120 Hot Research Topics for Nursing Students
  • Top 50+ Research Topics for High School Students in 2022
  • A Thorough Analysis of Market Research
  • Research for Psychology and Personality Disorder
  • Mental Health Research Topics for Students in 2022
  • 4 Tips on How to Find Homework Answers Quickly  
  • How to Write Different Types of Research Paper?
  • How to Choose a Research Topic?
  • Step-by-step Guide For How to Write a Dissertation?
  • Scope of Career in Research and Development

Your Feedback matters

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

211 Interesting Engineering Research Paper Topics

Engineering Research Paper Topics

The world of engineering is replete with experimentation and discoveries; it’s only a matter of understanding what is required and knowing where to look. Sometimes, college students are at a loss on how to choose the right research topic for their projects, especially when it comes to their area of specialty. This is normal in most cases.

If you’re in university and you’re so confused about how to choose a suitable engineering topic for research papers to work on, then you’re in luck. This entire guide is dedicated to offering you expert quality and professional research paper writing services and writing tips you can’t get anywhere else online.

Genetic Engineering Research Paper Topics

This refers to the process of deliberately altering the genetic composition of an organism. Nowadays, the leaps in genetic engineering have benefited several important aspects, including stem cell research.

Through genetic engineering, several diseases and predisposing factors have been discovered and written out or edited. The fact that such technologies exist, gives enough motivation for many to want to carry out further research on the topic.

Below are some relevant topics for further research that students can use in the field of genetic engineering.

  • The possibility of recovering and the DNA of extinct animals in the restocking of said species.
  • Existing genetic theories and explanations which support or disprove certain aspects of human behavior.
  • The viability of cloning organisms.
  • The existing relationship between genetic factors and acne susceptibility of individuals.
  • Genetic explanations and theories supporting or disproving social animal behavior.
  • The connection between coronary heart disease and genetic interference.
  • Genetic research and how they have influenced the environment.
  • How close are we to cloning humans?
  • The relationship between genetic factors and allergic reactions.
  • Can congenital deformities be passed down from mother to child?
  • Genetic explanation for similarities in personalities of twins raised apart.
  • Genetic explanation for differences in personalities of twins raised apart.
  • Who funds genetic research?
  • Factors that contribute to inbreeding depression.
  • Genetic explanation of genetic variations in the distribution of organisms of the same species.
  • Current strides in genetic engineering.
  • Genetic engineering: moral or immoral?
  • When does genetic engineering cross the line?
  • Who defines right and wrong in genetics?
  • The future of genetic coding and editing.

Industrial Engineering Research Paper Topics

This branch of engineering is one that deals specifically in making complex systems, organizations, structures, etc. more efficient by developing and improving upon the pre-existing systems. In industrial engineering, the goal is the improvement and application of researched, factual upgrades to systems when dealing with individuals, finance, information, etc. in order to produce optimized results and functions.

Industrial engineering seeks to improve the methods employed by companies in the implementation of processes in the manufacture and operations of projects.

Research in industrial engineering will help broaden your knowledge of how things are and how they should be to function more efficiently and effectively. To help you get started, here are some research topics you can consider taking a closer look at.

  • Mining and discovery of data.
  • The designing, structuring, and execution of experiments.
  • Strategies employed in manufacturing.
  • Single-objective optimization.
  • Poly-objective optimization
  • Managing a supply chain.
  • Analytical approach to the management of data.
  • Experimental designing.
  • Analysis of variance.
  • Interaction of dependent and independent variables in our reality.
  • The algorithm of differential evolution.
  • Artificial neural networks and their application.
  • Planning and design concepts in the building of structures.
  • Layouts and designs of structures.
  • Systems and analyses of handling industrial materials.
  • Artificial intelligence.
  • The influence of computers on driving.
  • Application of ergonomics in the world of engineering today.
  • The rise of automation in modern industries.

Research Paper Topics Related To Civil Engineering

One simple way to define civil engineering is that it’s basically all that we can see that has been built around us. It simply refers to an expert branch or discipline of engineering that focuses on making viable, practical arrangements with the plan, development, and maintenance of the physical, visible structures around us.

Civil engineering focuses on specific areas of structural building and maintenance, including public works like streets, waterways, dams, air terminals, sewerage frameworks, pipelines, primary segments of structures, rail routes, and so on.

Civil engineers imagine, plan, create, administer, work, develop and keep up basic interactions and frameworks in the general population and private area, including the roads, structures, airport terminals, burrows, dams, extensions, and frameworks for water supply and sewage treatment.

Below are some more topics you might be interested in, which will help as a student to answer some research paper projects and assignments.

  • Automation of the operation of machines in industries.
  • Designing, building, and engineering sturdy structures.
  • Designing long-lasting buildings and systems.
  • Materials for innovation.
  • Systems employed to help in the detection and management of natural disasters.
  • Elimination and mitigation of industrial and structural hazards.
  • Analyses of risks and reliability of computational alerts.
  • Informatics and its application.
  • Simulations in engineering.
  • Land surveying.
  • Designing, engineering, and construction of roads.
  • Designing, engineering, and construction of buildings.
  • Engineering and transportation.
  • Geotechnical and its application in everyday life.
  • Engineering: its contribution and effects on the environment.
  • The impact of engineering on the structure and interaction of microorganisms in the soil.
  • Analyzing and designing residential and industrial structures.
  • The integration of various designs into construction plans.
  • The role of civil engineering in the control of environmental pollution.

Research Paper Topics Software Engineering

Software engineering is a branch of engineering that deals with the systemic application of analyses and research findings to the creation and management of software.

In software engineering, the process entails a disciplined, quantifiable approach to the application of said findings in the creation, operation, management, and security of software.

Further research topics and areas yet to be fully explored in software engineering are listed below.

  • The Internet of Things.
  • Cybersecurity.
  • Mining data.
  • Application of software engineering in the diagnosis and treatment of medical diseases.
  • Applications of Deep Neural Networking.
  • Detection and prevention of scams and online frauds.
  • Hacking: ethical hacking and the blue nowhere.
  • Benefits of professionalizing esports.
  • Automating the repairs of machines and industrial structures.
  • Assessing and testing clones.
  • The sustainability of ICT in various industries.
  • Application of ICT in Small and Medium-scale Enterprises.
  • Artificial intelligence and its contribution to the economy.
  • Ranking clone codes.
  • Data analytics.
  • Prediction and elimination of errors in software engineering.
  • Debugging in architecture.
  • Using machine learning to predict and detect defects in software.

Research Paper Topics For Engineering

Without mincing words, engineering is an umbrella term for the discipline which combines mathematics, physics, and physical sciences in the creation, development, and maintenance of technology.

Some areas for further research are listed below.

  • Systems of electrical power.
  • Sustainable alternatives and sources of energy.
  • Material modeling.
  • The mechanics of damage.
  • Renewable and non-renewable sources of energy.
  • Acoustics in engineering.
  • The engineering of chemical reactions.
  • Electronic appliances.
  • Electronics.
  • Electromagnetism.
  • The fusion of Information and Communications Technology with multimedia.
  • Content administration.
  • Electrical applications of physics.
  • Fusion of nuclei.
  • Engineering of light.
  • Design of advanced systems.
  • Clean technology and zero-carbon energy.
  • Hydroelectric engineering.

Research Paper Topics About Electrical Engineering

Electrical engineering refers to the branch of engineering that entails the operational use of technology of electricity and electrical appliances. This division of engineering focuses on the design and application of equipment used in the generation and distribution of power, as well as the control of machines and communications.

There’s a whole new world under the name of electrical engineering, and further research into the field will yield solutions to many world problems. Some of these research topics are listed below.

  • Harnessing the infinite potentials of solar energy.
  • Harnessing the infinite potentials of thermal energy.
  • Designing, engineering, and creating wind generators.
  • 3D printing.
  • Constructing circuits.
  • Additive manufacture.
  • Renewable forms of energy.
  • Soft robotics.
  • Conventional robotics.
  • Medical diagnoses and health monitoring using electrical appliances and engineering.
  • Design of energy generators.
  • Management and control of energy.
  • General applications of vehicular control.
  • Cloud services.
  • Smart grids.
  • Quality of power.
  • Wireless transfer of energy from a higher source of energy to a machine with low energy.

Research Paper Topics In Automobile Engineering

Automobile engineering is perhaps one of the most practical branches of engineering that can be seen and put to use in everyday life. It involves the study of the creation, design, structure, interaction between component parts, etc. of vehicles and other means of transportation.

Automobile engineering is often restricted to land vehicles and some suitable research topics that may interest you are listed below.

  • Techniques, procedures, structural designs, and functionality in race cars and Formula 1.
  • Drones and other unmanned aerial conveyors.
  • Processes in centrifugal casting.
  • Shaper machines and their practical examples in everyday life.
  • Tectonic sources of heat energy.
  • Conversion of wave energy.
  • General conversion of energy.
  • Airbags and their contribution to ensuring the safety of passengers while en route.
  • Designs, applications, and operations of aerodynamics.
  • Application of aerodynamics in physics and automobile engineering.
  • Design, application, functions, and restrictions surrounding robotic systems.
  • Electric cars, the future of automobiles and driving.
  • Solar-powered cars.
  • Brakes and vehicular control.
  • Solar-powered air conditioning units.
  • Speed sensors for vehicles in motion.
  • Steam energy: application, viability, risks associated with it, and how to minimize the risks involved.
  • Wind energy: production of renewable energy from wind turbines.
  • Smart cars: artificial intelligence, real-time analyses, and utilization of data by artificial intelligence.

Engineering Ethics Research Paper Topics

Engineering ethics refers to the branch of engineering that addresses ethical issues surrounding the study and pursuit of engineering.

More often than not, engineering, in the quest for globalization and technological advancement, crosses some ethical lines in carrying out its duties. Engineering ethics is there to keep the branches of engineering in check to make sure that the obligations to the public and everyone else are carried out ethically.

Discover new horizons in engineering ethics by studying any of the following research topics.

  • The history of engineering ethics, and its application through the years.
  • Circumstances that led to the relevance and development of engineering ethics.
  • Connections between the scientific, historical and technological in engineering ethics.
  • Approaches to ethical engineering.
  • Principles and vast potentials of engineering ethics.
  • Associations and bodies that monitor and uphold engineering ethics.
  • Similarities in engineering ethics and ethics in other professions.
  • Differences between engineering ethics and ethics in other professions.
  • The engineer’s obligations to the public in general.
  • Engineering ethics: responsibility and accountability of engineers.
  • Violation of engineering ethics.
  • Effects of projects undertaken in engineering on the environment.
  • Balancing public obligations and development of work projects.
  • The impacts of globalization on ethical engineering.
  • Engineering ethics and voluntarism.
  • Contradictory ethical standpoints in engineering ethics.
  • The engineer’s societal obligations and ethics in engineering.
  • Engineering ethics and professional obligations.
  • How engineering ethics influences profit generation.

Research Paper Topics: Security Engineering

Security engineering is a branch of engineering that deals with the integration of security monitoring and controls in a system, such that the controls are absorbed into the system, and are now seen as parts of the operational abilities of the system.

Above all else, security engineers analyze, supervise and develop technology and technicalities that help organizations in preventing malware from invading their systems, leaks of client information, breaches, etc. associated with cyberterrorism and cybercrime.

Security engineers major in building infallible, resilient software systems that stand tall in the face of malware, defects, errors, etc. It relies on certain tools in the design, implementation, testing, etc. of finished systems, as well as the continuous upgrades in time with environmental changes.

  • Protection of clients’ data.
  • Protecting the privacy of users.
  • Cloud security.
  • Security policies to protect client data.
  • Data management and security policies.
  • Privacy and security on the internet.
  • Client data and software security.
  • Security of users while participating in online interactive platforms.
  • Mobile app security.
  • The implication of unified user profiles for clients while using the Internet of Things.
  • Cyberattacks and some ways that corporations can survive them.
  • Centralizing the system of data storage.
  • Cybersecurity of online mobile gaming platforms and user data.
  • Computer security.
  • Security of software.
  • Cybersecurity and social engineering.
  • Effects of automation of operations in security engineering.
  • The human factor in security engineering.
  • Combating malware with antiviruses.

Aerospace Engineering Research Paper Topics

Aerospace engineering refers to the branch of engineering that is concerned with making current, factual researches, designing, developing, constructing, conducting tests, technology, dynamics, and applications of spacecraft and airplanes.

Aerospace engineering refers to aerial systems that are operational within the Earth, and in outer space.

  • The dynamics of unstable gases.
  • Parallel systems based on ground power unit (GPU).
  • Laser tools: computation, precision calculations, and implementation from start to finish.
  • Simulation of turbulence in reactive flows.
  • Fluid dynamics in aerospace engineering.
  • The propagation of elastic waves.
  • Designs for lunar missions.
  • Detection of faults in composite aerospace locations.
  • Applications of elastic abrasives.
  • Management of supply chains.
  • Functional designs for wind turbines.
  • Dynamics of fluids and fuels for machines.
  • Mechanics of solids.
  • Rocket propulsion.
  • Missile launching: precision and analyses.
  • Structures in aerospace.
  • Micro Aerial Vehicles.
  • Different fuselage systems.
  • Structural differences between a forward-swept wing passenger aircraft and a backward-swept wing passenger aircraft.

Chemical Engineering Research Paper Topics

Chemical engineering is another practical branch of engineering. It deals with the planning, designing, as well as operations of processing sites, as well as the interaction between physical, biological, and chemical processes involved in creating economically important technologies.

Some research topics are listed below.

  • The use of different types of oils in the manufacture of soap.
  • Replenishing soil nutrients and microorganisms in polluted areas by the use of organic fertilizers.
  • Degradation of soil and stripping of soil nutrients by industrial waste deposition.
  • Speeding up the degradation of plastic and reducing pollution.
  • Petrochemical products and their applications.
  • The interaction between soil microorganisms and organic fertilizers.
  • Techniques in separating simple and complex homogeneous liquids.
  • Techniques in reversing the action of free radicals.
  • Relationship between elements in the environment.
  • Molecular biology and the intricate specialization of cells.
  • Interaction between drugs and the immune system of a living organism.
  • Heat and heat energy.
  • Mass production of alternatives to fossil fuels.
  • Renewable, plant-based sources of energy.
  • Reclaiming methane as by-products of waste products.
  • Redox reactions and their applications.
  • Heat properties of paper.
  • Designing, producing, and enhancing supercapacitors.
  • Controlled extraction of plant-based wax from the pods of plants like the Theobroma cacao.
  • Water pollution and pollutants.

Research in engineering begins with an ideal topic. Backing either of the above up with factual findings is guaranteed to get you top grades.

architecture thesis topics

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

IMAGES

  1. FREE 46+ Research Paper Examples & Templates in PDF, MS Word

    genetic engineering research paper topics

  2. Genetic Engineering Essay

    genetic engineering research paper topics

  3. 💋 Genetic engineering essay. Genetic Engineering Essay. 2022-11-01

    genetic engineering research paper topics

  4. Genetic Engineering Research Paper

    genetic engineering research paper topics

  5. Genetic Engineering Paper

    genetic engineering research paper topics

  6. Research Paper

    genetic engineering research paper topics

VIDEO

  1. Microbiology Vs Biotechnology|Tamil|which is better?@microbiologyintamil2811

  2. The Future of Genetic Engineering: A Journey into Possibilities and Ethical Dilemmas

  3. Top 10 Research Topics For Students #shorts #trending

  4. Genetic Engineering and Biotechnology

  5. academic paper writing Urdu / Hindi

  6. Dr. Shireen Assem

COMMENTS

  1. 120+ Genetics Research Topics for Your Projects

    122 The Best Genetics Research Topics For Projects. The study of genetics takes place across different levels of the education system in academic facilities all around the world. It is an academic discipline that seeks to explain the mechanism of heredity and genes in living organisms. First discovered back in the 1850s, the study of genetics ...

  2. Genetic engineering

    Genetic engineering is the act of modifying the genetic makeup of an organism. Modifications can be generated by methods such as gene targeting, nuclear transplantation, transfection of synthetic ...

  3. 132 Genetic Engineering Essay Topic Ideas & Examples

    132 Genetic Engineering Essay Topic Ideas & Examples. Welcome to our list of genetic engineering essay topics! Here, you will find everything from trending research titles to the most interesting genetic engineering topics for presentation. Get inspired with our writing ideas and bonus samples!

  4. Biotech & Genetic Engineering Research Topics (+ Free Webinar

    The role of biotechnology in developing non-invasive prenatal genetic testing methods. Genetic engineering for the development of novel enzymes for industrial applications. Investigating the potential of xenotransplantation in addressing organ donor shortages. The use of biotechnology in creating personalised cancer vaccines.

  5. 60 Best Genetic Engineering Topics To Ace Your Grades Today

    Genetics engineering is one of the popular areas of study today. The discipline was discovered back in 1850 and seeks to analyze the systems of heredity and genes in different species. Therefore, when your professor gives you assignments prompts, it is important to start by picking the right genetics topics for research papers.

  6. 102 Genetic Engineering Essay Topic Ideas & Examples

    If you're looking for essay topics on genetic engineering, here are 102 ideas and examples to get you started. The ethical implications of designer babies. The use of genetic engineering in agriculture. The potential risks of gene editing in humans. The role of genetic engineering in personalized medicine.

  7. Genetic engineering

    Read the latest Research articles in Genetic engineering from Scientific Reports

  8. Principles of Genetic Engineering

    Here, we describe principles of genetic engineering and detail: (1) how common elements of current technologies include the need for a chromosome break to occur, (2) the use of specific and sensitive genotyping assays to detect altered genomes, and (3) delivery modalities that impact characterization of gene modifications.

  9. ≡Essays on Genetic Engineering. Free Examples of Research Paper Topics

    Genetic Engineering. 2 pages / 835 words. Genetic engineering, also known as genetic modification, is the direct manipulation of DNA to alter an organism's characteristics (phenotype) in a particular way. It is a set of technologies used to change the genetic makeup of cells to produce improved or novel organisms.

  10. Human Molecular Genetics and Genomics

    Genomic research has evolved from seeking to understand the fundamentals of the human genetic code to examining the ways in which this code varies among people, and then applying this knowledge to ...

  11. Articles

    Manar A. Basheer, Khaled Abutaleb, Nermine N. Abed and Amal A. I. Mekawey. Journal of Genetic Engineering and Biotechnology 2023 21 :127. Research Published on: 21 November 2023. The Correction to this article has been published in Journal of Genetic Engineering and Biotechnology 2023 21 :164. Full Text.

  12. 119 Impressive Genetics Research Topics For College Students

    Genetics is a branch of Biology to start with. It is mainly focused on the study of genetic variation, hereditary traits, and genes. Genetics has relations with several other subjects, including biotechnology, medicine, and agriculture. In Genetics, we study how genes act on the cell and how they're transmitted from a parent to the offspring.

  13. 204 Genetics Research Topics & Essay Questions for College ...

    204 Genetics Research Topics & Essay Questions for College and High School. Genetics studies how genes and traits pass from generation to generation. It has practical applications in many areas, such as genetic engineering, gene therapy, gene editing, and genetic testing. If you're looking for exciting genetics topics for presentation, you ...

  14. Genetic engineering

    Read the latest Research articles in Genetic engineering from Nature Genetics. ... Genetic engineering articles within Nature Genetics. Featured. Research Highlight | 13 June 2024.

  15. 161753 PDFs

    Dipender Gill. Objective To investigate the association of genetically proxied (using a surrogate biomarker) inhibition of phosphodiesterase 5 (PDE5), an established drug target for erectile ...

  16. Beyond safety: mapping the ethical debate on heritable genome editing

    Genetic engineering can be used in a diverse range of contexts, including research (e.g., to build model organisms), pharmacology (e.g., for insulin production) and agriculture (e.g., to improve ...

  17. 120+ Genetics Research Topics For All Kind Academic Papers

    Here are some of the exciting human genetics topics for research papers. The Human Genome Project and its significance for understanding human genetics. Chromosomal abnormalities and their effects on human health. The role of genes in human development and behavior.

  18. FOCUSED RESEARCH TOPICS

    Recombination and genetic linkage: Gene expression: Genetic code: Gene regulation: Genetic change: Mutations: Natural selection and evolution: Medicine: Research methods: DNA sequencing and genomics: Genetic testing: Cell-free fetal DNA: Newborn screening: Diagnostic testing: Carrier testing: Preimplantation genetic diagnosis: Prenatal diagnosis

  19. Resources

    ISBN: 9780470114858. Publication Date: 2009-08-17. Biotechnology introduces students in science, engineering, or technology to the basics of genetic engineering, recombinant organisms, wild-type fermentations, metabolic engineering and microorganisms for the production of small molecule bioproducts. The text includes a brief historical ...

  20. Genetic Engineering Essays: Examples, Topics, & Outlines

    View our collection of genetic engineering essays. Find inspiration for topics, titles, outlines, & craft impactful genetic engineering papers. ... Here are some essay topics that can help you practice writing an outline: 1. The effects of social media on modern society ... Research Paper. Genetics. Genetic Engineering Is Defined as . Words: 1134.

  21. 200+ Best Engineering Research Paper Topics in 2022

    20 Best Genetic Engineering Research Paper Topics. Genetic engineering and morality; Genetic engineering's significance in modern agriculture; Using genetic engineering to increase the production of biofuel; One of the key tools for genetic engineering is CRISPR-Cas. Manufacture of antibiotics with genetic engineering

  22. 211 Engineering Research Paper Topics For College Students

    Below are some relevant topics for further research that students can use in the field of genetic engineering. The possibility of recovering and the DNA of extinct animals in the restocking of said species. Existing genetic theories and explanations which support or disprove certain aspects of human behavior. The viability of cloning organisms.

  23. Research Paper Topics Genetic Engineering

    Research Paper Topics Genetic Engineering - Free download as PDF File (.pdf), Text File (.txt) or read online for free. research paper topics genetic engineering