U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Int J Med Educ
  • PMC10693955

The importance of crafting a good introduction to scholarly research: strategies for creating an effective and impactful opening statement

Mohsen tavakol.

1 Medical Education Centre, School of Medicine, The University of Nottingham, UK

David O'Brien

Introduction.

The introduction section is arguably one of the most critical elements of a written piece of research work, often setting the tone for the remainder of any dissertation or research article. The primary purpose of an introduction is to provide the reader with a clear understanding of the research question, in addition to the scope, rationale, aims and objectives of the study. This ensures the reader can more easily comprehend the context of the research, which will consequently help them better interpret and evaluate the study results. One could liken an introduction to a trailer for a movie, where the plot of the film (the research topic) is introduced by setting the scene (outlining the significance of the topic) and enticing you to watch the full movie (understanding the research and its importance).

Despite this, our experience suggests that students frequently pay insufficient attention to the introduction section of their dissertation or omit elements which we consider essential to address. This editorial aims to help researchers appreciate the importance of a comprehensive dissertation introduction in medical education research and learn how to effectively manage this key section of their work.  Although it focuses purely on the introduction section of a written research submission, readers interested in learning more about the other primary steps of the research process are encouraged to read AMEE Guide No. 90 1 , 2 textbooks on research methods and both consult and seek constructive feedback from colleagues with expertise in research methods and writing for publication.

Here we aim to provide the reader with a simple structure of how best to construct the introduction for a dissertation and recommend that this should typically include the following essential components and principles.

Background to the research topic

The purpose of providing background information in an introduction is to supply the context and other essential information concerning the research topic, and thus allow the reader to understand the significance of the specific research question and where it sits within the broader field of study. This aids the reader to better understand how the research question contributes to the existing body of knowledge and why it is, necessary to investigate this specific aspect further. For example, suppose the study concerns the effectiveness of simulation-based training in medical education. In this case, the broader field of the study may include relevant areas such as medical simulation, medical education research, health care education, standardised patients, simulation-based training, and curriculum development based on simulation training. After providing the reader with an understanding of the context and relevance of the topic of interest, the researcher must then establish a theoretical or conceptual framework. This underpins the study topic in order that the reader can understand how any research questions and objectives are formulated. It is important to distinguish between these two frameworks. A theoretical framework describes the rationale for applying a particular theory to provide support and structure for the topic being studied. In the absence of an applicable theory, a conceptual framework substantiates the significance of a particular problem, context or phenomenon within a specific area of the study by illustrating its relevance and connection to research topic. 3 A conceptual framework highlights the importance of a research topic by showing how it relates to the larger body of knowledge in a particular field. Here is an example to demonstrate the use of a theoretical framework in a research context.

When considering Social Cognitive Theory (SCT), one of the key constructs is self-efficacy, as described by Albert Bandura, 4 and refers to the belief that a person has it within their own ability to accomplish a specific task successfully. This is not related to what a person does, but more how they perceive their ability to use these skills. So, based on this construct of self-efficacy, a researcher may formulate a research hypothesis; that examiners with higher self-efficacy in OSCEs will demonstrate improved performance in subsequent exams compared to those with lower self-efficacy. Now the researcher is in a position to identify the fundamental concepts of the research, i.e., self-efficacy (personal factors), examiner performance (behavioural factors) and examination conditions and examiner scaffolding support (environmental factors). Identifying key concepts helps the researcher find the relationship between these, and develop appropriate research questions, e.g., 1) How does an examiner's self-efficacy in OSCEs affect their ability to assess students in subsequent exams? 2) How does the support provided to examiners and exam conditions influence the link between self-efficacy and examiner performance in OSCEs? 3) Do examiners with high self-efficacy provide fairer scores than those with low self-efficacy in OSCEs? By having a theoretical framework, researchers can establish a foundation for their research and provide a clear picture of the relationship between the key concepts involved in the study. Researchers must also provide any conceptual and operational definitions for key concepts or variables that will be used in the study. Clearly defining key concepts and variables in the background section of a dissertation can also help establish the significance of the research question and its relevance to the broader field of study. As the name implies, a conceptual definition refers to a variable's meaning in a conceptual, abstract, or theoretical sense. Conceptual definitions are often used to describe concepts which cannot be directly measured, such as active learning, rote learning, inter-professional learning, inter-professional education, or constructs such as clinical performance. Conversely, operational definitions define the steps researchers must take in order to collect data to measure a phenomenon or concept. 5 For example, clinical performance can be considered a conceptual construct but may also be defined operationally as the ability of students to pass 12 out of 16 stations of an OSCE. The researcher having already pre-specified specific the criteria for classifying students as pass/fail in order to determine the ability of students to perform clinically. This operational definition provides a clear method for evaluating and measuring student ability, which can then be used to give feedback and guide further learning or to establish clear expectations for students and provide a basis for evaluating and assessing their performance. In general, it can be beneficial for medical education programs to define aspects such as clinical performance operationally in this way in rather than conceptually, especially if there is a need to ensure that students meet a required standard of competence and are prepared for the demands of real-world clinical practice. These definitions can also then be used to establish the methods and criteria by which the variables of the study will subsequently be measured or altered.

Citing the existing literature to support the research aim

A literature review is the process of critically evaluating existing research and utilising it to inform and guide the research proposal under investigation. Taking this approach enables researchers to ensure that their research is not only grounded in, but also contributes meaningfully to, any existing knowledge as a whole. Critically reviewing the literature provides evidence and justification for any research and is essential when formulating a hypothesis, question, or study objectives. In addition, and perhaps most importantly, it helps identify any gaps or inconsistencies in the existing knowledge base. Determining the knowledge gap is critical in justifying the necessity for our research and advancing knowledge. A comprehensive literature review also helps establish the theoretical or conceptual frameworks to ground any subsequent research, providing researchers with guidance and direction on how best to conduct their future studies. Understanding from the literature what has worked previously and what may pose challenges or limitations assists researchers when exploring the best methods and techniques for answering new research questions. To clarify, consider a hypothetical study in which researchers wish to examine the effectiveness of a specific educational intervention in medical students to improve patient safety. Based on the existing literature, let's assume that researchers learned that most studies had only focused on short-term outcomes rather than long-term ones. The long-term effects of any intervention in medical students on patient safety therefore remain uncertain. Researchers may therefore wish to consider conducting longitudinal studies months after interventions have been carried out, rather than simply repeating research based on short-term outcomes, in order to address the current knowledge gap. A review of existing literature may highlight hitherto previously unconsidered logistical difficulties in conducting longitudinal studies in this area that the researcher may need to be aware of.

Stating the significance of the research

More than simply reporting the existing research, one of the key objectives in any literature review is to summarise and synthesise existing research on the intended topic in order to analyse the significance of the research in question. In this process, diverse ideas can be merged to form fresh new perspectives. Any gaps, limitations, or controversies in medical education can be identified, and potential future benefits and implications of the proposed research explained to the reader. Based on any potential impact or perceived importance, the introduction provides an excellent opportunity for the researcher to affirm the significance of the research study and why it should be conducted.

By way of an example, the significance of a study concerning feedback given to examiners for Objective Structured Clinical Examinations (OSCEs) is used to illustrate this point further. The potential significance of this research lies in improving the validity and reliability of OSCE scores in medical education. As a result of reviewing different types of feedback given to examiners, the research may assist in identifying the most effective strategies for improving the quality of OSCEs in medical education. By providing new insights into how feedback can improve the reliability and validity of OSCE results, the research could also contribute to the broader knowledge of assessment in general. This may result in the development of more accurate and robust medical education assessments, which in turn may potentially enhance delivery of healthcare and improve patient outcomes and safety. It may also address the current challenges and gaps in medical education assessment by providing evidence-based approaches for improving OSCE quality.

Formulating Research Questions and Objectives

Researchers formulate research questions and objectives based on the topic they are seeking to address. As noted previously, these will have already been derived as a result of a comprehensive literature review of any existing knowledge and based on a theoretical or conceptual framework. Furthermore, in medical education, the literature review provides researchers with the opportunity to formulate new research questions or research objectives to address any gaps or limitations in the existing literature and add something new to the current body of knowledge. Research questions and objectives should be stated clearly, being both specific, and measurable. These should then guide the subsequent selection of appropriate research methods, data collection and any subsequent analytical process. Clear, focused, and rigorous research questions and objectives will ensure the study is well-designed and make a valuable contribution to the existing body of knowledge.

Qualitative research questions should be open-ended and exploratory rather than focused on a specific hypothesis or proposition. It is common for qualitative studies to focus on understanding how and why certain phenomena occur, rather than simply describing what has occurred. These should be formulated to elicit rich, detailed, and context-specific data that can provide insights into the experiences, perspectives, and meanings of the participants. In contrast, quantitative research questions are more specific and are designed to test a particular hypothesis or relationship. In medical education, it is imperative to emphasise the importance of both qualitative and quantitative research questions when it comes to generating new knowledge. Combining both quantitative and qualitative research methods (mixed methods) can be particularly powerful in providing a more comprehensive understanding of any phenomena under study. Assume again that we are examining the effectiveness of feedback on the performance of medical students and adopt a mixed-methods approach using a combination of qualitative and quantitative research methods. A quantitative research question may be, what is the impact of feedback on the performance of medical students as measured by OSCE mark? How the experience of receiving feedback on performance contributes to the future professional development of medical students is a more qualitative research question. This combination of quantitative and qualitative research questions will provide an in depth understanding of the effectiveness of feedback on medical student performance. It is important to note that in qualitative research methods particularly, there can be a wide variety of research question types. For example, grounded theory researchers may ask so-called "process questions", such as 'how do students interpret and use the feedback they are given?' Phenomenologists, on the other hand, are concerned with lived experience of research subjects and frequently ask questions looking to understand the "meaning" of any such experience, often aiming to attribute feelings to this experience, for example, ‘how do students feel when they receive feedback?’ Ethnographers look to understand how culture contributes to an experience, and may ask more "descriptive questions" 5 for example, ‘how does the culture within a specific medical school affect students receiving feedback on their performance?’

For ease of reference, the key points we recommended are considered in any dissertation introduction are summarised below:

1.       Set the context for the research

2.       Establish a theoretical or conceptual framework to support your study

3.       Define key variables both conceptually and theoretically

4.       Critically appraise relevant papers during the literature review

5.       Review previous studies to identify and define the knowledge gap by assessing what has already been studied and what areas remain unexplored

6.       Clearly articulate the rationale behind your study, emphasising its importance in the intended field

7.       Clearly define your research objectives, questions, and hypotheses

Conclusions

Whilst crafting a research introduction may seem a challenging and time-consuming task, it is well worth the effort to convey your research clearly and engage potential readers. Providing sufficient background information on the research topic, conducting a comprehensive review of the existing research, determining the knowledge gap, understanding any limitations or controversies in the topic of interest, before then exploring any theoretical or conceptual frameworks to develop the research concepts, research questions and methodology are fundamental steps. Articulating any conceptual and operational definitions of key concepts and clearly defining any key terms, including explanations of how these will be used in the study is also paramount to a good introduction. It is essential to clearly present the rationale behind the research and why this is significant, clarifying what it adds to the existing body of knowledge in medical education and exploring any potential future implications. Lastly, it is vital to ensure that any research questions are clearly stated and are open-ended and exploratory in the case of qualitative studies, or specific and measurable in the case of quantitative studies.

We feel that observing these basic principles and adhering to these few simple steps will hopefully set the stage for a highly successful piece of research and will certainly go some way to achieving a favourable editorial outcome for possible subsequent publication of the work.

Conflict of Interest

The authors declare that they have no conflict of interest.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 4. The Introduction
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The introduction leads the reader from a general subject area to a particular topic of inquiry. It establishes the scope, context, and significance of the research being conducted by summarizing current understanding and background information about the topic, stating the purpose of the work in the form of the research problem supported by a hypothesis or a set of questions, explaining briefly the methodological approach used to examine the research problem, highlighting the potential outcomes your study can reveal, and outlining the remaining structure and organization of the paper.

Key Elements of the Research Proposal. Prepared under the direction of the Superintendent and by the 2010 Curriculum Design and Writing Team. Baltimore County Public Schools.

Importance of a Good Introduction

Think of the introduction as a mental road map that must answer for the reader these four questions:

  • What was I studying?
  • Why was this topic important to investigate?
  • What did we know about this topic before I did this study?
  • How will this study advance new knowledge or new ways of understanding?

According to Reyes, there are three overarching goals of a good introduction: 1) ensure that you summarize prior studies about the topic in a manner that lays a foundation for understanding the research problem; 2) explain how your study specifically addresses gaps in the literature, insufficient consideration of the topic, or other deficiency in the literature; and, 3) note the broader theoretical, empirical, and/or policy contributions and implications of your research.

A well-written introduction is important because, quite simply, you never get a second chance to make a good first impression. The opening paragraphs of your paper will provide your readers with their initial impressions about the logic of your argument, your writing style, the overall quality of your research, and, ultimately, the validity of your findings and conclusions. A vague, disorganized, or error-filled introduction will create a negative impression, whereas, a concise, engaging, and well-written introduction will lead your readers to think highly of your analytical skills, your writing style, and your research approach. All introductions should conclude with a brief paragraph that describes the organization of the rest of the paper.

Hirano, Eliana. “Research Article Introductions in English for Specific Purposes: A Comparison between Brazilian, Portuguese, and English.” English for Specific Purposes 28 (October 2009): 240-250; Samraj, B. “Introductions in Research Articles: Variations Across Disciplines.” English for Specific Purposes 21 (2002): 1–17; Introductions. The Writing Center. University of North Carolina; “Writing Introductions.” In Good Essay Writing: A Social Sciences Guide. Peter Redman. 4th edition. (London: Sage, 2011), pp. 63-70; Reyes, Victoria. Demystifying the Journal Article. Inside Higher Education.

Structure and Writing Style

I.  Structure and Approach

The introduction is the broad beginning of the paper that answers three important questions for the reader:

  • What is this?
  • Why should I read it?
  • What do you want me to think about / consider doing / react to?

Think of the structure of the introduction as an inverted triangle of information that lays a foundation for understanding the research problem. Organize the information so as to present the more general aspects of the topic early in the introduction, then narrow your analysis to more specific topical information that provides context, finally arriving at your research problem and the rationale for studying it [often written as a series of key questions to be addressed or framed as a hypothesis or set of assumptions to be tested] and, whenever possible, a description of the potential outcomes your study can reveal.

These are general phases associated with writing an introduction: 1.  Establish an area to research by:

  • Highlighting the importance of the topic, and/or
  • Making general statements about the topic, and/or
  • Presenting an overview on current research on the subject.

2.  Identify a research niche by:

  • Opposing an existing assumption, and/or
  • Revealing a gap in existing research, and/or
  • Formulating a research question or problem, and/or
  • Continuing a disciplinary tradition.

3.  Place your research within the research niche by:

  • Stating the intent of your study,
  • Outlining the key characteristics of your study,
  • Describing important results, and
  • Giving a brief overview of the structure of the paper.

NOTE:   It is often useful to review the introduction late in the writing process. This is appropriate because outcomes are unknown until you've completed the study. After you complete writing the body of the paper, go back and review introductory descriptions of the structure of the paper, the method of data gathering, the reporting and analysis of results, and the conclusion. Reviewing and, if necessary, rewriting the introduction ensures that it correctly matches the overall structure of your final paper.

II.  Delimitations of the Study

Delimitations refer to those characteristics that limit the scope and define the conceptual boundaries of your research . This is determined by the conscious exclusionary and inclusionary decisions you make about how to investigate the research problem. In other words, not only should you tell the reader what it is you are studying and why, but you must also acknowledge why you rejected alternative approaches that could have been used to examine the topic.

Obviously, the first limiting step was the choice of research problem itself. However, implicit are other, related problems that could have been chosen but were rejected. These should be noted in the conclusion of your introduction. For example, a delimitating statement could read, "Although many factors can be understood to impact the likelihood young people will vote, this study will focus on socioeconomic factors related to the need to work full-time while in school." The point is not to document every possible delimiting factor, but to highlight why previously researched issues related to the topic were not addressed.

Examples of delimitating choices would be:

  • The key aims and objectives of your study,
  • The research questions that you address,
  • The variables of interest [i.e., the various factors and features of the phenomenon being studied],
  • The method(s) of investigation,
  • The time period your study covers, and
  • Any relevant alternative theoretical frameworks that could have been adopted.

Review each of these decisions. Not only do you clearly establish what you intend to accomplish in your research, but you should also include a declaration of what the study does not intend to cover. In the latter case, your exclusionary decisions should be based upon criteria understood as, "not interesting"; "not directly relevant"; “too problematic because..."; "not feasible," and the like. Make this reasoning explicit!

NOTE:   Delimitations refer to the initial choices made about the broader, overall design of your study and should not be confused with documenting the limitations of your study discovered after the research has been completed.

ANOTHER NOTE: Do not view delimitating statements as admitting to an inherent failing or shortcoming in your research. They are an accepted element of academic writing intended to keep the reader focused on the research problem by explicitly defining the conceptual boundaries and scope of your study. It addresses any critical questions in the reader's mind of, "Why the hell didn't the author examine this?"

III.  The Narrative Flow

Issues to keep in mind that will help the narrative flow in your introduction :

  • Your introduction should clearly identify the subject area of interest . A simple strategy to follow is to use key words from your title in the first few sentences of the introduction. This will help focus the introduction on the topic at the appropriate level and ensures that you get to the subject matter quickly without losing focus, or discussing information that is too general.
  • Establish context by providing a brief and balanced review of the pertinent published literature that is available on the subject. The key is to summarize for the reader what is known about the specific research problem before you did your analysis. This part of your introduction should not represent a comprehensive literature review--that comes next. It consists of a general review of the important, foundational research literature [with citations] that establishes a foundation for understanding key elements of the research problem. See the drop-down menu under this tab for " Background Information " regarding types of contexts.
  • Clearly state the hypothesis that you investigated . When you are first learning to write in this format it is okay, and actually preferable, to use a past statement like, "The purpose of this study was to...." or "We investigated three possible mechanisms to explain the...."
  • Why did you choose this kind of research study or design? Provide a clear statement of the rationale for your approach to the problem studied. This will usually follow your statement of purpose in the last paragraph of the introduction.

IV.  Engaging the Reader

A research problem in the social sciences can come across as dry and uninteresting to anyone unfamiliar with the topic . Therefore, one of the goals of your introduction is to make readers want to read your paper. Here are several strategies you can use to grab the reader's attention:

  • Open with a compelling story . Almost all research problems in the social sciences, no matter how obscure or esoteric , are really about the lives of people. Telling a story that humanizes an issue can help illuminate the significance of the problem and help the reader empathize with those affected by the condition being studied.
  • Include a strong quotation or a vivid, perhaps unexpected, anecdote . During your review of the literature, make note of any quotes or anecdotes that grab your attention because they can used in your introduction to highlight the research problem in a captivating way.
  • Pose a provocative or thought-provoking question . Your research problem should be framed by a set of questions to be addressed or hypotheses to be tested. However, a provocative question can be presented in the beginning of your introduction that challenges an existing assumption or compels the reader to consider an alternative viewpoint that helps establish the significance of your study. 
  • Describe a puzzling scenario or incongruity . This involves highlighting an interesting quandary concerning the research problem or describing contradictory findings from prior studies about a topic. Posing what is essentially an unresolved intellectual riddle about the problem can engage the reader's interest in the study.
  • Cite a stirring example or case study that illustrates why the research problem is important . Draw upon the findings of others to demonstrate the significance of the problem and to describe how your study builds upon or offers alternatives ways of investigating this prior research.

NOTE:   It is important that you choose only one of the suggested strategies for engaging your readers. This avoids giving an impression that your paper is more flash than substance and does not distract from the substance of your study.

Freedman, Leora  and Jerry Plotnick. Introductions and Conclusions. University College Writing Centre. University of Toronto; Introduction. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College; Introductions. The Writing Center. University of North Carolina; Introductions. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Introductions, Body Paragraphs, and Conclusions for an Argument Paper. The Writing Lab and The OWL. Purdue University; “Writing Introductions.” In Good Essay Writing: A Social Sciences Guide . Peter Redman. 4th edition. (London: Sage, 2011), pp. 63-70; Resources for Writers: Introduction Strategies. Program in Writing and Humanistic Studies. Massachusetts Institute of Technology; Sharpling, Gerald. Writing an Introduction. Centre for Applied Linguistics, University of Warwick; Samraj, B. “Introductions in Research Articles: Variations Across Disciplines.” English for Specific Purposes 21 (2002): 1–17; Swales, John and Christine B. Feak. Academic Writing for Graduate Students: Essential Skills and Tasks . 2nd edition. Ann Arbor, MI: University of Michigan Press, 2004 ; Writing Your Introduction. Department of English Writing Guide. George Mason University.

Writing Tip

Avoid the "Dictionary" Introduction

Giving the dictionary definition of words related to the research problem may appear appropriate because it is important to define specific terminology that readers may be unfamiliar with. However, anyone can look a word up in the dictionary and a general dictionary is not a particularly authoritative source because it doesn't take into account the context of your topic and doesn't offer particularly detailed information. Also, placed in the context of a particular discipline, a term or concept may have a different meaning than what is found in a general dictionary. If you feel that you must seek out an authoritative definition, use a subject specific dictionary or encyclopedia [e.g., if you are a sociology student, search for dictionaries of sociology]. A good database for obtaining definitive definitions of concepts or terms is Credo Reference .

Saba, Robert. The College Research Paper. Florida International University; Introductions. The Writing Center. University of North Carolina.

Another Writing Tip

When Do I Begin?

A common question asked at the start of any paper is, "Where should I begin?" An equally important question to ask yourself is, "When do I begin?" Research problems in the social sciences rarely rest in isolation from history. Therefore, it is important to lay a foundation for understanding the historical context underpinning the research problem. However, this information should be brief and succinct and begin at a point in time that illustrates the study's overall importance. For example, a study that investigates coffee cultivation and export in West Africa as a key stimulus for local economic growth needs to describe the beginning of exporting coffee in the region and establishing why economic growth is important. You do not need to give a long historical explanation about coffee exports in Africa. If a research problem requires a substantial exploration of the historical context, do this in the literature review section. In your introduction, make note of this as part of the "roadmap" [see below] that you use to describe the organization of your paper.

Introductions. The Writing Center. University of North Carolina; “Writing Introductions.” In Good Essay Writing: A Social Sciences Guide . Peter Redman. 4th edition. (London: Sage, 2011), pp. 63-70.

Yet Another Writing Tip

Always End with a Roadmap

The final paragraph or sentences of your introduction should forecast your main arguments and conclusions and provide a brief description of the rest of the paper [the "roadmap"] that let's the reader know where you are going and what to expect. A roadmap is important because it helps the reader place the research problem within the context of their own perspectives about the topic. In addition, concluding your introduction with an explicit roadmap tells the reader that you have a clear understanding of the structural purpose of your paper. In this way, the roadmap acts as a type of promise to yourself and to your readers that you will follow a consistent and coherent approach to addressing the topic of inquiry. Refer to it often to help keep your writing focused and organized.

Cassuto, Leonard. “On the Dissertation: How to Write the Introduction.” The Chronicle of Higher Education , May 28, 2018; Radich, Michael. A Student's Guide to Writing in East Asian Studies . (Cambridge, MA: Harvard University Writing n. d.), pp. 35-37.

  • << Previous: Executive Summary
  • Next: The C.A.R.S. Model >>
  • Last Updated: Sep 17, 2024 10:59 AM
  • URL: https://libguides.usc.edu/writingguide

why introduction is important in research

How to Write a Research Paper Introduction (with Examples)

How to Write a Research Paper Introduction (with Examples)

Table of Contents

The research paper introduction section, along with the Title and Abstract, can be considered the face of any research paper. The following article is intended to guide you in organizing and writing the research paper introduction for a quality academic article or dissertation.

The research paper introduction aims to present the topic to the reader. A study will only be accepted for publishing if you can ascertain that the available literature cannot answer your research question. So it is important to ensure that you have read important studies on that particular topic, especially those within the last five to ten years, and that they are properly referenced in this section. 1

What should be included in the research paper introduction is decided by what you want to tell readers about the reason behind the research and how you plan to fill the knowledge gap. The best research paper introduction provides a systemic review of existing work and demonstrates additional work that needs to be done. It needs to be brief, captivating, and well-referenced; a well-drafted research paper introduction will help the researcher win half the battle.

The introduction for a research paper is where you set up your topic and approach for the reader. It has several key goals:

  • Present your research topic
  • Capture reader interest
  • Summarize existing research
  • Position your own approach
  • Define your specific research problem and problem statement
  • Highlight the novelty and contributions of the study
  • Give an overview of the paper’s structure

The research paper introduction can vary in size and structure depending on whether your paper presents the results of original empirical research or is a review paper. Some research paper introduction examples are only half a page while others are a few pages long. In many cases, the introduction will be shorter than all of the other sections of your paper; its length depends on the size of your paper as a whole.

What is the introduction for a research paper?

The introduction in a research paper is placed at the beginning to guide the reader from a broad subject area to the specific topic that your research addresses. They present the following information to the reader

  • Scope: The topic covered in the research paper
  • Context: Background of your topic
  • Importance: Why your research matters in that particular area of research and the industry problem that can be targeted

Why is the introduction important in a research paper?

The research paper introduction conveys a lot of information and can be considered an essential roadmap for the rest of your paper. A good introduction for a research paper is important for the following reasons:

  • It stimulates your reader’s interest: A good introduction section can make your readers want to read your paper by capturing their interest. It informs the reader what they are going to learn and helps determine if the topic is of interest to them.
  • It helps the reader understand the research background: Without a clear introduction, your readers may feel confused and even struggle when reading your paper. A good research paper introduction will prepare them for the in-depth research to come. It provides you the opportunity to engage with the readers and demonstrate your knowledge and authority on the specific topic.
  • It explains why your research paper is worth reading: Your introduction can convey a lot of information to your readers. It introduces the topic, why the topic is important, and how you plan to proceed with your research.
  • It helps guide the reader through the rest of the paper: The research paper introduction gives the reader a sense of the nature of the information that will support your arguments and the general organization of the paragraphs that will follow.

What are the parts of introduction in the research?

A good research paper introduction section should comprise three main elements: 2

  • What is known: This sets the stage for your research. It informs the readers of what is known on the subject.
  • What is lacking: This is aimed at justifying the reason for carrying out your research. This could involve investigating a new concept or method or building upon previous research.
  • What you aim to do: This part briefly states the objectives of your research and its major contributions. Your detailed hypothesis will also form a part of this section.

Check out how Peace Alemede uses Paperpal to write her research paper

why introduction is important in research

Peace Alemede, Student, University of Ilorin

Paperpal has been an excellent and beneficial tool for editing my research work. With the help of Paperpal, I am now able to write and produce results at a much faster rate. For instance, I recently used Paperpal to edit a research article that is currently being considered for publication. The tool allowed me to align the language of my paragraph ideas to a more academic setting, thereby saving me both time and resources. As a result, my work was deemed accurate for use. I highly recommend this tool to anyone in need of efficient and effective research paper editing. Peace Alemede, Student, University of Ilorin, Nigeria

Start Writing for Free

How to write a research paper introduction?

The first step in writing the research paper introduction is to inform the reader what your topic is and why it’s interesting or important. This is generally accomplished with a strong opening statement. The second step involves establishing the kinds of research that have been done and ending with limitations or gaps in the research that you intend to address.

Finally, the research paper introduction clarifies how your own research fits in and what problem it addresses. If your research involved testing hypotheses, these should be stated along with your research question. The hypothesis should be presented in the past tense since it will have been tested by the time you are writing the research paper introduction.

The following key points, with examples, can guide you when writing the research paper introduction section:

1. Introduce the research topic:

  • Highlight the importance of the research field or topic
  • Describe the background of the topic
  • Present an overview of current research on the topic

Example: The inclusion of experiential and competency-based learning has benefitted electronics engineering education. Industry partnerships provide an excellent alternative for students wanting to engage in solving real-world challenges. Industry-academia participation has grown in recent years due to the need for skilled engineers with practical training and specialized expertise. However, from the educational perspective, many activities are needed to incorporate sustainable development goals into the university curricula and consolidate learning innovation in universities.

2. Determine a research niche:

  • Reveal a gap in existing research or oppose an existing assumption
  • Formulate the research question

Example: There have been plausible efforts to integrate educational activities in higher education electronics engineering programs. However, very few studies have considered using educational research methods for performance evaluation of competency-based higher engineering education, with a focus on technical and or transversal skills. To remedy the current need for evaluating competencies in STEM fields and providing sustainable development goals in engineering education, in this study, a comparison was drawn between study groups without and with industry partners.

3. Place your research within the research niche:

  • State the purpose of your study
  • Highlight the key characteristics of your study
  • Describe important results
  • Highlight the novelty of the study.
  • Offer a brief overview of the structure of the paper.

Example: The study evaluates the main competency needed in the applied electronics course, which is a fundamental core subject for many electronics engineering undergraduate programs. We compared two groups, without and with an industrial partner, that offered real-world projects to solve during the semester. This comparison can help determine significant differences in both groups in terms of developing subject competency and achieving sustainable development goals.

Write a Research Paper Introduction in Minutes with Paperpal

Paperpal is a generative AI-powered academic writing assistant. It’s trained on millions of published scholarly articles and over 20 years of STM experience. Paperpal helps authors write better and faster with:

  • Real-time writing suggestions
  • In-depth checks for language and grammar correction
  • Paraphrasing to add variety, ensure academic tone, and trim text to meet journal limits

With Paperpal, create a research paper introduction effortlessly. In this step-by-step guide, we’ll walk you through how Paperpal transforms your initial ideas into a polished and publication-ready introduction.

why introduction is important in research

How to use Paperpal to write the Introduction section

Step 1: Sign up on Paperpal and click on the Copilot feature, under this choose Outlines > Research Article > Introduction

Step 2: Add your unstructured notes or initial draft, whether in English or another language, to Paperpal, which is to be used as the base for your content.

Step 3: Fill in the specifics, such as your field of study, brief description or details you want to include, which will help the AI generate the outline for your Introduction.

Step 4: Use this outline and sentence suggestions to develop your content, adding citations where needed and modifying it to align with your specific research focus.

Step 5: Turn to Paperpal’s granular language checks to refine your content, tailor it to reflect your personal writing style, and ensure it effectively conveys your message.

You can use the same process to develop each section of your article, and finally your research paper in half the time and without any of the stress.

Frequently Asked Questions

What is the purpose of the introduction in research papers.

The purpose of the research paper introduction is to introduce the reader to the problem definition, justify the need for the study, and describe the main theme of the study. The aim is to gain the reader’s attention by providing them with necessary background information and establishing the main purpose and direction of the research.

How long should the research paper introduction be?

The length of the research paper introduction can vary across journals and disciplines. While there are no strict word limits for writing the research paper introduction, an ideal length would be one page, with a maximum of 400 words over 1-4 paragraphs. Generally, it is one of the shorter sections of the paper as the reader is assumed to have at least a reasonable knowledge about the topic. 2

For example, for a study evaluating the role of building design in ensuring fire safety, there is no need to discuss definitions and nature of fire in the introduction; you could start by commenting upon the existing practices for fire safety and how your study will add to the existing knowledge and practice.

What should be included in the research paper introduction?

When deciding what to include in the research paper introduction, the rest of the paper should also be considered. The aim is to introduce the reader smoothly to the topic and facilitate an easy read without much dependency on external sources. 3

Below is a list of elements you can include to prepare a research paper introduction outline and follow it when you are writing the research paper introduction.

  • Topic introduction: This can include key definitions and a brief history of the topic.
  • Research context and background: Offer the readers some general information and then narrow it down to specific aspects.
  • Details of the research you conducted: A brief literature review can be included to support your arguments or line of thought.
  • Rationale for the study: This establishes the relevance of your study and establishes its importance.
  • Importance of your research: The main contributions are highlighted to help establish the novelty of your study
  • Research hypothesis: Introduce your research question and propose an expected outcome. Organization of the paper: Include a short paragraph of 3-4 sentences that highlights your plan for the entire paper

Should I include citations in the introduction for a research paper?

Cite only works that are most relevant to your topic; as a general rule, you can include one to three. Note that readers want to see evidence of original thinking. So it is better to avoid using too many references as it does not leave much room for your personal standpoint to shine through.

Citations in your research paper introduction support the key points, and the number of citations depend on the subject matter and the point discussed. If the research paper introduction is too long or overflowing with citations, it is better to cite a few review articles rather than the individual articles summarized in the review.

A good point to remember when citing research papers in the introduction section is to include at least one-third of the references in the introduction.

Should I provide a literature review in the research paper introduction?

The literature review plays a significant role in the research paper introduction section. A good literature review accomplishes the following:

  • Introduces the topic
  • Establishes the study’s significance
  • Provides an overview of the relevant literature
  • Provides context for the study using literature
  • Identifies knowledge gaps

However, remember to avoid making the following mistakes when writing a research paper introduction:

  • Do not use studies from the literature review to aggressively support your research
  • Avoid direct quoting
  • Do not allow literature review to be the focus of this section. Instead, the literature review should only aid in setting a foundation for the manuscript. 

Key points to remember

Remember the following key points for writing a good research paper introduction: 4

  • Avoid stuffing too much general information: Avoid including what an average reader would know and include only that information related to the problem being addressed in the research paper introduction. For example, when describing a comparative study of non-traditional methods for mechanical design optimization, information related to the traditional methods and differences between traditional and non-traditional methods would not be relevant. In this case, the introduction for the research paper should begin with the state-of-the-art non-traditional methods and methods to evaluate the efficiency of newly developed algorithms.
  • Avoid packing too many references: Cite only the required works in your research paper introduction. The other works can be included in the discussion section to strengthen your findings.
  • Avoid extensive criticism of previous studies: Avoid being overly critical of earlier studies while setting the rationale for your study. A better place for this would be the Discussion section, where you can highlight the advantages of your method.
  • Avoid describing conclusions of the study: When writing a research paper introduction remember not to include the findings of your study. The aim is to let the readers know what question is being answered. The actual answer should only be given in the Results and Discussion section.

To summarize, the research paper introduction section should be brief yet informative. It should convince the reader the need to conduct the study and motivate him to read further. If you’re feeling stuck or unsure, choose trusted AI academic writing assistants like Paperpal to effortlessly craft your research paper introduction and other sections of your research article.

  • Jawaid, S. A., & Jawaid, M. (2019). How to write introduction and discussion. Saudi Journal of Anaesthesia, 13(Suppl 1), S18.
  • Dewan, P., & Gupta, P. (2016). Writing the title, abstract and introduction: Looks matter!. Indian pediatrics, 53, 235-241.
  • Cetin, S., & Hackam, D. J. (2005). An approach to the writing of a scientific Manuscript1. Journal of Surgical Research, 128(2), 165-167.
  • Bavdekar, S. B. (2015). Writing introduction: Laying the foundations of a research paper. Journal of the Association of Physicians of India, 63(7), 44-6.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 
  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level

Practice vs. Practise: Learn the Difference

Academic paraphrasing: why paperpal’s rewrite should be your first choice , you may also like, how to cite in apa format (7th edition):..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), research funding basics: what should a grant proposal..., how to write an abstract in research papers..., how to write dissertation acknowledgements, how to write the first draft of a..., mla works cited page: format, template & examples.

  • Privacy Policy

Research Method

Home » Research Paper Introduction – Writing Guide and Examples

Research Paper Introduction – Writing Guide and Examples

Table of Contents

Research Paper Introduction

Research Paper Introduction

Research paper introduction is the first section of a research paper that provides an overview of the study, its purpose, and the research question (s) or hypothesis (es) being investigated. It typically includes background information about the topic, a review of previous research in the field, and a statement of the research objectives. The introduction is intended to provide the reader with a clear understanding of the research problem, why it is important, and how the study will contribute to existing knowledge in the field. It also sets the tone for the rest of the paper and helps to establish the author’s credibility and expertise on the subject.

How to Write Research Paper Introduction

Writing an introduction for a research paper can be challenging because it sets the tone for the entire paper. Here are some steps to follow to help you write an effective research paper introduction:

  • Start with a hook : Begin your introduction with an attention-grabbing statement, a question, or a surprising fact that will make the reader interested in reading further.
  • Provide background information: After the hook, provide background information on the topic. This information should give the reader a general idea of what the topic is about and why it is important.
  • State the research problem: Clearly state the research problem or question that the paper addresses. This should be done in a concise and straightforward manner.
  • State the research objectives: After stating the research problem, clearly state the research objectives. This will give the reader an idea of what the paper aims to achieve.
  • Provide a brief overview of the paper: At the end of the introduction, provide a brief overview of the paper. This should include a summary of the main points that will be discussed in the paper.
  • Revise and refine: Finally, revise and refine your introduction to ensure that it is clear, concise, and engaging.

Structure of Research Paper Introduction

The following is a typical structure for a research paper introduction:

  • Background Information: This section provides an overview of the topic of the research paper, including relevant background information and any previous research that has been done on the topic. It helps to give the reader a sense of the context for the study.
  • Problem Statement: This section identifies the specific problem or issue that the research paper is addressing. It should be clear and concise, and it should articulate the gap in knowledge that the study aims to fill.
  • Research Question/Hypothesis : This section states the research question or hypothesis that the study aims to answer. It should be specific and focused, and it should clearly connect to the problem statement.
  • Significance of the Study: This section explains why the research is important and what the potential implications of the study are. It should highlight the contribution that the research makes to the field.
  • Methodology: This section describes the research methods that were used to conduct the study. It should be detailed enough to allow the reader to understand how the study was conducted and to evaluate the validity of the results.
  • Organization of the Paper : This section provides a brief overview of the structure of the research paper. It should give the reader a sense of what to expect in each section of the paper.

Research Paper Introduction Examples

Research Paper Introduction Examples could be:

Example 1: In recent years, the use of artificial intelligence (AI) has become increasingly prevalent in various industries, including healthcare. AI algorithms are being developed to assist with medical diagnoses, treatment recommendations, and patient monitoring. However, as the use of AI in healthcare grows, ethical concerns regarding privacy, bias, and accountability have emerged. This paper aims to explore the ethical implications of AI in healthcare and propose recommendations for addressing these concerns.

Example 2: Climate change is one of the most pressing issues facing our planet today. The increasing concentration of greenhouse gases in the atmosphere has resulted in rising temperatures, changing weather patterns, and other environmental impacts. In this paper, we will review the scientific evidence on climate change, discuss the potential consequences of inaction, and propose solutions for mitigating its effects.

Example 3: The rise of social media has transformed the way we communicate and interact with each other. While social media platforms offer many benefits, including increased connectivity and access to information, they also present numerous challenges. In this paper, we will examine the impact of social media on mental health, privacy, and democracy, and propose solutions for addressing these issues.

Example 4: The use of renewable energy sources has become increasingly important in the face of climate change and environmental degradation. While renewable energy technologies offer many benefits, including reduced greenhouse gas emissions and energy independence, they also present numerous challenges. In this paper, we will assess the current state of renewable energy technology, discuss the economic and political barriers to its adoption, and propose solutions for promoting the widespread use of renewable energy.

Purpose of Research Paper Introduction

The introduction section of a research paper serves several important purposes, including:

  • Providing context: The introduction should give readers a general understanding of the topic, including its background, significance, and relevance to the field.
  • Presenting the research question or problem: The introduction should clearly state the research question or problem that the paper aims to address. This helps readers understand the purpose of the study and what the author hopes to accomplish.
  • Reviewing the literature: The introduction should summarize the current state of knowledge on the topic, highlighting the gaps and limitations in existing research. This shows readers why the study is important and necessary.
  • Outlining the scope and objectives of the study: The introduction should describe the scope and objectives of the study, including what aspects of the topic will be covered, what data will be collected, and what methods will be used.
  • Previewing the main findings and conclusions : The introduction should provide a brief overview of the main findings and conclusions that the study will present. This helps readers anticipate what they can expect to learn from the paper.

When to Write Research Paper Introduction

The introduction of a research paper is typically written after the research has been conducted and the data has been analyzed. This is because the introduction should provide an overview of the research problem, the purpose of the study, and the research questions or hypotheses that will be investigated.

Once you have a clear understanding of the research problem and the questions that you want to explore, you can begin to write the introduction. It’s important to keep in mind that the introduction should be written in a way that engages the reader and provides a clear rationale for the study. It should also provide context for the research by reviewing relevant literature and explaining how the study fits into the larger field of research.

Advantages of Research Paper Introduction

The introduction of a research paper has several advantages, including:

  • Establishing the purpose of the research: The introduction provides an overview of the research problem, question, or hypothesis, and the objectives of the study. This helps to clarify the purpose of the research and provide a roadmap for the reader to follow.
  • Providing background information: The introduction also provides background information on the topic, including a review of relevant literature and research. This helps the reader understand the context of the study and how it fits into the broader field of research.
  • Demonstrating the significance of the research: The introduction also explains why the research is important and relevant. This helps the reader understand the value of the study and why it is worth reading.
  • Setting expectations: The introduction sets the tone for the rest of the paper and prepares the reader for what is to come. This helps the reader understand what to expect and how to approach the paper.
  • Grabbing the reader’s attention: A well-written introduction can grab the reader’s attention and make them interested in reading further. This is important because it can help to keep the reader engaged and motivated to read the rest of the paper.
  • Creating a strong first impression: The introduction is the first part of the research paper that the reader will see, and it can create a strong first impression. A well-written introduction can make the reader more likely to take the research seriously and view it as credible.
  • Establishing the author’s credibility: The introduction can also establish the author’s credibility as a researcher. By providing a clear and thorough overview of the research problem and relevant literature, the author can demonstrate their expertise and knowledge in the field.
  • Providing a structure for the paper: The introduction can also provide a structure for the rest of the paper. By outlining the main sections and sub-sections of the paper, the introduction can help the reader navigate the paper and find the information they are looking for.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Informed Consent in Research

Informed Consent in Research – Types, Templates...

Table of Contents

Table of Contents – Types, Formats, Examples

Scope of the Research

Scope of the Research – Writing Guide and...

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

Delimitations

Delimitations in Research – Types, Examples and...

Sacred Heart University Library

Organizing Academic Research Papers: 4. The Introduction

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

The introduction serves the purpose of leading the reader from a general subject area to a particular field of research. It establishes the context of the research being conducted by summarizing current understanding and background information about the topic, stating the purpose of the work in the form of the hypothesis, question, or research problem, briefly explaining your rationale, methodological approach, highlighting the potential outcomes your study can reveal, and describing the remaining structure of the paper.

Key Elements of the Research Proposal. Prepared under the direction of the Superintendent and by the 2010 Curriculum Design and Writing Team. Baltimore County Public Schools.

Importance of a Good Introduction

Think of the introduction as a mental road map that must answer for the reader these four questions:

  • What was I studying?
  • Why was this topic important to investigate?
  • What did we know about this topic before I did this study?
  • How will this study advance our knowledge?

A well-written introduction is important because, quite simply, you never get a second chance to make a good first impression. The opening paragraph of your paper will provide your readers with their initial impressions about the logic of your argument, your writing style, the overall quality of your research, and, ultimately, the validity of your findings and conclusions. A vague, disorganized, or error-filled introduction will create a negative impression, whereas, a concise, engaging, and well-written introduction will start your readers off thinking highly of your analytical skills, your writing style, and your research approach.

Introductions . The Writing Center. University of North Carolina.

Structure and Writing Style

I. Structure and Approach

The introduction is the broad beginning of the paper that answers three important questions for the reader:

  • What is this?
  • Why am I reading it?
  • What do you want me to think about / consider doing / react to?

Think of the structure of the introduction as an inverted triangle of information. Organize the information so as to present the more general aspects of the topic early in the introduction, then narrow toward the more specific topical information that provides context, finally arriving at your statement of purpose and rationale and, whenever possible, the potential outcomes your study can reveal.

These are general phases associated with writing an introduction:

  • Highlighting the importance of the topic, and/or
  • Making general statements about the topic, and/or
  • Presenting an overview on current research on the subject.
  • Opposing an existing assumption, and/or
  • Revealing a gap in existing research, and/or
  • Formulating a research question or problem, and/or
  • Continuing a disciplinary tradition.
  • Stating the intent of your study,
  • Outlining the key characteristics of your study,
  • Describing important results, and
  • Giving a brief overview of the structure of the paper.

NOTE: Even though the introduction is the first main section of a research paper, it is often useful to finish the introduction very late in the writing process because the structure of the paper, the reporting and analysis of results, and the conclusion will have been completed and it ensures that your introduction matches the overall structure of your paper.

II.  Delimitations of the Study

Delimitations refer to those characteristics that limit the scope and define the conceptual boundaries of your study . This is determined by the conscious exclusionary and inclusionary decisions you make about how to investigate the research problem. In other words, not only should you tell the reader what it is you are studying and why, but you must also acknowledge why you rejected alternative approaches that could have been used to examine the research problem.

Obviously, the first limiting step was the choice of research problem itself. However, implicit are other, related problems that could have been chosen but were rejected. These should be noted in the conclusion of your introduction.

Examples of delimitating choices would be:

  • The key aims and objectives of your study,
  • The research questions that you address,
  • The variables of interest [i.e., the various factors and features of the phenomenon being studied],
  • The method(s) of investigation, and
  • Any relevant alternative theoretical frameworks that could have been adopted.

Review each of these decisions. You need to not only clearly establish what you intend to accomplish, but to also include a declaration of what the study does not intend to cover. In the latter case, your exclusionary decisions should be based upon criteria stated as, "not interesting"; "not directly relevant"; “too problematic because..."; "not feasible," and the like. Make this reasoning explicit!

NOTE: Delimitations refer to the initial choices made about the broader, overall design of your study and should not be confused with documenting the limitations of your study discovered after the research has been completed.

III. The Narrative Flow

Issues to keep in mind that will help the narrative flow in your introduction :

  • Your introduction should clearly identify the subject area of interest . A simple strategy to follow is to use key words from your title in the first few sentences of the introduction. This will help focus the introduction on the topic at the appropriate level and ensures that you get to the primary subject matter quickly without losing focus, or discussing information that is too general.
  • Establish context by providing a brief and balanced review of the pertinent published literature that is available on the subject. The key is to summarize for the reader what is known about the specific research problem before you did your analysis. This part of your introduction should not represent a comprehensive literature review but consists of a general review of the important, foundational research literature (with citations) that lays a foundation for understanding key elements of the research problem. See the drop-down tab for "Background Information" for types of contexts.
  • Clearly state the hypothesis that you investigated . When you are first learning to write in this format it is okay, and actually preferable, to use a past statement like, "The purpose of this study was to...." or "We investigated three possible mechanisms to explain the...."
  • Why did you choose this kind of research study or design? Provide a clear statement of the rationale for your approach to the problem studied. This will usually follow your statement of purpose in the last paragraph of the introduction.

IV. Engaging the Reader

The overarching goal of your introduction is to make your readers want to read your paper. The introduction should grab your reader's attention. Strategies for doing this can be to:

  • Open with a compelling story,
  • Include a strong quotation or a vivid, perhaps unexpected anecdote,
  • Pose a provocative or thought-provoking question,
  • Describe a puzzling scenario or incongruity, or
  • Cite a stirring example or case study that illustrates why the research problem is important.

NOTE:   Only choose one strategy for engaging your readers; avoid giving an impression that your paper is more flash than substance.

Freedman, Leora  and Jerry Plotnick. Introductions and Conclusions . University College Writing Centre. University of Toronto; Introduction . The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College; Introductions . The Writing Center. University of North Carolina; Introductions . The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Introductions, Body Paragraphs, and Conclusions for an Argument Paper. The Writing Lab and The OWL. Purdue University; Resources for Writers: Introduction Strategies . Program in Writing and Humanistic Studies. Massachusetts Institute of Technology; Sharpling, Gerald. Writing an Introduction . Centre for Applied Linguistics, University of Warwick; Writing Your Introduction. Department of English Writing Guide. George Mason University.

Writing Tip

Avoid the "Dictionary" Introduction

Giving the dictionary definition of words related to the research problem may appear appropriate because it is important to define specific words or phrases with which readers may be unfamiliar. However, anyone can look a word up in the dictionary and a general dictionary is not a particularly authoritative source. It doesn't take into account the context of your topic and doesn't offer particularly detailed information. Also, placed in the context of a particular discipline, a term may have a different meaning than what is found in a general dictionary. If you feel that you must seek out an authoritative definition, try to find one that is from subject specific dictionaries or encyclopedias [e.g., if you are a sociology student, search for dictionaries of sociology].

Saba, Robert. The College Research Paper . Florida International University; Introductions . The Writing Center. University of North Carolina.

Another Writing Tip

When Do I Begin?

A common question asked at the start of any paper is, "where should I begin?" An equally important question to ask yourself is, "When do I begin?" Research problems in the social sciences rarely rest in isolation from the history of the issue being investigated. It is, therefore, important to lay a foundation for understanding the historical context underpinning the research problem. However, this information should be brief and succinct and begin at a point in time that best informs the reader of study's overall importance. For example, a study about coffee cultivation and export in West Africa as a key stimulus for local economic growth needs to describe the beginning of exporting coffee in the region and establishing why economic growth is important. You do not need to give a long historical explanation about coffee exportation in Africa. If a research problem demands a substantial exploration of historical context, do this in the literature review section; note in the introduction as part of your "roadmap" [see below] that you covering this in the literature review.

Yet Another Writing Tip

Always End with a Roadmap

The final paragraph or sentences of your introduction should forecast your main arguments and conclusions and provide a description of the rest of the paper [a "roadmap"] that let's the reader know where you are going and what to expect.

  • << Previous: Executive Summary
  • Next: Background Information >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

Instant insights, infinite possibilities

How to write an effective introduction for your research paper

Last updated

20 January 2024

Reviewed by

However, the introduction is a vital element of your research paper . It helps the reader decide whether your paper is worth their time. As such, it's worth taking your time to get it right.

In this article, we'll tell you everything you need to know about writing an effective introduction for your research paper.

  • The importance of an introduction in research papers

The primary purpose of an introduction is to provide an overview of your paper. This lets readers gauge whether they want to continue reading or not. The introduction should provide a meaningful roadmap of your research to help them make this decision. It should let readers know whether the information they're interested in is likely to be found in the pages that follow.

Aside from providing readers with information about the content of your paper, the introduction also sets the tone. It shows readers the style of language they can expect, which can further help them to decide how far to read.

When you take into account both of these roles that an introduction plays, it becomes clear that crafting an engaging introduction is the best way to get your paper read more widely. First impressions count, and the introduction provides that impression to readers.

  • The optimum length for a research paper introduction

While there's no magic formula to determine exactly how long a research paper introduction should be, there are a few guidelines. Some variables that impact the ideal introduction length include:

Field of study

Complexity of the topic

Specific requirements of the course or publication

A commonly recommended length of a research paper introduction is around 10% of the total paper’s length. So, a ten-page paper has a one-page introduction. If the topic is complex, it may require more background to craft a compelling intro. Humanities papers tend to have longer introductions than those of the hard sciences.

The best way to craft an introduction of the right length is to focus on clarity and conciseness. Tell the reader only what is necessary to set up your research. An introduction edited down with this goal in mind should end up at an acceptable length.

  • Evaluating successful research paper introductions

A good way to gauge how to create a great introduction is by looking at examples from across your field. The most influential and well-regarded papers should provide some insights into what makes a good introduction.

Dissecting examples: what works and why

We can make some general assumptions by looking at common elements of a good introduction, regardless of the field of research.

A common structure is to start with a broad context, and then narrow that down to specific research questions or hypotheses. This creates a funnel that establishes the scope and relevance.

The most effective introductions are careful about the assumptions they make regarding reader knowledge. By clearly defining key terms and concepts instead of assuming the reader is familiar with them, these introductions set a more solid foundation for understanding.

To pull in the reader and make that all-important good first impression, excellent research paper introductions will often incorporate a compelling narrative or some striking fact that grabs the reader's attention.

Finally, good introductions provide clear citations from past research to back up the claims they're making. In the case of argumentative papers or essays (those that take a stance on a topic or issue), a strong thesis statement compels the reader to continue reading.

Common pitfalls to avoid in research paper introductions

You can also learn what not to do by looking at other research papers. Many authors have made mistakes you can learn from.

We've talked about the need to be clear and concise. Many introductions fail at this; they're verbose, vague, or otherwise fail to convey the research problem or hypothesis efficiently. This often comes in the form of an overemphasis on background information, which obscures the main research focus.

Ensure your introduction provides the proper emphasis and excitement around your research and its significance. Otherwise, fewer people will want to read more about it.

  • Crafting a compelling introduction for a research paper

Let’s take a look at the steps required to craft an introduction that pulls readers in and compels them to learn more about your research.

Step 1: Capturing interest and setting the scene

To capture the reader's interest immediately, begin your introduction with a compelling question, a surprising fact, a provocative quote, or some other mechanism that will hook readers and pull them further into the paper.

As they continue reading, the introduction should contextualize your research within the current field, showing readers its relevance and importance. Clarify any essential terms that will help them better understand what you're saying. This keeps the fundamentals of your research accessible to all readers from all backgrounds.

Step 2: Building a solid foundation with background information

Including background information in your introduction serves two major purposes:

It helps to clarify the topic for the reader

It establishes the depth of your research

The approach you take when conveying this information depends on the type of paper.

For argumentative papers, you'll want to develop engaging background narratives. These should provide context for the argument you'll be presenting.

For empirical papers, highlighting past research is the key. Often, there will be some questions that weren't answered in those past papers. If your paper is focused on those areas, those papers make ideal candidates for you to discuss and critique in your introduction.

Step 3: Pinpointing the research challenge

To capture the attention of the reader, you need to explain what research challenges you'll be discussing.

For argumentative papers, this involves articulating why the argument you'll be making is important. What is its relevance to current discussions or problems? What is the potential impact of people accepting or rejecting your argument?

For empirical papers, explain how your research is addressing a gap in existing knowledge. What new insights or contributions will your research bring to your field?

Step 4: Clarifying your research aims and objectives

We mentioned earlier that the introduction to a research paper can serve as a roadmap for what's within. We've also frequently discussed the need for clarity. This step addresses both of these.

When writing an argumentative paper, craft a thesis statement with impact. Clearly articulate what your position is and the main points you intend to present. This will map out for the reader exactly what they'll get from reading the rest.

For empirical papers, focus on formulating precise research questions and hypotheses. Directly link them to the gaps or issues you've identified in existing research to show the reader the precise direction your research paper will take.

Step 5: Sketching the blueprint of your study

Continue building a roadmap for your readers by designing a structured outline for the paper. Guide the reader through your research journey, explaining what the different sections will contain and their relationship to one another.

This outline should flow seamlessly as you move from section to section. Creating this outline early can also help guide the creation of the paper itself, resulting in a final product that's better organized. In doing so, you'll craft a paper where each section flows intuitively from the next.

Step 6: Integrating your research question

To avoid letting your research question get lost in background information or clarifications, craft your introduction in such a way that the research question resonates throughout. The research question should clearly address a gap in existing knowledge or offer a new perspective on an existing problem.

Tell users your research question explicitly but also remember to frequently come back to it. When providing context or clarification, point out how it relates to the research question. This keeps your focus where it needs to be and prevents the topic of the paper from becoming under-emphasized.

Step 7: Establishing the scope and limitations

So far, we've talked mostly about what's in the paper and how to convey that information to readers. The opposite is also important. Information that's outside the scope of your paper should be made clear to the reader in the introduction so their expectations for what is to follow are set appropriately.

Similarly, be honest and upfront about the limitations of the study. Any constraints in methodology, data, or how far your findings can be generalized should be fully communicated in the introduction.

Step 8: Concluding the introduction with a promise

The final few lines of the introduction are your last chance to convince people to continue reading the rest of the paper. Here is where you should make it very clear what benefit they'll get from doing so. What topics will be covered? What questions will be answered? Make it clear what they will get for continuing.

By providing a quick recap of the key points contained in the introduction in its final lines and properly setting the stage for what follows in the rest of the paper, you refocus the reader's attention on the topic of your research and guide them to read more.

  • Research paper introduction best practices

Following the steps above will give you a compelling introduction that hits on all the key points an introduction should have. Some more tips and tricks can make an introduction even more polished.

As you follow the steps above, keep the following tips in mind.

Set the right tone and style

Like every piece of writing, a research paper should be written for the audience. That is to say, it should match the tone and style that your academic discipline and target audience expect. This is typically a formal and academic tone, though the degree of formality varies by field.

Kno w the audience

The perfect introduction balances clarity with conciseness. The amount of clarification required for a given topic depends greatly on the target audience. Knowing who will be reading your paper will guide you in determining how much background information is required.

Adopt the CARS (create a research space) model

The CARS model is a helpful tool for structuring introductions. This structure has three parts. The beginning of the introduction establishes the general research area. Next, relevant literature is reviewed and critiqued. The final section outlines the purpose of your study as it relates to the previous parts.

Master the art of funneling

The CARS method is one example of a well-funneled introduction. These start broadly and then slowly narrow down to your specific research problem. It provides a nice narrative flow that provides the right information at the right time. If you stray from the CARS model, try to retain this same type of funneling.

Incorporate narrative element

People read research papers largely to be informed. But to inform the reader, you have to hold their attention. A narrative style, particularly in the introduction, is a great way to do that. This can be a compelling story, an intriguing question, or a description of a real-world problem.

Write the introduction last

By writing the introduction after the rest of the paper, you'll have a better idea of what your research entails and how the paper is structured. This prevents the common problem of writing something in the introduction and then forgetting to include it in the paper. It also means anything particularly exciting in the paper isn’t neglected in the intro.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

How to Write an Introduction for a Research Paper

Sumalatha G

Table of Contents

Writing an introduction for a research paper is a critical element of your paper, but it can seem challenging to encapsulate enormous amount of information into a concise form. The introduction of your research paper sets the tone for your research and provides the context for your study. In this article, we will guide you through the process of writing an effective introduction that grabs the reader's attention and captures the essence of your research paper.

Understanding the Purpose of a Research Paper Introduction

The introduction acts as a road map for your research paper, guiding the reader through the main ideas and arguments. The purpose of the introduction is to present your research topic to the readers and provide a rationale for why your study is relevant. It helps the reader locate your research and its relevance in the broader field of related scientific explorations. Additionally, the introduction should inform the reader about the objectives and scope of your study, giving them an overview of what to expect in the paper. By including a comprehensive introduction, you establish your credibility as an author and convince the reader that your research is worth their time and attention.

Key Elements to Include in Your Introduction

When writing your research paper introduction, there are several key elements you should include to ensure it is comprehensive and informative.

  • A hook or attention-grabbing statement to capture the reader's interest.  It can be a thought-provoking question, a surprising statistic, or a compelling anecdote that relates to your research topic.
  • A brief overview of the research topic and its significance. By highlighting the gap in existing knowledge or the problem your research aims to address, you create a compelling case for the relevance of your study.
  • A clear research question or problem statement. This serves as the foundation of your research and guides the reader in understanding the unique focus of your study. It should be concise, specific, and clearly articulated.
  • An outline of the paper's structure and main arguments, to help the readers navigate through the paper with ease.

Preparing to Write Your Introduction

Before diving into writing your introduction, it is essential to prepare adequately. This involves 3 important steps:

  • Conducting Preliminary Research: Immerse yourself in the existing literature to develop a clear research question and position your study within the academic discourse.
  • Identifying Your Thesis Statement: Define a specific, focused, and debatable thesis statement, serving as a roadmap for your paper.
  • Considering Broader Context: Reflect on the significance of your research within your field, understanding its potential impact and contribution.

By engaging in these preparatory steps, you can ensure that your introduction is well-informed, focused, and sets the stage for a compelling research paper.

Structuring Your Introduction

Now that you have prepared yourself to tackle the introduction, it's time to structure it effectively. A well-structured introduction will engage the reader from the beginning and provide a logical flow to your research paper.

Starting with a Hook

Begin your introduction with an attention-grabbing hook that captivates the reader's interest. This hook serves as a way to make your introduction more engaging and compelling. For example, if you are writing a research paper on the impact of climate change on biodiversity, you could start your introduction with a statistic about the number of species that have gone extinct due to climate change. This will immediately grab the reader's attention and make them realize the urgency and importance of the topic.

Introducing Your Topic

Provide a brief overview, which should give the reader a general understanding of the subject matter and its significance. Explain the importance of the topic and its relevance to the field. This will help the reader understand why your research is significant and why they should continue reading. Continuing with the example of climate change and biodiversity, you could explain how climate change is one of the greatest threats to global biodiversity, how it affects ecosystems, and the potential consequences for both wildlife and human populations. By providing this context, you are setting the stage for the rest of your research paper and helping the reader understand the importance of your study.

Presenting Your Thesis Statement

The thesis statement should directly address your research question and provide a preview of the main arguments or findings discussed in your paper. Make sure your thesis statement is clear, concise, and well-supported by the evidence you will present in your research paper. By presenting a strong and focused thesis statement, you are providing the reader with the information they could anticipate in your research paper. This will help them understand the purpose and scope of your study and will make them more inclined to continue reading.

Writing Techniques for an Effective Introduction

When crafting an introduction, it is crucial to pay attention to the finer details that can elevate your writing to the next level. By utilizing specific writing techniques, you can captivate your readers and draw them into your research journey.

Using Clear and Concise Language

One of the most important writing techniques to employ in your introduction is the use of clear and concise language. By choosing your words carefully, you can effectively convey your ideas to the reader. It is essential to avoid using jargon or complex terminology that may confuse or alienate your audience. Instead, focus on communicating your research in a straightforward manner to ensure that your introduction is accessible to both experts in your field and those who may be new to the topic. This approach allows you to engage a broader audience and make your research more inclusive.

Establishing the Relevance of Your Research

One way to establish the relevance of your research is by highlighting how it fills a gap in the existing literature. Explain how your study addresses a significant research question that has not been adequately explored. By doing this, you demonstrate that your research is not only unique but also contributes to the broader knowledge in your field. Furthermore, it is important to emphasize the potential impact of your research. Whether it is advancing scientific understanding, informing policy decisions, or improving practical applications, make it clear to the reader how your study can make a difference.

By employing these two writing techniques in your introduction, you can effectively engage your readers. Take your time to craft an introduction that is both informative and captivating, leaving your readers eager to delve deeper into your research.

Revising and Polishing Your Introduction

Once you have written your introduction, it is crucial to revise and polish it to ensure that it effectively sets the stage for your research paper.

Self-Editing Techniques

Review your introduction for clarity, coherence, and logical flow. Ensure each paragraph introduces a new idea or argument with smooth transitions.

Check for grammatical errors, spelling mistakes, and awkward sentence structures.

Ensure that your introduction aligns with the overall tone and style of your research paper.

Seeking Feedback for Improvement

Consider seeking feedback from peers, colleagues, or your instructor. They can provide valuable insights and suggestions for improving your introduction. Be open to constructive criticism and use it to refine your introduction and make it more compelling for the reader.

Writing an introduction for a research paper requires careful thought and planning. By understanding the purpose of the introduction, preparing adequately, structuring effectively, and employing writing techniques, you can create an engaging and informative introduction for your research. Remember to revise and polish your introduction to ensure that it accurately represents the main ideas and arguments in your research paper. With a well-crafted introduction, you will capture the reader's attention and keep them inclined to your paper.

Suggested Reads

ResearchGPT: A Custom GPT for Researchers and Scientists Best Academic Search Engines [2023] How To Humanize AI Text In Scientific Articles Elevate Your Writing Game With AI Grammar Checker Tools

You might also like

5 outils de revue de littérature pour réussir vos recherches (+2 outils bonus)

5 outils de revue de littérature pour réussir vos recherches (+2 outils bonus)

Sumalatha G

标题 :人工智能在系统文献综述中的作用

Papel de la IA en la revisión sistemática de la literatura

Papel de la IA en la revisión sistemática de la literatura

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • How to write an essay introduction | 4 steps & examples

How to Write an Essay Introduction | 4 Steps & Examples

Published on February 4, 2019 by Shona McCombes . Revised on July 23, 2023.

A good introduction paragraph is an essential part of any academic essay . It sets up your argument and tells the reader what to expect.

The main goals of an introduction are to:

  • Catch your reader’s attention.
  • Give background on your topic.
  • Present your thesis statement —the central point of your essay.

This introduction example is taken from our interactive essay example on the history of Braille.

The invention of Braille was a major turning point in the history of disability. The writing system of raised dots used by visually impaired people was developed by Louis Braille in nineteenth-century France. In a society that did not value disabled people in general, blindness was particularly stigmatized, and lack of access to reading and writing was a significant barrier to social participation. The idea of tactile reading was not entirely new, but existing methods based on sighted systems were difficult to learn and use. As the first writing system designed for blind people’s needs, Braille was a groundbreaking new accessibility tool. It not only provided practical benefits, but also helped change the cultural status of blindness. This essay begins by discussing the situation of blind people in nineteenth-century Europe. It then describes the invention of Braille and the gradual process of its acceptance within blind education. Subsequently, it explores the wide-ranging effects of this invention on blind people’s social and cultural lives.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Step 1: hook your reader, step 2: give background information, step 3: present your thesis statement, step 4: map your essay’s structure, step 5: check and revise, more examples of essay introductions, other interesting articles, frequently asked questions about the essay introduction.

Your first sentence sets the tone for the whole essay, so spend some time on writing an effective hook.

Avoid long, dense sentences—start with something clear, concise and catchy that will spark your reader’s curiosity.

The hook should lead the reader into your essay, giving a sense of the topic you’re writing about and why it’s interesting. Avoid overly broad claims or plain statements of fact.

Examples: Writing a good hook

Take a look at these examples of weak hooks and learn how to improve them.

  • Braille was an extremely important invention.
  • The invention of Braille was a major turning point in the history of disability.

The first sentence is a dry fact; the second sentence is more interesting, making a bold claim about exactly  why the topic is important.

  • The internet is defined as “a global computer network providing a variety of information and communication facilities.”
  • The spread of the internet has had a world-changing effect, not least on the world of education.

Avoid using a dictionary definition as your hook, especially if it’s an obvious term that everyone knows. The improved example here is still broad, but it gives us a much clearer sense of what the essay will be about.

  • Mary Shelley’s  Frankenstein is a famous book from the nineteenth century.
  • Mary Shelley’s Frankenstein is often read as a crude cautionary tale about the dangers of scientific advancement.

Instead of just stating a fact that the reader already knows, the improved hook here tells us about the mainstream interpretation of the book, implying that this essay will offer a different interpretation.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

why introduction is important in research

Next, give your reader the context they need to understand your topic and argument. Depending on the subject of your essay, this might include:

  • Historical, geographical, or social context
  • An outline of the debate you’re addressing
  • A summary of relevant theories or research about the topic
  • Definitions of key terms

The information here should be broad but clearly focused and relevant to your argument. Don’t give too much detail—you can mention points that you will return to later, but save your evidence and interpretation for the main body of the essay.

How much space you need for background depends on your topic and the scope of your essay. In our Braille example, we take a few sentences to introduce the topic and sketch the social context that the essay will address:

Now it’s time to narrow your focus and show exactly what you want to say about the topic. This is your thesis statement —a sentence or two that sums up your overall argument.

This is the most important part of your introduction. A  good thesis isn’t just a statement of fact, but a claim that requires evidence and explanation.

The goal is to clearly convey your own position in a debate or your central point about a topic.

Particularly in longer essays, it’s helpful to end the introduction by signposting what will be covered in each part. Keep it concise and give your reader a clear sense of the direction your argument will take.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

As you research and write, your argument might change focus or direction as you learn more.

For this reason, it’s often a good idea to wait until later in the writing process before you write the introduction paragraph—it can even be the very last thing you write.

When you’ve finished writing the essay body and conclusion , you should return to the introduction and check that it matches the content of the essay.

It’s especially important to make sure your thesis statement accurately represents what you do in the essay. If your argument has gone in a different direction than planned, tweak your thesis statement to match what you actually say.

To polish your writing, you can use something like a paraphrasing tool .

You can use the checklist below to make sure your introduction does everything it’s supposed to.

Checklist: Essay introduction

My first sentence is engaging and relevant.

I have introduced the topic with necessary background information.

I have defined any important terms.

My thesis statement clearly presents my main point or argument.

Everything in the introduction is relevant to the main body of the essay.

You have a strong introduction - now make sure the rest of your essay is just as good.

  • Argumentative
  • Literary analysis

This introduction to an argumentative essay sets up the debate about the internet and education, and then clearly states the position the essay will argue for.

The spread of the internet has had a world-changing effect, not least on the world of education. The use of the internet in academic contexts is on the rise, and its role in learning is hotly debated. For many teachers who did not grow up with this technology, its effects seem alarming and potentially harmful. This concern, while understandable, is misguided. The negatives of internet use are outweighed by its critical benefits for students and educators—as a uniquely comprehensive and accessible information source; a means of exposure to and engagement with different perspectives; and a highly flexible learning environment.

This introduction to a short expository essay leads into the topic (the invention of the printing press) and states the main point the essay will explain (the effect of this invention on European society).

In many ways, the invention of the printing press marked the end of the Middle Ages. The medieval period in Europe is often remembered as a time of intellectual and political stagnation. Prior to the Renaissance, the average person had very limited access to books and was unlikely to be literate. The invention of the printing press in the 15th century allowed for much less restricted circulation of information in Europe, paving the way for the Reformation.

This introduction to a literary analysis essay , about Mary Shelley’s Frankenstein , starts by describing a simplistic popular view of the story, and then states how the author will give a more complex analysis of the text’s literary devices.

Mary Shelley’s Frankenstein is often read as a crude cautionary tale. Arguably the first science fiction novel, its plot can be read as a warning about the dangers of scientific advancement unrestrained by ethical considerations. In this reading, and in popular culture representations of the character as a “mad scientist”, Victor Frankenstein represents the callous, arrogant ambition of modern science. However, far from providing a stable image of the character, Shelley uses shifting narrative perspectives to gradually transform our impression of Frankenstein, portraying him in an increasingly negative light as the novel goes on. While he initially appears to be a naive but sympathetic idealist, after the creature’s narrative Frankenstein begins to resemble—even in his own telling—the thoughtlessly cruel figure the creature represents him as.

If you want to know more about AI tools , college essays , or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy

College essays

  • Choosing Essay Topic
  • Write a College Essay
  • Write a Diversity Essay
  • College Essay Format & Structure
  • Comparing and Contrasting in an Essay

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

Your essay introduction should include three main things, in this order:

  • An opening hook to catch the reader’s attention.
  • Relevant background information that the reader needs to know.
  • A thesis statement that presents your main point or argument.

The length of each part depends on the length and complexity of your essay .

The “hook” is the first sentence of your essay introduction . It should lead the reader into your essay, giving a sense of why it’s interesting.

To write a good hook, avoid overly broad statements or long, dense sentences. Try to start with something clear, concise and catchy that will spark your reader’s curiosity.

A thesis statement is a sentence that sums up the central point of your paper or essay . Everything else you write should relate to this key idea.

The thesis statement is essential in any academic essay or research paper for two main reasons:

  • It gives your writing direction and focus.
  • It gives the reader a concise summary of your main point.

Without a clear thesis statement, an essay can end up rambling and unfocused, leaving your reader unsure of exactly what you want to say.

The structure of an essay is divided into an introduction that presents your topic and thesis statement , a body containing your in-depth analysis and arguments, and a conclusion wrapping up your ideas.

The structure of the body is flexible, but you should always spend some time thinking about how you can organize your essay to best serve your ideas.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, July 23). How to Write an Essay Introduction | 4 Steps & Examples. Scribbr. Retrieved September 18, 2024, from https://www.scribbr.com/academic-essay/introduction/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a thesis statement | 4 steps & examples, academic paragraph structure | step-by-step guide & examples, how to conclude an essay | interactive example, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

why introduction is important in research

With every piece of literature, the introduction is the key to catching a reader’s attention. Unlike other works, though, the function of an academic paper’s introduction is not only to do this, but also to demonstrate the author’s authority on the subject they are writing on.

Introductions shouldn’t hold the meat of your paper, but they should be well thought out and structured. They need to include a lot of information without saying the outcome or overpowering the reader with too much content.

The Importance of an Introduction

When you’ve done the hard work and compiled your research together to develop an outcome, the next part is to take the skill you have with words and join it with your knowledge to share it with your potential future readers. The part they’ll read first is the introduction, and this is where they will learn exactly what you are putting in your paper that tells them if they’re in the right place or not.

For many writers, the intro is the hardest part to pen. It includes your rationale, so sometimes it’s easier to write the rest of the paper and come back to the intro later. But it can’t be overlooked.

The reader of the paper should be able to tell right away what they are going to be learning and determine if it’s of interest to them or not. You have to engage them right away and demonstrate your knowledge and authority on the subject so the reader continues to read and then, hopefully, use and cite your research to help your citation indicators increase for your scholastic impact.

How to Structure Your Intro

As you are putting together your research, the idea of how you will want to format your introduction should be at the forefront of your mind. Consider these sections and make sure you include them in your introduction:

●      What area are you researching? Make sure you explain and spotlight the importance of the topic, why it is relevant, and how you are the authority. You can do this by generalizing the topic through statements or including current research that has been done regarding the subject you are covering.

●      Explain the niche your research is including that has not been covered previously or was not covered sufficiently. You may be opposing a current assumption, demonstrating a missing piece in a previous theory that was thought to be cohesive, bringing up a research question or problem that needs to be further understood, or using your knowledge to enhance a discipline that already is cemented in tradition, which is frequently used in literature studies.

●      Include the overview of your findings as far as how they are relevant to the research niche you propose to be writing about. This will cover the intent behind your study in the first place and outline the key points that the reader should be aware of before they continue reading. You can include your important results, but not in descriptive detail. Also include an overview of what you’ll be covering in the paper by breaking it down into the overall structure.

These factors are important in your introduction. The length of the intro depends on the overall length of your paper, but ultimately, it should answer the questions of what you were studying, why the topic was important enough to warrant investigation, and what was already known about the topic before you began researching, as well as what your new research brings to the table.

  • Afghanistan
  • Åland Islands
  • American Samoa
  • Antigua and Barbuda
  • Bolivia (Plurinational State of)
  • Bonaire, Sint Eustatius and Saba
  • Bosnia and Herzegovina
  • Bouvet Island
  • British Indian Ocean Territory
  • Brunei Darussalam
  • Burkina Faso
  • Cayman Islands
  • Central African Republic
  • Christmas Island
  • Cocos (Keeling) Islands
  • Congo (Democratic Republic of the)
  • Cook Islands
  • Côte d'Ivoire
  • Curacao !Curaçao
  • Dominican Republic
  • El Salvador
  • Equatorial Guinea
  • Falkland Islands (Malvinas)
  • Faroe Islands
  • French Guiana
  • French Polynesia
  • French Southern Territories
  • Guinea-Bissau
  • Heard Island and McDonald Islands
  • Iran (Islamic Republic of)
  • Isle of Man
  • Korea (Democratic Peoples Republic of)
  • Korea (Republic of)
  • Lao People's Democratic Republic
  • Liechtenstein
  • Marshall Islands
  • Micronesia (Federated States of)
  • Moldova (Republic of)
  • Netherlands
  • New Caledonia
  • New Zealand
  • Norfolk Island
  • North Macedonia
  • Northern Mariana Islands
  • Palestine, State of
  • Papua New Guinea
  • Philippines
  • Puerto Rico
  • Russian Federation
  • Saint Barthélemy
  • Saint Helena, Ascension and Tristan da Cunha
  • Saint Kitts and Nevis
  • Saint Lucia
  • Saint Martin (French part)
  • Saint Pierre and Miquelon
  • Saint Vincent and the Grenadines
  • Sao Tome and Principe
  • Saudi Arabia
  • Sierra Leone
  • Sint Maarten (Dutch part)
  • Solomon Islands
  • South Africa
  • South Georgia and the South Sandwich Islands
  • South Sudan
  • Svalbard and Jan Mayen
  • Switzerland
  • Syrian Arab Republic
  • Tanzania, United Republic of
  • Timor-Leste
  • Trinidad and Tobago
  • Turkmenistan
  • Turks and Caicos Islands
  • United Arab Emirates
  • United Kingdom of Great Britain and Northern Ireland
  • United States of America
  • United States Minor Outlying Islands
  • Venezuela (Bolivarian Republic of)
  • Virgin Islands (British)
  • Virgin Islands (U.S.)
  • Wallis and Futuna
  • Western Sahara

The Role of an Introduction

What this handout is about:.

This handout will explain the functions of introductions, offer strategies for writing effective ones, help you check your drafted introductions, and provide you with examples of introductions to be avoided.

The Role Of Introductions Introductions and conclusions can be the most difficult parts of papers to write. Usually when you sit down to respond to an assignment, you have at least some sense of what you want to say in the body of your paper. You might have chosen a few examples you want to use or have an idea that will help you answer the main question of your assignment: these sections, therefore, are not as hard to write. But these middle parts of the paper can’t just come out of thin air; they need to be introduced and concluded in a way that makes sense to your reader.

Your introduction and conclusion act as bridges that transport your readers from their own lives into the “place” of your analysis. If your readers pick up your paper about education in the autobiography of Frederick Douglass, for example, they need a transition to help them leave behind the world of Chapel Hill, television, e-mail, and the The Daily Tar Heel and to help them temporarily enter the world of nineteenth-century American slavery. By providing an introduction that helps your readers make a transition between their own world and the issues you will be writing about, you give your readers the tools they need to get into your topic and care about what you are saying. Similarly, once you’ve hooked your reader with the introduction and offered evidence to prove your thesis, your conclusion can provide a bridge to help your readers make the transition back to their daily lives. (See our handout on conclusions.)

Why Bother Writing A Good Introduction?

You never get a second chance to make a first impression.  The opening paragraph of your paper will provide your readers with their initial impressions of your argument, your writing style, and the overall quality of your work. A vague, disorganized, error-filled, off-the-wall, or boring introduction will probably create a negative impression. On the other hand, a concise, engaging, and well-written introduction will start your readers off thinking highly of you, your analytical skills, your writing, and your paper. This impression is especially important when the audience you are trying to reach (your instructor) will be grading your work.

Your introduction  is an important road map for the rest of your paper. Your introduction conveys a lot of information to your readers. You can let them know what your topic is, why it is important, and how you plan to proceed with your discussion. In most academic disciplines, your introduction should contain a thesis that will assert your main argument. It should also, ideally, give the reader a sense of the kinds of information you will use to make that argument and the general organization of the paragraphs and pages that will follow. After reading your introduction, your readers should not have any major surprises in store when they read the main body of your paper.

Ideally, your introduction will make your readers want to read your paper.  The introduction should capture your readers’ interest, making them want to read the rest of your paper. Opening with a compelling story, a fascinating quotation, an interesting question, or a stirring example can get your readers to see why this topic matters and serve as an invitation for them to join you for an interesting intellectual conversation.

Strategies For Writing An Effective Introduction

Start by thinking about the question (or questions) you are trying to answer.  Your entire essay will be a response to this question, and your introduction is the first step toward that end. Your direct answer to the assigned question will be your thesis, and your thesis will be included in your introduction, so it is a good idea to use the question as a jumping off point. Imagine that you are assigned the following question:

Education has long been considered a major force for American social change, righting the wrongs of our society. Drawing on the Narrative of the Life of Frederick Douglass, discuss the relationship between education and slavery in 19th-century America. Consider the following: How did white control of education reinforce slavery? How did Douglass and other enslaved African Americans view education while they endured slavery? And what role did education play in the acquisition of freedom? Most importantly, consider the degree to which education was or was not a major force for social change with regard to slavery.

You will probably refer back to your assignment extensively as you prepare your complete essay, and the prompt itself can also give you some clues about how to approach the introduction. Notice that it starts with a broad statement, that education has been considered a major force for social change, and then narrows to focus on specific questions from the book. One strategy might be to use a similar model in your own introduction —start off with a big picture sentence or two about the power of education as a force for change as a way of getting your reader interested and then focus in on the details of your argument about Douglass. Of course, a different approach could also be very successful, but looking at the way the professor set up the question can sometimes give you some ideas for how you might answer it.

Decide how general or broad your opening should be.  Keep in mind that even a “big picture” opening needs to be clearly related to your topic; an opening sentence that said “Human beings, more than any other creatures on earth, are capable of learning” would be too broad for our sample assignment about slavery and education. If you have ever used Google Maps or similar programs, that experience can provide a helpful way of thinking about how broad your opening should be. Imagine that you’re researching Chapel Hill. If what you want to find out is whether Chapel Hill is at roughly the same latitude as Rome, it might make sense to hit that little “minus” sign on the online map until it has zoomed all the way out and you can see the whole globe. If you’re trying to figure out how to get from Chapel Hill to Wrightsville Beach, it might make more sense to zoom in to the level where you can see most of North Carolina (but not the rest of the world, or even the rest of the United States). And if you are looking for the intersection of Ridge Road and Manning Drive so that you can find the Writing Center’s main office, you may need to zoom all the way in. The question you are asking determines how “broad” your view should be. In the sample assignment above, the questions are probably at the “state” or “city” level of generality. But the introductory sentence about human beings is mismatched—it’s definitely at the “global” level. When writing, you need to place your ideas in context—but that context doesn’t generally have to be as big as the whole galaxy! (See our handout on understanding assignments for additional information on the hidden clues in assignments.)

Try writing your introduction last.  You may think that you have to write your introduction first, but that isn’t necessarily true, and it isn’t always the most effective way to craft a good introduction. You may find that you don’t know what you are going to argue at the beginning of the writing process, and only through the experience of writing your paper do you discover your main argument. It is perfectly fine to start out thinking that you want to argue a particular point, but wind up arguing something slightly or even dramatically different by the time you’ve written most of the paper. The writing process can be an important way to organize your ideas, think through complicated issues, refine your thoughts, and develop a sophisticated argument. However, an introduction written at the beginning of that discovery process will not necessarily reflect what you wind up with at the end. You will need to revise your paper to make sure that the introduction, all of the evidence, and the conclusion reflect the argument you intend. Sometimes it’s easiest to just write up all of your evidence first and then write the introduction last—that way you can be sure that the introduction will match the body of the paper.

Don’t be afraid to write a tentative introduction first and then change it later.  Some people find that they need to write some kind of introduction in order to get the writing process started. That’s fine, but if you are one of those people, be sure to return to your initial introduction later and rewrite if necessary.

Open with an attention grabber.  Sometimes, especially if the topic of your paper is somewhat dry or technical, opening with something catchy can help. Consider these options:

  • an intriguing example (for example, the mistress who initially teaches Douglass but then ceases her instruction as she learns more about slavery)
  • a provocative quotation (Douglass writes that “education and slavery were incompatible with each other”)
  • a puzzling scenario (Frederick Douglass says of slaves that “[N]othing has been left undone to cripple their intellects, darken their minds, debase their moral nature, obliterate all traces of their relationship to mankind; and yet how wonderfully they have sustained the mighty load of a most frightful bondage, under which they have been groaning for centuries!” Douglass clearly asserts that slave owners went to great lengths to destroy the mental capacities of slaves, yet his own life story proves that these efforts could be unsuccessful.)
  • a vivid and perhaps unexpected anecdote (for example, “Learning about slavery in the American history course at Frederick Douglass High School, students studied the work slaves did, the impact of slavery on their families, and the rules that governed their lives. We didn’t discuss education, however, until one student, Mary, raised her hand and asked, ‘But when did they go to school?’ That modern high school students could not conceive of an American childhood devoid of formal education speaks volumes about the centrality of education to American youth today and also suggests the significance of the deprivation of education in past generations.”)
  • a thought-provoking question (given all of the freedoms that were denied enslaved individuals in the American South, why does Frederick Douglass focus his attentions so squarely on education and literacy?)

Pay special attention to your first sentence.  Start off on the right foot with your readers by making sure that the first sentence actually says something useful and that it does so in an interesting and error-free way.

Be straightforward and confident.  Avoid statements like “In this paper, I will argue that Frederick Douglass valued education.” While this sentence points toward your main argument, it isn’t especially interesting. It might be more effective to say what you mean in a declarative sentence. It is much more convincing to tell us that “Frederick Douglass valued education” than to tell us that you are going to say that he did. Assert your main argument confidently. After all, you can’t expect your reader to believe it if it doesn’t sound like you believe it!

How To Evaluate Your Introduction Draft

Ask a friend to read it and then tell you what he or she expects the paper will discuss, what kinds of evidence the paper will use, and what the tone of the paper will be. If your friend is able to predict the rest of your paper accurately, you probably have a good introduction.

Five Kinds Of Less Effective Introductions

1. The place holder introduction.  When you don’t have much to say on a given topic, it is easy to create this kind of introduction. Essentially, this kind of weaker introduction contains several sentences that are vague and don’t really say much. They exist just to take up the “introduction space” in your paper. If you had something more effective to say, you would probably say it, but in the meantime this paragraph is just a place holder.

Example: Slavery was one of the greatest tragedies in American history. There were many different aspects of slavery. Each created different kinds of problems for enslaved people.

2. The restated question introduction.  Restating the question can sometimes be an effective strategy, but it can be easy to stop at JUST restating the question instead of offering a more specific, interesting introduction to your paper. The professor or teaching assistant wrote your questions and will be reading ten to seventy essays in response to them—he or she does not need to read a whole paragraph that simply restates the question. Try to do something more interesting.

Example: Indeed, education has long been considered a major force for American social change, righting the wrongs of our society. The Narrative of the Life of Frederick Douglass discusses the relationship between education and slavery in 19th century America, showing how white control of education reinforced slavery and how Douglass and other enslaved African Americans viewed education while they endured. Moreover, the book discusses the role that education played in the acquisition of freedom. Education was a major force for social change with regard to slavery.

3. The Webster’s Dictionary introduction.  This introduction begins by giving the dictionary definition of one or more of the words in the assigned question. This introduction strategy is on the right track—if you write one of these, you may be trying to establish the important terms of the discussion, and this move builds a bridge to the reader by offering a common, agreed-upon definition for a key idea. You may also be looking for an authority that will lend credibility to your paper. However, anyone can look a word up in the dictionary and copy down what Webster says—it may be far more interesting for you (and your reader) if you develop your own definition of the term in the specific context of your class and assignment, or if you use a definition from one of the sources you’ve been reading for class. Also recognize that the dictionary is also not a particularly authoritative work—it doesn’t take into account the context of your course and doesn’t offer particularly detailed information. If you feel that you must seek out an authority, try to find one that is very relevant and specific. Perhaps a quotation from a source reading might prove better? Dictionary introductions are also ineffective simply because they are so overused. Many graders will see twenty or more papers that begin in this way, greatly decreasing the dramatic impact that any one of those papers will have.

Example: Webster’s dictionary defines slavery as “the state of being a slave,” as “the practice of owning slaves,” and as “a condition of hard work and subjection.”

4. The “dawn of man” introduction.  This kind of introduction generally makes broad, sweeping statements about the relevance of this topic since the beginning of time. It is usually very general (similar to the place holder introduction) and fails to connect to the thesis. You may write this kind of introduction when you don’t have much to say—which is precisely why it is ineffective.

Example: Since the dawn of man, slavery has been a problem in human history.

5. The book report introduction.  This introduction is what you had to do for your elementary school book reports. It gives the name and author of the book you are writing about, tells what the book is about, and offers other basic facts about the book. You might resort to this sort of introduction when you are trying to fill space because it’s a familiar, comfortable format. It is ineffective because it offers details that your reader already knows and that are irrelevant to the thesis. Example: Frederick Douglass wrote his autobiography, Narrative of the Life of Frederick Douglass, An American Slave, in the 1840s. It was published in 1986 by Penguin Books. In it, he tells the story of his life.

Works Consulted

We consulted these works while writing the original version of this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find the latest publications on this topic. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial.

All quotations are from Frederick Douglass, Narrative of the Life of Frederick Douglass, An American Slave, edited and with introduction by Houston A. Baker, Jr., New York: Penguin Books, 1986.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License. You may reproduce it for non-commercial use if you use the entire handout (just click print) and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Mailing Address

Pomona College 333 N. College Way Claremont , CA 91711

Get in touch

Give back to pomona.

Part of   The Claremont Colleges

  • Tel: +81-3-5541-4400 (Monday–Friday, 09:30–18:00)

ThinkSCIENCE

10 tips for writing an effective introduction to original research papers

Writing an effective introduction section

After the title and abstract, the introduction is the next thing your audience will read, so it's vital to begin strongly. The introduction is your opportunity to show readers and reviewers why your research topic is worth reading about and why your paper warrants their attention.

The introduction serves multiple purposes. It presents the background to your study, introduces your topic and aims, and gives an overview of the paper. A good introduction will provide a solid foundation and encourage readers to continue on to the main parts of your paper—the methods, results, and discussion.

In this article, we present 10 tips for writing an effective introduction. These tips apply primarily to full papers and letters reporting original research results. Although some tips will be more suited to papers in certain fields, the points are broadly applicable.

1. Start broadly and then narrow down

In the first paragraph, briefly describe the broad research area and then narrow down to your particular focus. This will help position your research topic within the broader field, making the work accessible to a broader audience, not just to specialists in your field.

2. State the aims and importance

Papers rejected for "not showing the importance of the topic" or "lacking clear motivation" usually neglect this point. Say what you want to achieve and why your reader should be interested in finding out whether you achieve it. The basic structure can be as simple as "We aim to do X, which is important because it will lead to Y."

3. Cite thoroughly but not excessively

Instead of simply saying that the topic is important, show why the topic is important .

Once you've narrowed your focus to the specific topic of your study, you should thoroughly cover the most recent and most relevant literature pertaining to your study. Your review of the literature should be complete, but not overly long— remember, you're not writing a review article . If you find that your introduction is too long or overflowing with citations, one possible solution is to cite review articles, rather than all the individual articles that have already been summarized in the review.

4. Avoid giving too many citations for one point

Consider the following sentence: "Many studies have found a significant association between X and Y [4-15]." This sentence cites too many studies at once. Although references [4-15] might provide a good overview of the topic, this sentence doesn't provide enough context or explanation for these past studies. If all of these references are worth citing, they should be discussed in greater specificity. For example, "A significant association has been found between X and Y in men [4-7], women [8-11], and children [12-15]."

Get featured articles and other author resources sent to you in English, Japanese, or both languages via our monthly newsletter.

5. Clearly state either your hypothesis or research question

For research in empirical sciences, stating a hypothesis can be an effective way of framing the research. For example, instead of stating "In this study, we show that X is related to Y by method A," you could say, "In this study, we hypothesize that X is related to Y, and we use method A to test this hypothesis." For research in formal sciences or exploratory research, you could consider stating a research question instead: "In this study, we examine the following research question: Is X related to Y?" Note that the research question doesn't always have to be stated in the interrogative form (with a question mark); instead, you can put the question into a declarative sentence: "In this study, we investigate whether X is related to Y." Hypotheses and research questions are effective because they help give shape to the paper and serve as "signpost phrases" that guide readers through your paper smoothly.

6. Consider giving an overview of the paper

Example structure of an introduction

Introductory paragraph:

  • Give a general introduction to the topic for broad audience
  • Narrow the focus to your particular topic
  • State your research problem and aims

Literature review (usually several paragraphs):

  • Summarize the relevant literature on your topic
  • Describe the current state of the art
  • Note any gaps in the literature that your study will address

Research targets (usually one paragraph):

  • State your hypothesis or research question
  • Briefly describe how you will accomplish your aims
  • Give a preview of your main results and state the contribution of the work (optional)

Paper overview (optional; one paragraph):

  • Give a section-by-section overview of the paper's contents

An organizational overview is more common in some fields than others. It is particularly common in technology, but less so in medicine. In the last paragraph of your introduction, consider giving a section-by-section overview of your paper if it is appropriate for your field. For example, "In Section II, we describe our analysis methods and the datasets we used. In Section III we present the results. In Section IV, we discuss the results and compare our findings with those in the literature. In Section V, we state our conclusions and suggest possible topics for future research."

7. Keep it short

Try to avoid an overly long introduction. A good target is 500 to 1000 words, although checking the journal's guidelines and past issues will provide the clearest guidance.

8. Show, don't tell

One goal of the introduction is explaining why your research topic is worthy of study. One of the most common pitfalls is to simply say, "Subject X is important." Instead of simply saying that the topic is important, show why the topic is important . For example, instead of writing "The development of new materials is important for the automotive industry," you could write, "The development of new materials is necessary for the automotive industry to produce stronger, lighter vehicles, which will improve safety and fuel economy ."

9. Don't bury your readers in detail

In the introduction, if your paper is in a field that commonly summarizes the study's main results before starting the methods, you should avoid stating too many detailed results because these results need the development in the other sections of your paper to be properly understood. Instead of saying "We find that our algorithm requires 55% of the memory and 45% of the computation time of the conventional algorithm," it is usually better to give a general overview of the findings in the introduction: "Here we compare the proposed algorithm with a conventional algorithm in terms of memory use and computational speed, showing that the proposed algorithm is both smaller and faster ." Some older style guides suggest holding back the main result to build suspense, but now journals in many fields— medicine being a notable exception —encourage giving a preview of your main results in the introduction.

why introduction is important in research

10. Check the journal requirements

Many journals have specific requirements for the introduction in their guidelines for authors. For example, there might be a maximum word count stated or the guidelines might require specific content, such as a hypothesis statement or a summary of your main results.

Concluding remarks

I would like to close with one last piece of advice: When you begin drafting a paper, the introduction should be one of the first things you plan . The introduction serves as the roadmap for your paper; by clearly stating the study's background, aims, and hypothesis/research question, the introduction can guide you as you write the rest of the paper. It's such an important section—setting the scene for everything that follows—that many authors write the methods, results, and discussion sections in full before completing the introduction.

I hope these tips help you to write effective introductions that capture the attention of readers and reviewers. If you're interested in more writing tips, check out our 10 Tips for Writing an Effective Abstract . Also, through our EditingPLUS service , you can get writing tips and advice about your specific manuscript from a specialist editor.

why introduction is important in research

Stay up to date

Our monthly newsletter offers valuable tips on writing and presenting your research most effectively, as well as advice on avoiding or resolving common problems that authors face.

Get 10% off your first order

Looking for subject-specialists?

Your research represents you, and your career reflects thousands of hours of your time.

Here at ThinkSCIENCE, our translation and editing represent us, and our reputation reflects thousands of published papers and millions of corrections and improvements.

How to Write the Introduction to a Scientific Paper?

  • Open Access
  • First Online: 24 October 2021

Cite this chapter

You have full access to this open access chapter

why introduction is important in research

  • Samiran Nundy 4 ,
  • Atul Kakar 5 &
  • Zulfiqar A. Bhutta 6  

72k Accesses

142 Altmetric

An Introduction to a scientific paper familiarizes the reader with the background of the issue at hand. It must reflect why the issue is topical and its current importance in the vast sea of research being done globally. It lays the foundation of biomedical writing and is the first portion of an article according to the IMRAD pattern ( I ntroduction, M ethodology, R esults, a nd D iscussion) [1].

I once had a professor tell a class that he sifted through our pile of essays, glancing at the titles and introductions, looking for something that grabbed his attention. Everything else went to the bottom of the pile to be read last, when he was tired and probably grumpy from all the marking. Don’t get put at the bottom of the pile, he said. Anonymous

You have full access to this open access chapter,  Download chapter PDF

Similar content being viewed by others

why introduction is important in research

The Introduction Section

why introduction is important in research

Abstract and Keywords

why introduction is important in research

Writing and publishing a scientific paper

1 what is the importance of an introduction.

An Introduction to a scientific paper familiarizes the reader with the background of the issue at hand. It must reflect why the issue is topical and its current importance in the vast sea of research being done globally. It lays the foundation of biomedical writing and is the first portion of an article according to the IMRAD pattern ( I ntroduction, M ethodology, R esults, a nd D iscussion) [ 1 ].

It provides the flavour of the article and many authors have used phrases to describe it for example—'like a gate of the city’ [ 2 ], ‘the beginning is half of the whole’ [ 3 ], ‘an introduction is not just wrestling with words to fit the facts, but it also strongly modulated by perception of the anticipated reactions of peer colleagues’, [ 4 ] and ‘an introduction is like the trailer to a movie’. A good introduction helps captivate the reader early.

figure a

2 What Are the Principles of Writing a Good Introduction?

A good introduction will ‘sell’ an article to a journal editor, reviewer, and finally to a reader [ 3 ]. It should contain the following information [ 5 , 6 ]:

The known—The background scientific data

The unknown—Gaps in the current knowledge

Research hypothesis or question

Methodologies used for the study

The known consist of citations from a review of the literature whereas the unknown is the new work to be undertaken. This part should address how your work is the required missing piece of the puzzle.

3 What Are the Models of Writing an Introduction?

The Problem-solving model

First described by Swales et al. in 1979, in this model the writer should identify the ‘problem’ in the research, address the ‘solution’ and also write about ‘the criteria for evaluating the problem’ [ 7 , 8 ].

The CARS model that stands for C reating A R esearch S pace [ 9 , 10 ].

The two important components of this model are:

Establishing a territory (situation)

Establishing a niche (problem)

Occupying a niche (the solution)

In this popular model, one can add a fourth point, i.e., a conclusion [ 10 ].

4 What Is Establishing a Territory?

This includes: [ 9 ]

Stating the general topic and providing some background about it.

Providing a brief and relevant review of the literature related to the topic.

Adding a paragraph on the scope of the topic including the need for your study.

5 What Is Establishing a Niche?

Establishing a niche includes:

Stating the importance of the problem.

Outlining the current situation regarding the problem citing both global and national data.

Evaluating the current situation (advantages/ disadvantages).

Identifying the gaps.

Emphasizing the importance of the proposed research and how the gaps will be addressed.

Stating the research problem/ questions.

Stating the hypotheses briefly.

Figure 17.1 depicts how the introduction needs to be written. A scientific paper should have an introduction in the form of an inverted pyramid. The writer should start with the general information about the topic and subsequently narrow it down to the specific topic-related introduction.

figure 1

Flow of ideas from the general to the specific

6 What Does Occupying a Niche Mean?

This is the third portion of the introduction and defines the rationale of the research and states the research question. If this is missing the reviewers will not understand the logic for publication and is a common reason for rejection [ 11 , 12 ]. An example of this is given below:

Till date, no study has been done to see the effectiveness of a mesh alone or the effectiveness of double suturing along with a mesh in the closure of an umbilical hernia regarding the incidence of failure. So, the present study is aimed at comparing the effectiveness of a mesh alone versus the double suturing technique along with a mesh.

7 How Long Should the Introduction Be?

For a project protocol, the introduction should be about 1–2 pages long and for a thesis it should be 3–5 pages in a double-spaced typed setting. For a scientific paper it should be less than 10–15% of the total length of the manuscript [ 13 , 14 ].

8 How Many References Should an Introduction Have?

All sections in a scientific manuscript except the conclusion should contain references. It has been suggested that an introduction should have four or five or at the most one-third of the references in the whole paper [ 15 ].

9 What Are the Important Points Which Should be not Missed in an Introduction?

An introduction paves the way forward for the subsequent sections of the article. Frequently well-planned studies are rejected by journals during review because of the simple reason that the authors failed to clarify the data in this section to justify the study [ 16 , 17 ]. Thus, the existing gap in knowledge should be clearly brought out in this section (Fig. 17.2 ).

figure 2

How should the abstract, introduction, and discussion look

The following points are important to consider:

The introduction should be written in simple sentences and in the present tense.

Many of the terms will be introduced in this section for the first time and these will require abbreviations to be used later.

The references in this section should be to papers published in quality journals (e.g., having a high impact factor).

The aims, problems, and hypotheses should be clearly mentioned.

Start with a generalization on the topic and go on to specific information relevant to your research.

10 Example of an Introduction

figure b

11 Conclusions

An Introduction is a brief account of what the study is about. It should be short, crisp, and complete.

It has to move from a general to a specific research topic and must include the need for the present study.

The Introduction should include data from a literature search, i.e., what is already known about this subject and progress to what we hope to add to this knowledge.

Moore A. What’s in a discussion section? Exploiting 2-dimensionality in the online world. Bioassays. 2016;38(12):1185.

Article   Google Scholar  

Annesley TM. The discussion section: your closing argument. Clin Chem. 2010;56(11):1671–4.

Article   CAS   Google Scholar  

Bavdekar SB. Writing the discussion section: describing the significance of the study findings. J Assoc Physicians India. 2015;63(11):40–2.

PubMed   Google Scholar  

Foote M. The proof of the pudding: how to report results and write a good discussion. Chest. 2009;135(3):866–8.

Kearney MH. The discussion section tells us where we are. Res Nurs Health. 2017;40(4):289–91.

Ghasemi A, Bahadoran Z, Mirmiran P, Hosseinpanah F, Shiva N, Zadeh-Vakili A. The principles of biomedical scientific writing: discussion. Int J Endocrinol Metab. 2019;17(3):e95415.

Swales JM, Feak CB. Academic writing for graduate students: essential tasks and skills. Ann Arbor, MI: University of Michigan Press; 2004.

Google Scholar  

Colombo M, Bucher L, Sprenger J. Determinants of judgments of explanatory power: credibility, generality, and statistical relevance. Front Psychol. 2017;8:1430.

Mozayan MR, Allami H, Fazilatfar AM. Metadiscourse features in medical research articles: subdisciplinary and paradigmatic influences in English and Persian. Res Appl Ling. 2018;9(1):83–104.

Hyland K. Metadiscourse: mapping interactions in academic writing. Nordic J English Stud. 2010;9(2):125.

Hill AB. The environment and disease: association or causation? Proc Royal Soc Med. 2016;58(5):295–300.

Alpert JS. Practicing medicine in Plato’s cave. Am J Med. 2006;119(6):455–6.

Walsh K. Discussing discursive discussions. Med Educ. 2016;50(12):1269–70.

Polit DF, Beck CT. Generalization in quantitative and qualitative research: myths and strategies. Int J Nurs Stud. 2010;47(11):1451–8.

Jawaid SA, Jawaid M. How to write introduction and discussion. Saudi J Anaesth. 2019;13(Suppl 1):S18–9.

Jawaid SA, Baig M. How to write an original article. In: Jawaid SA, Jawaid M, editors. Scientific writing: a guide to the art of medical writing and scientific publishing. Karachi: Published by Med-Print Services; 2018. p. 135–50.

Hall GM, editor. How to write a paper. London: BMJ Books, BMJ Publishing Group; 2003. Structure of a scientific paper. p. 1–5.

Download references

Author information

Authors and affiliations.

Department of Surgical Gastroenterology and Liver Transplantation, Sir Ganga Ram Hospital, New Delhi, India

Samiran Nundy

Department of Internal Medicine, Sir Ganga Ram Hospital, New Delhi, India

Institute for Global Health and Development, The Aga Khan University, South Central Asia, East Africa and United Kingdom, Karachi, Pakistan

Zulfiqar A. Bhutta

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this chapter

Nundy, S., Kakar, A., Bhutta, Z.A. (2022). How to Write the Introduction to a Scientific Paper?. In: How to Practice Academic Medicine and Publish from Developing Countries?. Springer, Singapore. https://doi.org/10.1007/978-981-16-5248-6_17

Download citation

DOI : https://doi.org/10.1007/978-981-16-5248-6_17

Published : 24 October 2021

Publisher Name : Springer, Singapore

Print ISBN : 978-981-16-5247-9

Online ISBN : 978-981-16-5248-6

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

9.1 The Importance of an Introduction

Learning objectives.

  • Explain the general length of an introduction.
  • List and explain the five basic functions of an introduction.
  • Understand how to use three factors of credibility in an introduction.

A man passing through a door that says

Brian Indrelunas – enter at your own risk – CC BY-NC 2.0.

The introduction for a speech is generally only 10 to 15 percent of the entire time the speaker will spend speaking. This means that if your speech is to be five minutes long, your introduction should be no more than forty-five seconds. If your speech is to be ten minutes long, then your introduction should be no more than a minute and a half. Unfortunately, that 10 to 15 percent of your speech can either make your audience interested in what you have to say or cause them to tune out before you’ve really gotten started. Overall, a good introduction should serve five functions. Let’s examine each of these.

Gain Audience Attention and Interest

The first major purpose of an introduction is to gain your audience’s attention and make them interested in what you have to say. One of the biggest mistakes that novice speakers make is to assume that people will naturally listen because the speaker is speaking. While many audiences may be polite and not talk while you’re speaking, actually getting them to listen to what you are saying is a completely different challenge. Let’s face it—we’ve all tuned someone out at some point because we weren’t interested in what they had to say. If you do not get the audience’s attention at the outset, it will only become more difficult to do so as you continue speaking. We’ll talk about some strategies for grabbing an audience’s attention later on in this chapter.

State the Purpose of Your Speech

The second major function of an introduction is to reveal the purpose of your speech to your audience. Have you ever sat through a speech wondering what the basic point was? Have you ever come away after a speech and had no idea what the speaker was talking about? An introduction is important because it forces the speaker to be mindfully aware of explaining the topic of the speech to the audience. If the speaker doesn’t know what her or his topic is and cannot convey that topic to the audience, then we’ve got really big problems! Robert Cavett, the founder of the National Speaker’s Association, used the analogy of a preacher giving a sermon when he noted, “When it’s foggy in the pulpit, it’s cloudy in the pews.”

As we discussed in Chapter 6 “Finding a Purpose and Selecting a Topic” , the specific purpose is the one idea you want your audience to remember when you are finished with your speech. Your specific purpose is the rudder that guides your research, organization, and development of main points. The more clearly focused your purpose is, the easier your task will be in developing your speech. In addition, a clear purpose provides the audience with a single, simple idea to remember even if they daydream during the body of your speech. To develop a specific purpose, you should complete the following sentence: “I want my audience to understand that…” Notice that your specific speech purpose is phrased in terms of expected audience responses, not in terms of your own perspective.

Establish Credibility

One of the most researched areas within the field of communication has been Aristotle’s concept of ethos or credibility. First, and foremost, the concept of credibility must be understood as a perception of receivers. You may be the most competent, caring, and trustworthy speaker in the world on a given topic, but if your audience does not perceive you as credible, then your expertise and passion will not matter. As public speakers, we need to make sure that we explain to our audiences why we are credible speakers on a given topic.

James C. McCroskey and Jason J. Teven have conducted extensive research on credibility and have determined that an individual’s credibility is composed of three factors: competence, trustworthiness, and caring/goodwill (McCroskey & Teven, 1999). Competence is the degree to which a speaker is perceived to be knowledgeable or expert in a given subject by an audience member. Some individuals are given expert status because of positions they hold in society. For example, Dr. Regina Benjamin, the US Surgeon General, is expected to be competent in matters related to health and wellness as a result of being the United States’ top physician.

Figure 9.1 Regina Benjamin

Regina Benjamin

Source: Photo by Lawrence Jackson, White House photographer, http://www.whitehouse.gov/assets/images/surgeon_general-0075.jpg .

But what if you do not possess a fancy title that lends itself to established competence? You need to explain to the audience why you are competent to speak on your topic. Keep in mind that even well-known speakers are not perceived as universally credible. US Surgeon General Regina Benjamin may be seen as competent on health and wellness issues, but may not be seen as a competent speaker on trends in Latin American music or different ways to cook summer squash. Like well-known speakers, you will need to establish your credibility on each topic you address, so establishing your competence about the energy efficiency of furnace systems during your informative speech does not automatically mean you will be seen as competent on the topic of organ donation for your persuasive speech.

The second factor of credibility noted by McCroskey and Teven is trustworthiness , or the degree to which an audience member perceives a speaker as honest. Nothing will turn an audience against a speaker faster than if the audience believes the speaker is lying. When an audience does not perceive a speaker as trustworthy, the information coming out of the speaker’s mouth is automatically perceived as deceitful. The speaker could be 100 percent honest, but the audience will still find the information suspect. For example, in the summer of 2009, many Democratic members of Congress attempted to hold public town-hall meetings about health care. For a range of reasons, many of the people who attended these town-hall meetings refused to let their elected officials actually speak because the audiences were convinced that the Congressmen and Congresswomen were lying.

In these situations, where a speaker is in front of a very hostile audience, there is little a speaker can do to reestablish that sense of trustworthiness. These public town-hall meetings became screaming matches between the riled-up audiences and the congressional representatives. Some police departments actually ended up having to escort the representatives from the buildings because they feared for their safety. Check out this video from CNN.com to see what some of these events actually looked like: http://www.cnn.com/video/#/video/bestoftv/2009/08/07/ldt.sylvester.town.hall.cnn?iref=videosearch . We hope that you will not be in physical danger when you speak to your classmates or in other settings, but these incidents serve to underscore how important speaker trustworthiness is across speaking contexts.

Caring/goodwill is the final factor of credibility noted by McCroskey and Teven. Caring/goodwill refers to the degree to which an audience member perceives a speaker as caring about the audience member. As noted by Wrench, McCroskey, and Richmond, “If a receiver does not believe that a source has the best intentions in mind for the receiver, the receiver will not see the source as credible. Simply put, we are going to listen to people who we think truly care for us and are looking out for our welfare” (Wrench, McCroskey & Richmond, 2008). As a speaker, then, you need to establish that your information is being presented because you care about your audience and are not just trying to manipulate them. We should note that research has indicated that caring/goodwill is the most important factor of credibility. This means that if an audience believes that a speaker truly cares about the audience’s best interests, the audience may overlook some competence and trust issues.

Provide Reasons to Listen

The fourth major function of an introduction is to establish a connection between the speaker and the audience, and one of the most effective means of establishing a connection with your audience is to provide them with reasons why they should listen to your speech. The idea of establishing a connection is an extension of the notion of caring/goodwill. In the chapters on Language and Speech Delivery, we’ll spend a lot more time talking about how you can establish a good relationship with your audience. However, this relationship starts the moment you step to the front of the room to start speaking.

Instead of assuming the audience will make their own connections to your material, you should explicitly state how your information might be useful to your audience. Tell them directly how they might use your information themselves. It is not enough for you alone to be interested in your topic. You need to build a bridge to the audience by explicitly connecting your topic to their possible needs.

Preview Main Ideas

The last major function of an introduction is to preview the main ideas that your speech will discuss. A preview establishes the direction your speech will take. We sometimes call this process signposting because you’re establishing signs for audience members to look for while you’re speaking. In the most basic speech format, speakers generally have three to five major points they plan on making. During the preview, a speaker outlines what these points will be, which demonstrates to the audience that the speaker is organized.

A study by Baker found that individuals who were unorganized while speaking were perceived as less credible than those individuals who were organized (Baker, 1965). Having a solid preview of the information contained within one’s speech and then following that preview will definitely help a speaker’s credibility. It also helps your audience keep track of where you are if they momentarily daydream or get distracted.

Key Takeaways

  • Introductions are only 10–15 percent of one’s speech, so speakers need to make sure they think through the entire introduction to ensure that they will capture an audience. During an introduction, speakers attempt to impart the general and specific purpose of a speech while making their audience members interested in the speech topic, establishing their own credibility, and providing the audience with a preview of the speech structure.
  • A speaker’s perceived credibility is a combination of competence, trustworthiness, and caring/goodwill. Research has shown that caring/goodwill is probably the most important factor of credibility because audiences want to know that a speaker has their best interests at heart. At the same time, speakers should strive to be both competent and honest while speaking.
  • What are the five basic functions of an introduction? Discuss with your classmates which purpose you think is the most important. Why?
  • Why is establishing a relationship with one’s audience important? How do you plan on establishing a relationship with your audience during your next speech?
  • Of the three factors of credibility, which do you think is going to be hardest to establish with your peers during your next speech? Why? What can you do to enhance your peers’ perception of your credibility?

Baker, E. E. (1965). The immediate effects of perceived speaker disorganization on speaker credibility and audience attitude change in persuasive speaking. Western Speech, 29 , 148–161.

McCroskey, J. C., & Teven, J. J. (1999). Goodwill: A reexamination of the construct and its measurement. Communication Monographs, 66 , 90–103.

Wrench, J. S., McCroskey, J. C., & Richmond, V. P. (2008). Human communication in everyday life: Explanations and applications . Boston, MA: Allyn & Bacon, pp. 33–34.

Stand up, Speak out Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

TAA Abstract

The Why: Explaining the significance of your research

In the first four articles of this series, we examined The What: Defining a research project , The Where: Constructing an effective writing environment , The When: Setting realistic timeframes for your research , and The Who: Finding key sources in the existing literature . In this article, we will explore the fifth, and final, W of academic writing, The Why: Explaining the significance of your research.

Q1: When considering the significance of your research, what is the general contribution you make?

According to the Unite for Sight online module titled “ The Importance of Research ”:

“The purpose of research is to inform action. Thus, your study should seek to contextualize its findings within the larger body of research. Research must always be of high quality in order to produce knowledge that is applicable outside of the research setting. Furthermore, the results of your study may have implications for policy and future project implementation.”

In response to this TweetChat question, Twitter user @aemidr shared that the “dissemination of the research outcomes” is their contribution. Petra Boynton expressed a contribution of “easy to follow resources other people can use to help improve their health/wellbeing”.

Eric Schmieder said, “In general, I try to expand the application of technology to improve the efficiency of business processes through my research and personal use and development of technology solutions.” While Janet Salmons offered the response, “ I am a metaresearcher , that is, I research emerging qualitative methods & write about them. I hope contribution helps student & experienced researchers try new approaches.”

Despite the different contributions each of these participants noted as the significance of their individual research efforts, there is a significance to each. In addition to the importance stated through the above examples, Leann Zarah offered 7 Reasons Why Research Is Important , as follows:

  • A Tool for Building Knowledge and for Facilitating Learning
  • Means to Understand Various Issues and Increase Public Awareness
  • An Aid to Business Success
  • A Way to Prove Lies and to Support Truths
  • Means to Find, Gauge, and Seize Opportunities
  • A Seed to Love Reading, Writing, Analyzing, and Sharing Valuable Information
  • Nourishment and Exercise for the Mind

Q1a: What is the specific significance of your research to yourself or other individuals?

The first of “ 3 Important Things to Consider When Selecting Your Research Topic ”, as written by Stephen Fiedler is to “choose something that interests you”. By doing so, you are more likely to stay motivated and persevere through inevitable challenges.

As mentioned earlier, for Salmons her interests lie in emerging methods and new approaches to research. As Salmons pointed out in the TweetChat, “Conventional methods may not be adequate in a globally-connected world – using online methods expands potential participation.”

For @aemidr, “specific significance of my research is on health and safety from the environment and lifestyle”. In contrast, Schmieder said “my ongoing research allows me to be a better educator, to be more efficient in my own business practices, and to feel comfortable engaging with new technology”.

Regardless of discipline, a personal statement can help identify for yourself and others your suitability for specific research. Some things to include in the statement are:

  • Your reasons for choosing your topic of research
  • The aspects of your topic of research that interest you most
  • Any work experience, placement or voluntary work you have undertaken, particularly if it is relevant to your subject. Include the skills and abilities you have gained from these activities
  • How your choice of research fits in with your future career plans

Q2: Why is it important to communicate the value of your research?

According to Salmons, “If you research and no one knows about it or can use what you discover, it is just an intellectual exercise. If we want the public to support & fund research, we must show why it’s important!” She has written for the SAGE MethodSpace blog on the subject Write with Purpose, Publish for Impact building a collection of articles from both the MethodSpace blog and TAA’s blog, Abstract .

Peter J. Stogios shares with us benefits to both the scientist and the public in his article, “ Why Sharing Your Research with the Public is as Necessary as Doing the Research Itself ”. Unsure where to start? Stogios states, “There are many ways scientists can communicate more directly with the public. These include writing a personal blog, updating their lab’s or personal website to be less technical and more accessible to non-scientists, popular science forums and message boards, and engaging with your institution’s research communication office. Most organizations publish newsletters or create websites showcasing the work being done, and act as intermediaries between the researchers and the media. Scientists can and should interact more with these communicators.”

Schmieder stated during the TweetChat that the importance of communicating the value of your research is “primarily to help others understand why you do what you do, but also for funding purposes, application of your results by others, and increased personal value and validation”.

In her article, “ Explaining Your Research to the Public: Why It Matters, How to Do It! ”, Sharon Page-Medrich conveys the importance, stating “UC Berkeley’s 30,000+ undergraduate and 11,000+ graduate students generate or contribute to diverse research in the natural and physical sciences, social sciences and humanities, and many professional fields. Such research and its applications are fundamental to saving lives, restoring healthy environments, making art and preserving culture, and raising standards of living. Yet the average person-in-the-street may not see the connection between students’ investigations and these larger outcomes.”

Q2a: To whom is it most difficult to explain that value?

Although important, it’s not always easy to share our research efforts with others. Erin Bedford sets the scene as she tells us “ How to (Not) Talk about Your Research ”. “It’s happened to the best of us. First, the question: ‘so, what is your research on?’ Then, the blank stare as you try to explain. And finally, the uninterested but polite nod and smile.”

Schmieder acknowledges that these polite people who care enough to ask, but often are the hardest to explain things to are “family and friends who don’t share the same interests or understanding of the subject matter.” It’s not that they don’t care about the efforts, it’s that the level to which a researcher’s investment and understanding is different from those asking about their work.

When faced with less-than-supportive reactions from friends, Noelle Sterne shares some ways to retain your perspective and friendship in her TAA blog article, “ Friends – How to deal with their negative responses to your academic projects ”.

Q3: What methods have you used to explain your research to others (both inside and outside of your discipline)?

Schmieder stated, “I have done webinars, professional development seminars, blog articles, and online courses” in an effort to communicate research to others. The Edinburg Napier University LibGuides guide to Sharing Your Research includes some of these in their list of resources as well adding considerations of online presence, saving time / online efficiency, copyright, and compliance to the discussion.

Michaela Panter states in her article, “ Sharing Your Findings with a General Audience ”, that “tips and guidelines for conveying your research to a general audience are increasingly widespread, yet scientists remain wary of doing so.” She notes, however, that “effectively sharing your research with a general audience can positively affect funding for your work” and “engaging the general public can further the impact of your research”.

If these are affects you desire, consider CES’s “ Six ways to share your research findings ”, as follows:

  • Know your audience and define your goal
  • Collaborate with others
  • Make a plan
  • Embrace plain language writing
  • Layer and link, and
  • Evaluate your work

Q4: What are some places you can share your research and its significance beyond your writing?

Beyond traditional journal article publication efforts, there are many opportunities to share your research with a larger community. Schmieder listed several options during the TweetChat event, specifically, “conference presentations, social media, blogs, professional networks and organizations, podcasts, and online courses”.

Elsevier’s resource, “ Sharing and promoting your article ” provides advice on sharing your article in the following ten places:

  • At a conference
  • For classroom teaching purposes
  • For grant applications
  • With my colleagues
  • On a preprint server
  • On my personal blog or website
  • On my institutional repository
  • On a subject repository (or other non-commercial repository)
  • On Scholarly Communication Network (SCN), such as Mendeley or Scholar Universe
  • Social Media, such as Facebook, LinkedIn, Twitter

Nature Publishing Group’s “ tips for promoting your research ” include nine ways to get started:

  • Share your work with your social networks
  • Update your professional profile
  • Utilize research-sharing platforms
  • Create a Google Scholar profile – or review and enhance your existing one
  • Highlight key and topical points in a blog post
  • Make your research outputs shareable and discoverable
  • Register for a unique ORCID author identifier
  • Encourage readership within your institution

Finally, Sheffield Solutions produced a top ten list of actions you can take to help share and disseminate your work more widely online, as follows:

  • Create an ORCID ID
  • Upload to Sheffield’s MyPublications system
  • Make your work Open Access
  • Create a Google Scholar profile
  • Join an academic social network
  • Connect through Twitter
  • Blog about your research
  • Upload to Slideshare or ORDA
  • Track your research

Q5: How is the significance of your study conveyed in your writing efforts?

Schmieder stated, “Significance is conveyed through the introduction, the structure of the study, and the implications for further research sections of articles”. According to The Writing Center at University of North Carolina at Chapel Hill, “A thesis statement tells the reader how you will interpret the significance of the subject matter under discussion”.

In their online Tips & Tools resource on Thesis Statements , they share the following six questions to ask to help determine if your thesis is strong:

  • Do I answer the question?
  • Have I taken a position that others might challenge or oppose?
  • Is my thesis statement specific enough?
  • Does my thesis pass the “So what?” test?
  • Does my essay support my thesis specifically and without wandering?
  • Does my thesis pass the “how and why?” test?

Some journals, such as Elsevier’s Acta Biomaterialia, now require a statement of significance with manuscript submissions. According to the announcement linked above, “these statements will address the novelty aspect and the significance of the work with respect to the existing literature and more generally to the society.” and “by highlighting the scientific merit of your research, these statements will help make your work more visible to our readership.”

Q5a: How does the significance influence the structure of your writing?

According to Jeff Hume-Pratuch in the Academic Coaching & Writing (ACW) article, “ Using APA Style in Academic Writing: Precision and Clarity ”, “The need for precision and clarity of expression is one of the distinguishing marks of academic writing.” As a result, Hume-Pratuch advises that you “choose your words wisely so that they do not come between your idea and the audience.” To do so, he suggests avoiding ambiguous expressions, approximate language, and euphemisms and jargon in your writing.

Schmieder shared in the TweetChat that “the impact of the writing is affected by the target audience for the research and can influence word choice, organization of ideas, and elements included in the narrative”.

Discussing the organization of ideas, Patrick A. Regoniel offers “ Two Tips in Writing the Significance of the Study ” claiming that by referring to the statement of the problem and writing from general to specific contribution, you can “prevent your mind from wandering wildly or aimlessly as you explore the significance of your study”.

Q6: What are some ways you can improve your ability to explain your research to others?

For both Schmieder and Salmons, practice is key. Schmieder suggested, “Practice simplifying the concepts. Focus on why rather than what. Share research in areas where they are active and comfortable”. Salmons added, “answer ‘so what’ and ‘who cares’ questions. Practice creating a sentence. For my study of the collaborative process: ‘Learning to collaborate is important for team success in professional life’ works better than ‘a phenomenological study of instructors’ perceptions’”.

In a guest blog post for Scientific American titled “ Effective Communication, Better Science ”, Mónica I. Feliú-Mójer claimed “to be a successful scientist, you must be an effective communicator.” In support of the goal of being an effective communicator, a list of training opportunities and other resources are included in the article.

Along the same lines, The University of Melbourne shared the following list of resources, workshops, and programs in their online resource on academic writing and communication skills :

  • Speaking and Presenting : Resources for presenting your research, using PowerPoint to your advantage, presenting at conferences and helpful videos on presenting effectively
  • Research Impact Library Advisory Service  (RILAS): Helps you to determine the impact of your publications and other research outputs for academic promotions and grant applications
  • Three Minute Thesis Competition  (3MT): Research communication competition that requires you to deliver a compelling oration on your thesis topic and its significance in just three minutes or less.
  • Visualise your Thesis Competition : A dynamic and engaging audio-visual “elevator pitch” (e-Poster) to communicate your research to a broad non-specialist audience in 60 seconds.

As we complete this series exploration of the five W’s of academic writing, we hope that you are adequately prepared to apply them to your own research efforts of defining a research project, constructing an effective writing environment, setting realistic timeframes for your research, finding key sources in the existing literature, and last, but not least, explaining the significance of your research.

Share this:

why introduction is important in research

  • Share on Tumblr

Please note that all ​content on this site ​is copyrighted by the Textbook & Academic Authors Association (TAA). Individual articles may be re​posted and/or printed in non-commercial publications provided you include the byline​ (if applicable), the entire article without alterations, and this copyright notice: “© 202​4, Textbook & Academic Authors Association (TAA). Originally published ​on the TAA Blog, Abstrac t on [Date, Issue, Number].” A copy of the issue in which the article is reprinted​, or a link to the blog or online site, should be mailed to ​K​im Pawlak P.O. Box 3​37, ​C​ochrane, WI 5462​2 or ​K​im.Pawlak @taaonline.net.

why introduction is important in research

Carnegie Mellon University Libraries

English 76-108 First-Year Writing Research Guide

Background sources.

  • Find Sources
  • Subject-Specific Resources
  • Access Sources
  • Evaluate Sources

Ask a CMU Librarian

"Ask us" in white text with red background

  • Ask a Librarian Use chat, text, or email to ask a librarian for help. You can also request a librarian consultation, suggest an item for purchase, or see the current system statuses here.

Welcome to the research guide for 76-108 Writing about Public Problems (WaPP). This guide will introduce you to research tools and strategies you can use to craft persuasive, public facing arguments.

On the Find Sources page here, learn how to:

  • Search the Libraries Catalog
  • Find & search library databases
  • Navigate the stacks of Hunt and Sorrells Libraries to find books

On the Subject-Specific Databases page , learn how to:

  • Access specialized databases on different aspects of policy research

On the Access Sources page , learn how to:

  • Get to the full-text of resources from on or off campus,
  • Get a book or article from another library
  • Request the CMU Libraries to add a book to the collection
  • Get to our streaming videos

On the Evaluate Sources page, learn how to:

  • Skim a source for relevancy
  • Assess the quality of a source
  • Look out for bias
  • Identify intended audience
  • Figure out if a source is scholarly or not.

On the Citations page , learn how to:

  • Cite sources in MLA, Chicago, or APA styles,
  • See examples of citations
  • Get links to citation management software
  • Cite generative AI tools.

And on the Need Help? page, learn where you can go for help with research, writing, and other needs.

Companion sources, Handbooks, and specialized encyclopedias are great places to start. Most are available online through the Libraries Catalog.

  • Next: Find Sources >>
  • Last Updated: Sep 18, 2024 12:24 PM
  • URL: https://guides.library.cmu.edu/76108

Logo for Digital Editions

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10 Why is Research Important?

Learning Objectives

  • Explain how scientific research addresses questions about behaviour
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure PR.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behaviour, as well as the cognitive (mental) and physiological (body) processes that underlie behaviour. In contrast to other methods that people use to understand the behaviour of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is  empirical : it is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behaviour is observable, the mind is not. If someone is crying, we can see behaviour. However, the reason for the behaviour is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behaviour by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behaviour. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student’s acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the Premier of your province. One of your responsibilities is to manage the provincial budget and determine how to best spend your constituents’ tax dollars. As the new Premier, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children’s development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

LINK TO LEARNING

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with your doctor and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions.  Facts  are observable realities, and  opinions  are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the  scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In  deductive reasoning , ideas are tested in the real world; in  inductive reasoning , real-world observations lead to new ideas ( Figure PR.3 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is supported, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favourite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A  theory   is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A  hypothesis  is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests  Figure PR.4 .

A diagram has seven labeled boxes with arrows to show the progression in the flow chart. The chart starts at “Theory” and moves to “Generate hypothesis,” “Collect data,” “Analyze data,” and “Summarize data and report findings.” There are two arrows coming from “Summarize data and report findings” to show two options. The first arrow points to “Confirm theory.” The second arrow points to “Modify theory,” which has an arrow that points back to “Generate hypothesis.”

Introduction to Psychology & Neuroscience Copyright © 2020 by Edited by Leanne Stevens is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

2.1 Why is Research Important

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

   Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession (figure below). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

Some of our ancestors, across the work and over the centuries, believed that trephination – the practice of making a hole in the skull, as shown here – allowed evil spirits to leave the body, thus curing mental illness and other diseases (credit” “taiproject/Flickr)

   The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

We can easily observe the behavior of others around us. For example, if someone is crying, we can observe that behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes, asking about the underlying cognitions is as easy as asking the subject directly: “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In other situations, it may be hard to identify exactly why you feel the way you do. Think about times when you suddenly feel annoyed after a long day. There may be a specific trigger for your annoyance (a loud noise), or you may be tired, hungry, stressed, or all of the above. Human behavior is often a complicated mix of a variety of factors. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

   Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of coming to an agreement, and it could be quite some time before a consensus emerges. In other cases, rapidly developing technology is improving our ability to measure things, and changing our earlier understanding of how the mind works.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? Science is always changing and new evidence is alwaus coming to light, thus this dash of skepticism should be applied to all research you interact with from now on. Yes, that includes the research presented in this textbook.

Evaluation of research findings can have widespread impact. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools (figure below). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

The D.A.R.E. program continues to be popular in schools around the world despite research suggesting that it is ineffective.

It is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with a doctor or psychologist and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

   Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. We continually test and revise theories based on new evidence.

Two types of reasoning are used to make decisions within this model: Deductive and inductive. In deductive reasoning, ideas are tested against the empirical world. Think about a detective looking for clues and evidence to test their “hunch” about whodunit. In contrast, in inductive reasoning, empirical observations lead to new ideas. In other words, inductive reasoning involves gathering facts to create or refine a theory, rather than testing the theory by gathering facts (figure below). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

Psychological research relies on both inductive and deductive reasoning.

   In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider the famous example from Greek philosophy. A philosopher decided that human beings were “featherless bipeds”. Using deductive reasoning, all two-legged creatures without feathers must be human, right? Diogenes the Cynic (named because he was, well, a cynic) burst into the room with a freshly plucked chicken from the market and held it up exclaiming “Behold! I have brought you a man!”

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For example, you might be a biologist attempting to classify animals into groups. You notice that quite a large portion of animals are furry and produce milk for their young (cats, dogs, squirrels, horses, hippos, etc). Therefore, you might conclude that all mammals (the name you have chosen for this grouping) have hair and produce milk. This seems like a pretty great hypothesis that you could test with deductive reasoning. You go out an look at a whole bunch of things and stumble on an exception: The coconut. Coconuts have hair and produce milk, but they don’t “fit” your idea of what a mammal is. So, using inductive reasoning given the new evidence, you adjust your theory again for an other round of data collection. Inductive and deductive reasoning work in tandem to help build and improve scientific theories over time.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once. Instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our theory is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests (figure below).

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

The scientific method of research includes proposing hypotheses, conducting research, and creating or modifying theories based on results.

   To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable, or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors (figure below). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable. The essential characteristic of Freud’s building blocks of personality, the id, ego, and superego, is that they are unconscious, and therefore people can’t observe them. Because they cannot be observed or tested in any way, it is impossible to say that they don’t exist, so they cannot be considered scientific theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

Many of the specifics of (a) Freud’s theories, such ad (b) his division on the mind into the id, ego, and superego, have fallen out of favor in recent decades because they are not falsifiable (i.e., cannot be verified through scientific investigation).  In broader strokes, his views set the stage for much psychological thinking today, such as the idea that some psychological process occur at the level of the unconscious.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. IHaving good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions:

1. Scientific hypotheses are ________ and falsifiable.

a. observable

b. original

c. provable

d. testable

2. ________ are defined as observable realities.

a. behaviors

c. opinions

d. theories

3. Scientific knowledge is ________.

a. intuitive

b. empirical

c. permanent

d. subjective

4. A major criticism of Freud’s early theories involves the fact that his theories ________.

a. were too limited in scope

b. were too outrageous

c. were too broad

d. were not testable

Critical Thinking Questions:

1. In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

2. The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

Personal Application Questions:

1. Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

deductive reasoning

falsifiable

hypothesis:  (plural

inductive reasoning

Answers to Exercises

Review Questions: 

1. There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

2. This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

deductive reasoning:  results are predicted based on a general premise

empirical:  grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing

fact:  objective and verifiable observation, established using evidence collected through empirical research

falsifiable:  able to be disproven by experimental results

hypothesis:  (plural: hypotheses) tentative and testable statement about the relationship between two or more variables

inductive reasoning:  conclusions are drawn from observations

opinion:  personal judgments, conclusions, or attitudes that may or may not be accurate

theory:  well-developed set of ideas that propose an explanation for observed phenomena

Creative Commons License

Share This Book

  • Increase Font Size

U.S. flag

A .gov website belongs to an official government organization in the United States.

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • About CDC Approach to Program Evaluation
  • CDC Program Evaluation Framework

Related Topics:

  • About Office of Policy, Performance, and Evaluation

CDC Approach to Program Evaluation

  • Program evaluation allows you to determine how effective and efficient your programs, policies, and/or organizations are in reaching their outcomes.
  • Collecting and analyzing data regularly and consistently is necessary for effective Program evaluation.
  • Program evaluation is crucial to inform decisions, act on findings, and drive continuous program improvement.

Program Evaluation is one of the ten essential functions of public health . It can help clarify:

  • How to improve existing programs and build upon their strengths.
  • Why a program is or is not being implemented as planned or producing intended results.
  • Why certain trends or patterns are observed in existing data sources.

Why it's important

Program Evaluation helps provide answers to important questions regarding:

  • Program implementation (Are program activities being completed as planned?)
  • Effectiveness (Is the program achieving what was intended?)
  • Attribution (Did the outcomes achieved happen because of the program?)
  • Contribution (Are factors that could contribute to outcomes identified?)
  • Efficiency (Is the program operating using the appropriate resources?)

Our approach

CDC uses Program Evaluation to answer important questions about public health programs through methodical and intentional engagement with interest holders. This can lead to an understanding of the program, what should be evaluated, and how it should be evaluated. Program Evaluation produces findings that:

  • Translate evidence to recommendations for action
  • Demonstrate accountability to funders, policymakers, and participants of the program
  • Document progress and ensure optimal use of resources
  • Help inform decisions about areas for program improvement

Types of Program Evaluations

There are many types of evaluations 1 that can be used for different purposes.

  • Formative evaluation is typically conducted to assess whether a program, policy, or organizational approach is feasible, appropriate, and acceptable before it is fully implemented. It can include process or outcome measures and focuses on learning and improvement 2 .
  • Process/Implementation evaluation assesses how well program implementation followed the original plan. It often includes information on content, quality, quantity, and structure of what is being assessed 3 .
  • Outcome evaluation measures how well a program, policy, or organization has achieved its intended outcomes. It cannot determine what caused specific outcomes (causality), only whether they have been achieved 3 .
  • Impact evaluation compares the outcomes of a program, policy, or organization to estimates of what the outcomes would have been without it. It usually seeks to determine whether the activities caused the observed outcomes 3 .
  • Economic evaluation examines programmatic effects relative to program costs. Common approaches include cost analysis, cost-benefit analysis, and cost-utility analysis.

Difference Between Program Evaluation, Research, Surveillance, and Monitoring

While evaluation is often used interchangeably with these terms that also use systematic approaches to answer questions, they each have their own distinct purpose.

Program Evaluation Compared with Research

Research and evaluation are scientific activities that use similar methods 3 . Research aims to contribute to generalizable knowledge. Evaluation aims to continuously improve organizations, findings, and recommendations for decision making.

Program Evaluation Compared with Surveillance

Surveillance is the ongoing, systematic collection, analysis, and interpretation of health-related data. Surveillance data are often used as data sources for program activities. However, surveillance data alone are often insufficient to answer evaluation questions.

Program Evaluation Compared with Measuring/Monitoring

Performance Measurement is the ongoing monitoring and reporting of program accomplishments, particularly progress toward pre-established goals. These data can be used to identify increasing or decreasing performance that may warrant further investigation. Program Evaluation helps you to identify the reason behind these changes and potential areas of improvement.

  • Office of Management and Budget, Executive Office of the President, OMB M-20-12, Phase 4 Implementation of the Foundations for Evidence-Based Policymaking Act of 2018: Program Evaluation Standards and Practices .2020;Available from M-20-12 (whitehouse.gov)
  • Office of Management and Budget. OMB M-21-27 (2021). Evidence-Based Policymaking: 1291 Learning Agendas and Annual Evaluation Plans . Retrieved from 1292 https://www.whitehouse.gov/wp-content/uploads/2021/06/M-21-27.pdf
  • Kidder, D., Fierro L et al. CDC Program Evaluation Framework. 2024, MMWR

Program Evaluation

The Centers for Disease Control and Prevention develops essential public health evaluation standards, tools and resources, and capacity-building support.

Mark Travers Ph.D.

  • Relationships

The Most Important Quality a Romantic Partner Should Have

New research reveals the true measure of compatibility in relationships..

Posted September 19, 2024 | Reviewed by Michelle Quirk

  • Why Relationships Matter
  • Take our Relationship Satisfaction Test
  • Find counselling to strengthen relationships
  • Personal values—our guiding principles in life—represent the foundation of compatibility.
  • Self-transcendence values are strongly and consistently associated with romantic relationship quality.
  • Self-transcendence values motivate us to act for the benefit of others and see beyond our own needs.

Toa Heftiba / Unsplash

When you think of what a “compatible partner” looks like, what kind of person do you envision? Maybe you see someone who shares your sense of style, or perhaps someone who appreciates your great sense of humor . You might be drawn to people with similar interests and hobbies, or those who communicate in a way that resonates with you. While these characteristics certainly play a part in compatibility, are they the hallmarks of a partner who will truly complement you in a romantic relationship?

According to a recent study published in the Personality and Social Psychology Bulletin , these factors, while important, are not where compatibility is most crucial. Rather, the researchers suggest that personal values—our guiding principles in life—are the foundation where true compatibility lies. And, among these, one value stands out in particular: self-transcendence.

Here’s why this moral principle contributes so greatly to the quality of our relationships and why it’s crucial for partners to share it.

The Role of Self-Transcendence Values in Relationships

The study found that the endorsement of self-transcendence values—that is, values that motivate us to act for the benefit of others and see beyond our own needs—was strongly and consistently associated with enhanced romantic relationship quality. At its core, self-transcendence comprises two major principles:

  • Universalism: This includes values like concern for others, respect for nature, and tolerance for differences. People who prioritize universalism care deeply about the well-being of society as a whole and the environment . In a romantic relationship, this might manifest as a shared concern for social issues, a commitment to sustainability, or a deep respect for each other’s perspectives and backgrounds.
  • Benevolence: This reflects values such as dependability, caring, and humility—which focus on benefiting those in our immediate environment, such as family, friends, and romantic partners. In a romantic relationship, benevolence might look like putting your partner’s needs before your own, offering emotional support during tough times, and making sacrifices for the sake of the relationship.

Combined, self-transcendence values manifest in relationships as support, inclusion, and deep empathy for one another. When both partners are committed to these values, they are more likely to view conflicts not as battles to be won but, rather, as opportunities to grow together—side by side.

However, when these values are not shared, it can lead to significant disjunctions. One partner may feel unsupported or misunderstood if the other lacks the empathy or willingness to see things from their perspective. Over time, these small mismatches can amass into a larger, fundamental sense of disconnection.

Why Entitlement Is a Relationship-Killer

The researchers found that personal values often have dichotomous counterparts—much like yin and yang. In the case of self-transcendence, its darker counterpart is self-enhancement. As its name suggests, self-enhancement values are centered on personal achievement and power, making them the antithesis of self-transcendence.

Unsurprisingly, the study found that self-enhancement had negligible effects on relationship quality. While self-transcendence enhances the relationship, self-enhancement serves it weakly—offering no tangible or beneficial impact.

You might think it’s harmless to value personal pursuits or ambitions more than your partner does. But even though self-enhancement has a neutral effect on relationship quality, it’s important not to overlook the fact that self-transcendence has a palpable, positive effect. Recognizing where your values lie is crucial, as the absence of self-transcendence can lead to subtle but significant challenges in the relationship.

Why Partners Must Share Their Value of Self-Transcendence

Imagine this: Your partner is really keen on spending the weekend with you, doing something fun that you’d both enjoy. On the other hand, you’re more interested in spending the weekend working on a personal project. Despite your differing desires, you might both find yourselves thinking the same thing: “How could they be so selfish? Why can’t they see my perspective?”

You might argue that your partner is the selfish one for ignoring your need to focus on something you find valuable. Conversely, your partner might see you as the selfish one for dismissing their desire for quality time and enjoyment.

As the study’s authors note, “When people struggle with their romantic relationships , it is easy to find fault with their partner. In our humbler moments, we might also recognize contributions from our own traits and habits. But what about the potential impact of our own cherished personal values?”

why introduction is important in research

In a situation like this, no matter how compatible you are in other areas, you might still reach an impasse. Even if both of you are emotionally intelligent and capable of discussing your differences calmly and effectively, the conflict won’t necessarily be resolved. The problem isn’t one of emotional disconnection, or mismatched interests; it’s that your values are at odds.

Here, the difference between self-transcendence and self-enhancement comes to the forefront. One partner is more focused on the collective well-being and the relationship itself, while the other may be more concerned with individual achievements and personal goals .

If both partners valued self-transcendence, they might approach the situation differently: One might compromise by finding their own personal project to work on alongside the other. Or the other might sacrifice a day of the weekend to spend with their partner and leave their project for the next day. Instead of seeing the issue as a matter of selfishness, they recognize the importance of one another’s values; they transcend their own point of view to take the other’s into account.

To value self-transcendence is to value the well-being of your partner and, by extension, the well-being of your relationship. This means understanding that small sacrifices and compromises will have far greater long-term benefits than simply satisfying your immediate desires. If only one of you—or neither—sees the value in this approach, then you may not be as compatible as you initially thought. The true strength of a romantic relationship may not depend on superficial compatibilities that wax and wane over time but on the deeper alignment of personal values.

A version of this post also appears on Forbes.com.

Mark Travers Ph.D.

Mark Travers, Ph.D., is an American psychologist with degrees from Cornell University and the University of Colorado Boulder.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • International
  • New Zealand
  • South Africa
  • Switzerland
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

September 2024 magazine cover

It’s increasingly common for someone to be diagnosed with a condition such as ADHD or autism as an adult. A diagnosis often brings relief, but it can also come with as many questions as answers.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Active funding opportunity

Nsf 24-576: gen-4 engineering research centers, program solicitation, document information, document history.

  • Posted: May 20, 2024
  • Replaces: NSF 22-580

Program Solicitation NSF 24-576



Directorate for Engineering
     Engineering Education and Centers

Letter of Intent Due Date(s) (required) (due by 5 p.m. submitting organization’s local time):

     September 03, 2024

Preliminary Proposal Due Date(s) (required) (due by 5 p.m. submitting organization’s local time):

     September 30, 2024

Full Proposal Deadline(s) (due by 5 p.m. submitting organization’s local time):

By Invitation Only

Important Information And Revision Notes

This solicitation encourages proposals addressing a broad spectrum of engineering topics, including but not limited to advanced manufacturing, advanced wireless, artificial intelligence, biotechnology, microelectronics and semiconductors, net-zero technologies, quantum engineering, and systems engineering for healthcare.

This solicitation is updated to clarify the definition of underrepresented students in STEM and to welcome proposal submissions that broaden geographic and demographic participation. More details are provided in Section IV. ELIGIBILITY INFORMATION .

Cost Sharing: Cost sharing is required. The formula for required cost sharing is described in the full text of this solicitation.

Any proposal submitted in response to this solicitation should be submitted in accordance with the NSF Proposal & Award Policies & Procedures Guide (PAPPG) that is in effect for the relevant due date to which the proposal is being submitted. The NSF PAPPG is regularly revised and it is the responsibility of the proposer to ensure that the proposal meets the requirements specified in this solicitation and the applicable version of the PAPPG. Submitting a proposal prior to a specified deadline does not negate this requirement.

Summary Of Program Requirements

General information.

Program Title:

Gen-4 Engineering Research Centers (ERC) Convergent Research and Innovation through Inclusive Partnerships and Workforce Development
Founded in 1984, the Engineering Research Centers (ERC) program brings technology-based industry and universities together in an effort to strengthen the competitive position of American industry in the global marketplace. These partnerships are expected to establish cross-disciplinary centers focused on advancing fundamental engineering knowledge and engineered systems technology while exposing students to the integrative aspects of engineered systems and industrial practice. The goal of the ERC program has traditionally been to integrate engineering research and education with technological innovation to transform and improve national prosperity, health, and security. Building upon this tradition, NSF is interested in supporting ERCs to develop and advance engineered systems, which if successful, will have a high Societal Impact. The ERC program supports convergent research (CR) that will lead to strong societal impact. Each ERC has interacting foundational components that go beyond the research project, including engineering workforce development (EWD) at all participant stages, where all participants gain mutual benefit, and value creation within an innovation ecosystem (IE) that will outlast the lifetime of the ERC. These foundational elements are integrated throughout ERC activities and in alignment with the Center's vision and targeted societal impact. The overall impact of the ERC program is expected within the Engineering Community, the Scientific Enterprise, and Society.

Cognizant Program Officer(s):

Please note that the following information is current at the time of publishing. See program website for any updates to the points of contact.

Sandra Cruz-Pol, telephone: (703) 292-2928, email: [email protected]

Dana L. Denick, telephone: (703) 292-8866, email: [email protected]

Randy Duran, telephone: (703) 292-5326, email: [email protected]

Nadia A. El-Masry, telephone: (703) 292-4975, email: [email protected]

Paul Torrens, telephone: (703) 292-2473, email: [email protected]

Lan Wang, telephone: (703) 292-5098, email: [email protected]

  • 47.041 --- Engineering

Award Information

Anticipated Type of Award: Cooperative Agreement

Up to 4 depending on the quality of the proposals and the availability of funds. ERCs are generally funded for ten years, with an initial award for the first five years and second award based on performance and review of a renewal proposal. This solicitation seeks to make awards for the first five years for new ERCs.

See Section III of this solicitation for additional information about the allowable maximum annual budget for years one through five.

NSF expects to make the ERC awards in the summer of 2026. The budget distribution among the lead and core partners should be appropriate for the scope of work and activities planned for each foundational component.

Note that ERCs will not be granted no-cost extensions (NCE).

Co-funding:

NSF is currently in negotiations with other government agencies to form partnerships in support of ERC awards. These partnerships have the potential to expand the total number of awards. This is contingent upon realization of these partnerships, and budgets provided to these organizations by Congress for FY 2026 and 2027.

Eligibility Information

Who May Submit Proposals:

Proposals may only be submitted by the following:

Only U.S. Institutions of Higher Education (IHEs), also referred to in this solicitation as universities and academic institutions, accredited in, and having a campus located in the US, that grant engineering degrees at the undergraduate, masters, and doctoral engineering level may submit proposals as the lead university. The Lead university submits the proposal, and the award is made to the lead university. Support is provided to core partner universities and any affiliated faculty from other partner institutions through subawards. NSF welcomes proposal submissions that broaden geographic and demographic participation. Proposals from STEM-minority-serving institutions (STEM-MSI*), non-R1 schools, emerging research institutions, and IHEs in EPSCoR-eligible jurisdictions, as lead or core partners, as well as IHEs that primarily serve populations of students with disabilities or women in engineering interested in STEM, are encouraged.

Invited full proposals must meet all the following organizational requirements or they will be returned without review:

  • The Lead must be an Institution of Higher Education per the Carnegie Foundational Attribute: https://carnegieclassifications.acenet.edu/
  • A proposed ERC must be multi-institutional, with a lead university and additional domestic university core partners. There is no maximum number of partner institutions.
  • To qualify as a core partner institution, there must be financial support for a minimum of three faculty participating in the ERC along with financial support for a minimum of three students (Postdoctoral scholars may not be included as students).
  • The lead or at least one of the core partner universities must be a STEM-MSI* university.
  • Commitments from lead and core partner universities for cost sharing must be in place.

*For this solicitation STEM-MSI is defined by the Department of Education as institutions of higher education enrolling populations with significant percentages of undergraduate minority students, or that serve certain populations of minority students under various programs created by Congress.

Eligibility may be determined by reference to the Integrated Postsecondary Education Data System (IPEDS) of the US Department of Education National Center for Education Statistics ( https://nces.ed.gov/ipeds/ ).

Who May Serve as PI:

The Lead PI must be a faculty member at the Lead university. Non-Lead PIs are the co-PIs listed on the Cover Sheet after the Lead PI and may be from institutions other than the lead university. In order to provide more flexibility for the Center's management, the Lead PI and the ERC Director are not required to be the same person, however, both must be affiliated with the lead institution.

Limit on Number of Proposals per Organization:

If an institution has two active ERC awards, it does not qualify to submit an ERC preliminary proposal as a lead institution. There are no other restrictions or limits on the number of preliminary proposals submitted by a Lead institution. Full Proposals may be submitted only by invitation and only by the lead institution designated in the preliminary proposal.

Limit on Number of Proposals per PI or co-PI:

There are no restrictions or limits.

Proposal Preparation and Submission Instructions

A. proposal preparation instructions.

Letters of Intent: Submission of Letters of Intent is required. Please see the full text of this solicitation for further information.

Preliminary Proposals: Submission of Preliminary Proposals is required. Please see the full text of this solicitation for further information.

Full Proposals:

  • Full Proposals submitted via Research.gov: NSF Proposal and Award Policies and Procedures Guide (PAPPG) guidelines apply. The complete text of the PAPPG is available electronically on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg .
  • Full Proposals submitted via Grants.gov: NSF Grants.gov Application Guide: A Guide for the Preparation and Submission of NSF Applications via Grants.gov guidelines apply (Note: The NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide ).

B. Budgetary Information

Cost Sharing Requirements:

Cost Sharing is required. Please see the full text of this solicitation for further information.

Indirect Cost (F&A) Limitations:

Not Applicable

Other Budgetary Limitations:

Other budgetary limitations apply. Please see the full text of this solicitation for further information.

C. Due Dates

Letter of Intent Due Date(s) (required) (due by 5 p.m. submitting organization's local time):

Preliminary Proposal Due Date(s) (required) (due by 5 p.m. submitting organization's local time):

Proposal Review Information Criteria

Merit Review Criteria:

National Science Board approved criteria. Additional merit review criteria apply. Please see the full text of this solicitation for further information.

Award Administration Information

Award Conditions:

Additional award conditions apply. Please see the full text of this solicitation for further information.

Reporting Requirements:

Additional reporting requirements apply. Please see the full text of this solicitation for further information.

I. Introduction

The National Science Foundation (NSF) created the Engineering Research Centers (ERC) program in 1984 to bring technology-based industry and universities together in an effort to strengthen the competitive position of American industry in the global marketplace. These partnerships established cross-disciplinary centers focused on advancing fundamental engineering knowledge and engineered systems technology while exposing students to the integrative aspects of engineered systems and industrial practice. As a result, ERCs have produced a wide range of new fundamental knowledge, engineered systems and other technologies aimed at spawning whole new fields or industries or radically transforming the product lines, processes, and practices of current industries. At the same time, they have produced a new generation of engineering graduates who are highly innovative, diverse, globally engaged, and effective as technology leaders in academia and industry.

NSF has continually refined the goals and purposes of the ERC program to meet shifting needs. The NSF-requested 2017 study from the National Academies of Sciences, Engineering, and Medicine (NASEM) "A New Vision for Center-Based Engineering Research" ( https://www.nap.edu/catalog/24767/a-new-vision-for-center-based-engineering-research ) recommends that NSF places a greater emphasis on forming research centers focused on convergent research and education approaches that address challenges with significant societal impact. Complex societal problems require a convergent approach for the deep integration of knowledge, tools, and ways of thinking across disciplinary boundaries. A detailed explanation of the convergence concept can be found in a 2014 National Academies report, "Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering and Beyond" ( https://www.nap.edu/catalog/18722/convergence-facilitating-transdisciplinary-integration-of-life-sciences-physical-sciences-engineering ).

This current iteration of the ERC program reflects the recommendations from the NASEM study as well as other sources. The program continues to focus on advancing an engineered system through inclusive cross-disciplinary and cross-sector partnerships, while placing greater emphasis on research with high- risk/high-payoff ideas that lead to societal impact through convergent approaches, engaging broader stakeholder communities, and using team science concepts for their team formation.

II. Program Description

A. ERC Program Model

The ERC program is grounded by the four foundational components of the ERC: Convergent Research (CR), Engineering Workforce Development (EWD), Diversity and Culture of Inclusion (DCI), and the Innovation Ecosystem (IE) (Figure 1). These foundational components are connected by an integrated, holistic ERC vision and strategic plan. The whole of the ERC has added value and synergies that require a center or institute-like approach as opposed to individual projects.

The NSF Gen-4 Engineering Research Center model

Convergent Research (CR): High-risk/high-payoff research ideas and discoveries that push the frontiers of engineering knowledge; ERC convergent research is a highly collaborative and interdisciplinary approach that leads to positive impacts on society. Convergence involves the integration of various fields in engineering and science, including all branches of science, in a coordinated and interdependent manner. This approach fosters strong collaborations that are essential for successful inquiry.

Engineering Workforce Development (EWD): In addition to training opportunities for ERC participants, the Center engages in human resource capacity development aligned with the targeted engineered system. ERC EWD strengthens a robust spectrum of engineering education pathways and technical workforce opportunities. EWD occurs at all levels of the Center and provides opportunities for engagement by all ERC members including students, faculty, and external partners as appropriate. The ERC EWD program is driven by the future education, workforce development, and labor market needs relevant to the proposed Center.

Diversity and Culture of Inclusion (DCI): In addition to fomenting a diverse team, the culture of the ERC and teams within the ERC demonstrate an environment of inclusion in which all members feel valued and welcomed, creatively contribute, and gain mutual benefit from participating. Because of the ERC's attention to diversity and culture of inclusion, participation from members of groups traditionally underrepresented in engineering as well as diverse scientific and other perspectives is required. The ERC DCI program ensures diversity at all levels of the Center and employs an intentional and evidence-based approach to developing a culture of inclusion.

Innovation Ecosystem (IE): Trusted partners that work together to create and enhance the capacity for innovation and new ways for delivering value with positive societal impact. ERC innovation ecosystems (IE) include effective translational efforts from ideation to implementation, workforce development that creates the workforce needed for the enterprise, and deliberate efforts to attract funding and resources. ERCs articulate plans for strategic engagement of stakeholder communities while including the legal, ethical, civic, and societal acceptance frameworks needed to protect the participants.

The ERC foundational elements are carried out in concert through ERC activities and in alignment with the Center's vision and targeted societal impact. The overall impact of the ERC program is expected within the Engineering Community , the Scientific Enterprise , and Society , shown in Figure 1 (above). These may be thought of as nested regions of increasing influence, where the largest scale of impact is on society itself. Potential outcomes of ERCs are organized within each of the four ERC foundational components.

Engineering Community: ERCs not only create fundamental knowledge and technology, but also impact the engineering community, preparing students and researchers by highlighting new engineering approaches and best practices for engineering workforce development, diversity and inclusion, and academic-industrial partnerships.

Scientific Enterprise: ERCs should be exemplars of how cohesive, high-performing teams engage in convergent research and innovative approaches to create major impact that informs and inspires the scientific community, engineering and beyond.

Society: ERCs enable society to have a better quality of life, and be more resilient, productive, and safe. Each ERC is expected to have a transformational positive impact on significant societal challenges and opportunities. This is the level where the introduction of value creation and technology innovation requires an understanding of socio-technical interactions and how they might impact society at large. In response, new strategies, concepts, ideas and/or re- organizations may be needed to shore-up, extend, or strengthen society. The desired outcome is the ERC's ability to assist society in its drive to advance the national health, prosperity, welfare, and to secure the national defense.

The goal of the ERC program has traditionally been to integrate engineering research and education with technological innovation to transform and improve national prosperity, health, and security. Building upon this tradition, NSF is interested in supporting ERCs to develop and advance engineered systems, which if successful, will have a high Societal Impact .

ERCs create inclusive cultures not only to integrate scientific discovery with technological innovation through convergent engineered systems research and education, but also to include the participation of the full spectrum of diverse talent in engineering. ERCs build partnerships with industry, practitioners, and other key stakeholders to strengthen the innovative capacity of the United States in a global context. In addition to building capacity for research, innovation, and a diverse workforce, ERCs are expected to produce significant outcomes within the 10-year timeframe of NSF support and beyond.

ERCs should realize a vision of advancing an engineered system driven by clearly articulated societal impact and should have strong synergies or value-added rationale that justifies a center or institute-like approach. As part of creating sustainable positive impacts on society and communities, ERCs should focus on positive outcomes that can be seen within engineering communities and build and empower human resource capacity for their targeted engineering challenges. Beyond this, ERCs should contribute to the scientific enterprise by advancing research, science, engineering fundamentals, and research communities. This should be demonstrated with benchmarks against the state-of-the-art. ERCs should build knowledge, prepare students and researchers that respect and flourish in an environment with diverse perspectives, impact how engineering research is conducted and provide value for society. The ERC program encourages proposals addressing a broad spectrum of engineering topics, including but not limited to advanced manufacturing, advanced wireless, artificial intelligence, biotechnology, microelectronics and semiconductors, net zero technologies, quantum engineering, and systems engineering for healthcare.

C. Key Elements of an ERC

Vision: The ERC vision guides discovery and technology to uniquely transform US prosperity, health, and/or security in 10 years. The vision describes the compelling new idea, explains how it relates to national needs, and makes the connection to engineering.

Strategic Plan: The ERC strategic plan connects and leverages research, engineering workforce development, diversity and culture of inclusion, and innovation ecosystem to address the chosen societal challenge. The overall plan should employ three strategic approaches:

Convergence : "Convergence is an approach to problem solving that cuts across disciplinary boundaries. It integrates knowledge, tools, and ways of thinking across disciplinary boundaries in STEM fields to form a comprehensive synthetic framework for tackling scientific and societal challenges that exist at the interfaces of multiple fields." ( https://www.nap.edu/catalog/18722/convergence-facilitating-transdisciplinary-integration-of-life-sciences-physical-sciences-engineering ). This is also stated in another report by the National Academies of Sciences, Engineering, and Medicine (NASEM) from the Committee on a Vision for the Future of Center-based Multidisciplinary Engineering Research, which defined convergent engineering as a deeply collaborative, team-based engineering approach for defining and solving important and complex societal problems ( https://www.nap.edu/catalog/24767/a-new-vision-for-center-based-engineering-research ). Hence, convergent research blends scientific disciplines in a coordinated, reciprocal way and fosters the robust collaboration needed for successful inquiry and has the strong potential to lead to transformative solutions and new fields of study. The research thrusts, testbeds, team formation, and other major aspects of the research plan should support a convergent approach.

Stakeholder Engagement : The intentional and early-stage engagement of all parties who may contribute to the ERC or may be impacted by the ERC along its capacity-building and value creation responsibilities. Stakeholders can include, but are not limited to, relevant researchers across partner institutions with complementary research and education expertise; undergraduate and graduate students, postdoctoral researchers; industry leaders who can guide the innovation effort; partners for innovation, education, workforce development, and diversity and culture of inclusion of all participants; and beneficiaries of the ERC outcomes (e.g., community members, users, customers, patients, and watchdog organizations).

Team Formation : The process by which all necessary disciplines, skills, perspectives, and capabilities are brought together. Successful teams are interdependent, multidisciplinary, and diverse and can work and communicate effectively even when geographically dispersed. Team formation includes evidence-based strategies and team science training to overcome barriers to effective, collaborative teaming, including the integration of members with different areas of expertise, different vocabularies and core values and ways of approaching problems, different understanding of the problems to be addressed, different values, and different working styles. This is especially needed during the early stages of the Center.

Organization and Management Structure:

Effective Leadership: ERC leaders have intellectual vision, demonstrable leadership, successful entrepreneurial experience, a track record of delivering results, and the ability to communicate clearly and effectively with diverse audiences such as team members, sponsors, partners, host institutions, stakeholders, press and media, and the public. Below are some example practices desired for effective ERC leadership and management teams:

  • Empowers all team members to contribute;
  • Builds consensus around goals and problem definition;
  • Facilitates communication to ensure a common understanding among all stakeholders; and resolves conflicts and builds trust.

It is rare that a single individual will have all of these attributes; thus, a strong leader will need to assemble an executive team that covers this broad spectrum of skills. The Center Director should understand their strengths and limitations, should be effective in assembling an executive leadership team that fills in the gaps of their limitations, and should be supported by an effective Council of Deans (See Section II.C. for details of the formation of the Council of Deans).The Director does not need to be a faculty member.

Organization and Management: An effective management structure begins with a clear understanding of the goals of the ERC and how the structure (including the ERC four foundational components) will support those goals. The structure should have the flexibility to adapt as the needs of the ERC change, as key people transition into or out of the ERC, or change roles, and to handle other changes as the ERC matures.

It is critical to have one person or team that has clear responsibility for each foundational component of the ERC. However, each ERC participant and each of the core participants should also understand the importance of each foundational component and be engaged in their role in carrying it out. Core partner institutions must meet the eligibility requirements of at least 3 faculty and 3 students participating in the ERC; postdoctoral scholars may not be included as students. Proposing teams will determine the funding source(s) of student support and nature of participation, whether graduate or undergraduate. Typically, ERC’s have many more fully/partly funded graduate and undergraduate students engaged in the ERC, in addition to faculty or postdocs.

ERC program experience has shown that an important role in the ERC structure is that of an administrative director, as described below. This remains a mandatory piece of the management structure.

Administrative Director: An experienced staff member at the lead university who is responsible for operational management, financial management, data collection, publicity, and reporting, etc. for the ERC. Post-award NSF training is available for this position given the ERC reporting complexities.

Lead Institution: The lead institution effectively guides the multiple elements of the ERC. The ERC headquarters are located at the lead institution, and the lead institution is the NSF recipient and is ultimately responsible for the financial and reporting obligations of the ERC award.

Core Partners: To qualify as a core partner university, there must be a minimum of three faculty participating in the ERC along with a minimum of three students; postdoctoral scholars may not be included as students. Core partners are included in the Cost Sharing requirements and in the Council of Deans (See Section II.C. for details of the formation of the Council of Deans.)

Other potential partners may include universities contributing affiliated faculty, federal laboratories, private-sector or non-profit organizations, educational partners, and/or foreign collaborators' universities or institutions. While not considered core partners, the involvement of such partners can be valuable.

Industrial/Practitioner Member: An organization that satisfies all requirements for membership according to the Center's membership agreement which may include financial support (cash or in-kind).

ERCs should engage industrial/practitioner members from sectors such as the Federal Government, State government, local government, quasi-government research, industry, industry association, policy organization, regulatory agency, medical facility, private foundation, nonprofit, venture capitalists, community organizations, professional/trade union, and other stakeholders as appropriate for the center's mission.

Affiliated Faculty Member: The ERC may include affiliated faculty members, which are faculty members who are contributing to the ERC from institutions other than the lead or core partner universities and are included in the budget.

Institutional Commitment: The lead and all core partner institutions must augment support for the ERC through cost-sharing and other allowed means and sustain the ERC once NSF's support ceases. Lead, core, and other partner academic institutions must commit to:

  • Joining in partnership to support the ERC's vision, strategic plans, and activities in CR, EWD, DCI, IE and their integration across the institutions.
  • Assuring cross-university industrial membership and intellectual property (IP) policies that recognize shared rights for joint work.
  • Adopting institutional policies to reward faculty, particularly those in the promotion and tenure process, for participating in convergent research and innovation, technological advance, mentoring, university and pre-college education activity, and delivering on the ERC's plans for workforce development and creating an inclusive and diverse culture. NSF strongly encourages the full spectrum of diverse talent that society has to offer.
  • Official recognition for university students engaged in mentoring of other university students and in pre-college outreach. This recognition is crucial to acknowledge their efforts and motivate them to continue their valuable work

Community Feedback: Broad-based stakeholder feedback to the ERCs is one of the important mechanisms used by the ERC to provide continual monitoring of the Center's health.

Advisory Boards: Advisory boards are formed to reinforce and support the proper functioning of the ERC's foundational components which are CR, EWD, DCI, and IE, as described above. Careful consideration must be given to defining each advisory board's functional role and selecting quality board members capable of overseeing that role. An example of a generic ERC feedback loop structure is illustrated in Figure 2. As part of the NSF Management/Oversight, the NSF Program Director and the NSF Site Visit Team (SVT) typically interact with the ERC and give feedback to the ERC once a year at a minimum. The advisory boards provide feedback at least twice a year; usually more often on an as needed basis. It may occasionally be necessary to form additional special committees to support special needs of the Center's vision. The staffing of these committees may be either internal or external. The Council of Deans and Student Leadership Council, as defined below, are mandatory advisory groups; however, the ERC is expected to propose appropriate advisory groups beyond these two.

Generic Executive Leadership Team illustrating the advisory board feedback mechanism

Student Leadership Council (SLC): Undergraduate and graduate students from all partner universities responsible for coordinating their various activities in support of the ERC. A student president and a student co-president lead the SLC. The SLC will prepare a written Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis and present the SWOT findings during the annual visit of the NSF Site Visit Team (SVT).

Council of Deans: Led by the Dean of Engineering from the Lead university, this Council includes the Deans from the lead and each core partner institution. They meet collectively to provide administrative support of the ERC and to help facilitate multiple ERC elements across the lead and core partner universities. The Dean may not designate an alternate unless a PI, Co-PI, Director, or any senior personnel is also a Dean at the Institution. The two roles cannot be performed by the same person.

III. Award Information

Estimated program budget, number of awards, and average award size/duration are subject to the availability of funds. The maximum annual budget allowed is shown in the table below.

1

$3,500,000

2

$4,500,000

3

$6,000,000

4

$6,000,000

5

$6,000,000

Year 1 budget will be committed upon award, and subsequent year budgets are subject to satisfactory annual review of accomplishments and availability of funds. After a gradual ramp up, years three through five are projected to level off at $6,000,000 in each of those years. Pending performance and outcome of a renewal review in the fourth year, support for years six to eight will continue at $6,000,000 per year until the eighth year. Support for years nine and ten will be phased down, with $4,000,000 in year 9 and $2,600,000 in year 10. No-cost extensions (NCEs) will not be granted.

IV. Eligibility Information

Proposals may only be submitted by the following: Only U.S. Institutions of Higher Education (IHEs), also referred to in this solicitation as universities and academic institutions, accredited in, and having a campus located in the US, that grant engineering degrees at the undergraduate, masters, and doctoral engineering level may submit proposals as the lead university. The Lead university submits the proposal, and the award is made to the lead university. Support is provided to core partner universities and any affiliated faculty from other partner institutions through subawards. NSF welcomes proposal submissions that broaden geographic and demographic participation. Proposals from STEM-minority-serving institutions (STEM-MSI*), non-R1 schools, emerging research institutions, and IHEs in EPSCoR-eligible jurisdictions, as lead or core partners, as well as IHEs that primarily serve populations of students with disabilities or women in engineering interested in STEM, are encouraged. Invited full proposals must meet all the following organizational requirements or they will be returned without review: The Lead must be an Institution of Higher Education per the Carnegie Foundational Attribute: https://carnegieclassifications.acenet.edu/ A proposed ERC must be multi-institutional, with a lead university and additional domestic university core partners. There is no maximum number of partner institutions. To qualify as a core partner institution, there must be financial support for a minimum of three faculty participating in the ERC along with financial support for a minimum of three students (Postdoctoral scholars may not be included as students). The lead or at least one of the core partner universities must be a STEM-MSI* university. Commitments from lead and core partner universities for cost sharing must be in place. *For this solicitation STEM-MSI is defined by the Department of Education as institutions of higher education enrolling populations with significant percentages of undergraduate minority students, or that serve certain populations of minority students under various programs created by Congress. Eligibility may be determined by reference to the Integrated Postsecondary Education Data System (IPEDS) of the US Department of Education National Center for Education Statistics (https://nces.ed.gov/ipeds/).

V. Proposal Preparation And Submission Instructions

Letters of Intent (required) :

1. LETTER OF INTENT

A Letter of Intent (LOI) is required to facilitate the NSF review process. The LOI must be submitted via Research.gov no later than the LOI deadline date. Please note the following conditions:

  • LOIs must be submitted through Research.gov (not Grants.gov). A Minimum of one PI and up to four co-PIs are allowed.
  • A list of all anticipated Core Partner Universities is required.
  • The lead university cannot change after submission of the Letter of Intent.

Title: The title should begin with "NSF Engineering Research Center for ( insert the rest of the title and the Center's acronym )". The title should reflect the engineered system of the proposed ERC.

Lead PI and/or Center Director: The Lead PI's information is automatically included when the LOI is created. If the Lead PI and the Center Director are different individuals, please include the Center Director's name, university, department, phone number, and e-mail address at the beginning of the Synopsis section.

Anticipated ERC Non-Lead PIs (co-PIs): Identify up to four co-PIs. For the LOI, the participating team (Senior/Key Personnel) will be limited to the lead PI and up to four co-PIs who may come from any or all the domestic core partner universities.

Anticipated Core Partner Universities: The Lead university (not PI) is binding throughout the process. Other partners may change. The anticipated core partner universities should be included in the Manage Participating Organizations section of the LOI.

Synopsis (not to exceed one page): Upload brief statements of the vision and goals of the ERC, its potential for societal impact, and an integrated plan for the Center. Include an overview of the research program, such as research thrust titles, goals, and fundamental gaps or barriers in knowledge/technology that it meets. Although the EWD, DCI, and the IE are also critical foundational components of an ERC, they do not need to be described in detail in the LOI.

Other Comments (an additional max 2,500 characters including any blank spaces): Continue Synopsis as needed in this section.

Keywords: In order of decreasing emphasis, list up to ten keywords that represent the scientific interdisciplinary content in the proposal.

Letter of Intent Preparation Instructions :

When submitting a Letter of Intent through Research.gov in response to this Program Solicitation please note the conditions outlined below:

Submission by an Authorized Organizational Representative (AOR) is not required when submitting Letters of Intent.

A Minimum of 0 and Maximum of 4 Other Senior Project Personnel are permitted

A Minimum of 0 and Maximum of 6 Other Participating Organizations are permitted

  • Keywords is required when submitting Letters of Intent
  • Submission of multiple Letters of Intent is permitted

Preliminary Proposals (required) : Preliminary proposals are required and must be submitted via Research.gov, even if full proposals will be submitted via Grants.gov.

2. PRELIMINARY PROPOSAL

Submission of a Preliminary Proposal is required to be eligible for an invitation to submit a Full Proposal.

Preliminary Proposal Preparation Instructions:

Preliminary proposals must explicitly address the following questions in the project description:

  • What are the compelling new ideas and what is the potential for high societal impact?
  • What is the ERC engineered system? Is it high-risk but high payoff? Is the 3-plane chart well-conceived and justified?
  • Why is an ERC necessary to tackle the idea?
  • What is the proposed management structure for the ERC? How will the ERC's organization and management structure integrate and implement the four foundational components (CR, EWD, DCI, and IE) and foster the desired team formation?
  • What are the proposed strategies for engaging and developing the appropriate stakeholder community?
  • Does the proposed ERC create an inclusive environment where all the ERC participants learn to work in a team towards a common goal?

Preliminary Proposal Set-Up: Select "Prepare New Preliminary Proposal" in Research.gov. Search for and select this solicitation title in Step One of the Preliminary Proposal wizard. The information in Step 2 is pre-populated by the system. In Step 3 select "Single proposal (with or without subawards). Separately submitted collaborative preliminary proposals will be returned without review.

Title: The title should begin with "NSF Engineering Research Center for ( insert the rest of the title and the Center's acronym )". The rest of the title and acronym can change from the LOI to the submitted preliminary proposal as long as it is in the same topic area. The title should reflect the system focus of the proposed ERC.

The required components of the preliminary proposal are given below. Page limitations given here will be strictly enforced. Proposers should review the most current PAPPG for specific information and format for the required sections. No other sections are required or may be included in the preliminary proposal.

Cover Sheet: Select the proposed start date and proposed duration.

Project Summary (1 page): The Project Summary must have three separate section headers entitled "Overview", "Intellectual Merit", and "Broader Impacts"; each heading must be on its own line with no other text on that line. Within the Overview section, include a separate sub-section entitled "Proposed Vision". The summary should be informative to those working in the same or related fields and understandable to a scientifically or technically literate reader.

Project Description: Maximum 10 pages, total, containing the following sections, not necessarily in this order. All figures and tables must be included within the 10-page limit.

The proposing team (Participant Table) should be submitted as a supplementary document.

The Intellectual Merit and Broader Impacts of the ERC must be addressed and described throughout the narrative as an integral part of the Project Description. Between Sections IV and V, include a separate header for Broader Impacts, as specified below. In addition, Results from Prior Support is not a required section for the preliminary proposal.

Outline for the Preliminary Proposal Project Description (up to 10 pages)

II. Strategic Plan

III. Organization and Management Structure

IV. Convergent Research

BROADER IMPACTS ( Please note: The Project Description must include a separate section header labeled Broader Impacts and the heading must be on its own line with no other text on that line. )

V. Engineering Workforce Development

VI. Diversity and Culture of Inclusion

VII. Innovation Ecosystem

I. Vision: The proposed vision for the ERC must be explained, with a discussion of the convergent engineering research theme and the anticipated societal impact. Explain the proposed transformative engineered system and the potential for impact on society, the engineering community and the greater scientific community.

II. Strategic Plan: The plan must define the engineered system and describe how the features of the ERC will be integrated to achieve the vision, in particular the cohesive plan for involving participants at all levels in the four foundational components:

  • Convergent Research (CR)
  • Engineering Workforce Development (EWD)
  • Diversity and Culture of Inclusion (DCI)
  • Innovation Ecosystem (IE)

III. Organization and Management Structure: Describe the proposed management, including the functions of key personnel and the role of any advisory committee (including the required Student Leadership Council and the Council of Deans), executive committee, program committee, or their equivalent. Note that there is no recommendation for how ERCs should be managed. This solicitation provides for flexibility on organization structure and management and is part of the review criteria – as such the proposal should clearly justify the proposed structure.

IV. Convergent Research (CR): The role of convergence and team formation in the proposed research must be described. Research activities must address any gaps and barriers to achieve the proposed vision. Research must advance fundamental knowledge and support the development of technology that is proven through proof-of-concept testbeds as part of a well-defined engineered system. Integration of research activities must be graphically depicted on a clearly legible version of the ERC Program's 3-Plane Strategic Planning Chart ( http://erc-assoc.org/content/three-plane-diagram ) that is tailored to the proposed ERC. The chart should be at least half a page, but a full page is recommended for legibility, as this chart is used at several stages of the NSF review process. This section should clearly state what new knowledge is expected that would advance the state of the art in key research areas.

V. Engineering Workforce Development (EWD): A proposed evidence-based program for human capacity development for the future engineering and technical workforce must be described. The program goals and expected outcomes must be described. Proposed activities should logically lead to targeted outcomes and support diverse pathways and experiences for participants. Existing programs and partnerships may be leveraged to support the ERC EWD program and provide opportunities to engage with potential participants.

VI. Diversity and Culture of Inclusion (DCI): Preliminary ideas to create and nurture a culture of inclusion to foster the engagement of all ERC participants. This section should include evidence-based and intentional programming approach.

VII. Innovation Ecosystem (IE): An innovation ecosystem development effort must be proposed. However, DO NOT list potential or committed industrial or other supporters.

In addition, the preliminary proposal must also include these documents and information.

References Cited (required): See PAPPG for format guidelines.

Senior/Key Personnel Documents: The Lead PI, Center Director (if different from the Lead PI) and up to four co-PIs) must be designated as Senior/Key Personnel and must provide the following documents in accordance with the guidance contained in PAPPG Chapter II.D.2.h.

  • Biographical Sketches
  • Collaborators & Other Affiliations (COA)Information

Supplementary Documents:

A letter of commitment from the Dean of Engineering of the lead institution must be submitted which describes the support for and commitment to the ERC (including space for the ERC headquarters) should it be funded. While the Lead PI does not need to be from the School of Engineering, this letter must be from the Dean of Engineering to demonstrate the Engineering Dean's support for the proposed impact of the ERC on the engineering community.

The Dean should NOT include any financial commitments. Instead, the Dean should make a statement as to how the proposed ERC will align with the strategic directions of the college or the university. Proposals submitted without a letter of commitment from the Dean of Engineering will be returned without review. No letters of collaboration are allowed.

Participant Table (one page maximum): Provide a participant table that includes all committed ERC personnel: (1) Name of the Lead PI (and ERC Director, if different from the Lead PI) and Non-Lead PIs, (2) Institution(s), (3) Department(s), and (4) Most Relevant Field(s) of Expertise. In addition, please list all committed senior/key personnel. Do not identify members of advisory boards. The team table should include only those personnel who would receive NSF funds. This table is used by NSF in the merit review process to manage reviewer selection.

Single Copy Documents:

Collaborators & Other Affiliations Information: Information regarding collaborators and other affiliations (COA) must be separately provided for all members of the ERC Leadership Team and key faculty who are not designated as Senior/Key Personnel. Proposers must follow the guidance contained in PAPPG Chapter II.D.2.h. and include the COA information in the Additional Single Copy Documents section of the preliminary proposal. The accuracy of this section is very important to the integrity of the ERC review process. Please be accurate, up to date, and complete with the entries, including professional email addresses.

Institutional Affiliations: Beyond the affiliations captured on the COA form for individual ERC participants, the ERC Lead University must report any institutional affiliations arising from partnerships including any government agencies, international partners, industry partners or other non-academic institutional partners. The institutional affiliation information must be entered into the ERC Preliminary Proposal Institutional Conflict template (See bullet #2 on http://erc-assoc.org/content/templates-proposal-preparation-0 ) and uploaded into the Additional Single Copy Documents section.

DO NOT SUBMIT other documents, including letters of commitment or collaboration from the domestic partner universities, prospective industrial members, or other future partners. The only allowed item is the required letter of commitment from the Dean of Engineering at the Lead Institution.

RELIMINARY PROPOSAL REQUIREMENTS

(Note: This is NOT a total list of the ERC preliminary proposal requirements. Refer to the ERC Solicitation and the PAPPG for complete requirements).

Full Proposal Preparation Instructions : Proposers may opt to submit proposals in response to this Program Solicitation via Research.gov or Grants.gov.

  • Full Proposals submitted via Research.gov: Proposals submitted in response to this program solicitation should be prepared and submitted in accordance with the general guidelines contained in the NSF Proposal and Award Policies and Procedures Guide (PAPPG). The complete text of the PAPPG is available electronically on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg . Paper copies of the PAPPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-8134 or by e-mail from [email protected] . The Prepare New Proposal setup will prompt you for the program solicitation number.
  • Full proposals submitted via Grants.gov: Proposals submitted in response to this program solicitation via Grants.gov should be prepared and submitted in accordance with the NSF Grants.gov Application Guide: A Guide for the Preparation and Submission of NSF Applications via Grants.gov . The complete text of the NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: ( https://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide ). To obtain copies of the Application Guide and Application Forms Package, click on the Apply tab on the Grants.gov site, then click on the Apply Step 1: Download a Grant Application Package and Application Instructions link and enter the funding opportunity number, (the program solicitation number without the NSF prefix) and press the Download Package button. Paper copies of the Grants.gov Application Guide also may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-8134 or by e-mail from [email protected] .

See PAPPG Chapter II.D.2 for guidance on the required sections of a full research proposal submitted to NSF. Please note that the proposal preparation instructions provided in this program solicitation may deviate from the PAPPG instructions.

3. FULL PROPOSAL

Full Proposal Preparation Instructions :

As a multi-university ERC, the proposal must be submitted as a single integrated proposal by the Lead university, with proposed subawards to the other partner institutions. Separately submitted collaborative proposals from each partner will not be accepted.

Select "Prepare New Full Proposal" in Research.gov. Search for and select this solicitation title in Step One of the Full Proposal wizard. Select "Center" as the proposal type. In the proposal details section, select "Single proposal (with or without subawards)." Separately submitted collaborative proposals will be returned without review.

Title: Research.gov will pre-pend the title with "Center." The remainder of the title should begin with "NSF Engineering Research Center for ( insert the rest of the title and the Center's acronym )". The title should reflect the engineering system of the proposed ERC.

Cover Sheet: For planning purposes, September 1, 2026 should be shown as the requested start date. The award duration should be 60 months.

Project Summary (1 page): The Project Summary must have three separate section headers entitled "Overview", "Intellectual Merit", and "Broader Impacts"; each heading must be on its own line with no other text on that line. Within the Overview section, include a separate sub-section entitled "Proposed Vision".

The summary should be informative to those working in the same or related fields and understandable to a scientifically or technically literate reader. Full proposals that do not contain the Project Summary as described above will be returned without review.

Project Description: Maximum 26 pages, total, containing the following sections, not necessarily in this order. Figures and tables must be included within the 26-page limit.

Intellectual Merit and Broader Impacts: The intellectual merit and broader impacts of the ERC must be addressed and described throughout the narrative as an integral part of the Project Description. Between Sections IV and V, include a separate header for Broader Impacts, as specified below.

Outline for the Full Proposal Project Description (up to 26 pages)

BROADER IMPACTS ( Please note: The Project Description must include a separate section header labeled Broader Impacts and the heading must be on its own line with no other text on that line .)

VIII. Evaluation Plan

IX. Financial Support and Functional Allocation of Resources

X. Results from Prior NSF Support

The proposed vision for the ERC must be explained, with a discussion of the convergent engineering research theme and the anticipated societal impact. Explain the proposed transformative engineered system and the potential for impact on society, the engineering community and the greater scientific community.

Rationale: Make the case for why the proposed ERC is appropriate and why a convergent approach is needed for the targeted societal impact. Articulate why this vision cannot be realized with a series of individual investigators awards, the additional value of the proposed ERC compared with the sum of its parts.

The plan must clearly define the engineered system and describe how the features of the ERC will be integrated to achieve the vision, in particular the cohesive plan for involving participants at all levels in the four foundational components:

The Strategic Plan should include the high-level goals within each of these foundational components that will be described in more detail in later sections and the interrelationships among those goals, as well as the strategic role of partner institutions in integrating the foundation components and achieving these goals. The plan should also include the high-level expected progress of the ERC efforts across the 10-years of support in these four fundamental components, including ERC growth. The plan should further include discussions on the overarching convergent approach, the engagement of the stakeholder community, and the plans for convergent team formation. The ERC Strategic Plan should provide a roadmap with major milestones and describe how the ERC will know when it has been successful in meeting its goals. Finally, the ERC Strategic Plan should also articulate the logical reasoning that connects the proposed activities to the identified goals as well as the connections between the goals and the desired impacts expressed in the ERC Vision. The overall strategy must have the flexibility and the agility to evolve over time. An ERC needs to continually refine its vision based on a reliable feedback mechanism to focus on core advances, prune less compelling ERC elements, and refine as necessary the level of detail of its strategic plan over time.

Leadership Team: To properly address the four foundational components of the ERC, among the ERC Leadership Team, there must be identified individuals with: (a) deep expertise in the fundamental science/engineering areas envisioned by the ERC; (b) strategic leadership in innovation including intellectual property; (c) expertise in engineering workforce development and (d) experience in diversity and inclusion. Provide a chart summarizing the composition and expertise of the leadership team. Justify how each of the disciplines in this spectrum is needed for the convergent approach.

Management Plan: Proposals must include a management plan that describes the administration of the Center, including the functions of the leadership team, key personnel, and the role of any advisory committees, including the required Student Leadership Council and the Council of Deans, executive committee(s), and/or program committees or their equivalent. While the details of the structure are left to the proposers, the management structure should be designed to facilitate and integrate the ERC's critical and foundational components (CR, EWD, DCI, and IE). In addition, the proposed management plan should address the roles, authorities, and accountability for the leadership team that will ensure no bottlenecks in decision making.

Specifically, the successful proposal will delineate:

  • The overall management and reporting structure of the ERC.
  • Which personnel or groups will be responsible for CR, EWD, DCI, and IE. Please explain the relevant experience and expertise of these individuals and how they fit their assigned roles.
  • These individuals should be included in the leadership team.
  • An organizational chart, including advisory boards and the reporting/feedback loops involved.

The accompanying narrative for the organization chart should define the functional roles and responsibilities of each leadership position, and how these positions support the integrated strategic plan described earlier. It should also define the functional purpose of any additional advisory bodies that are deemed necessary to support the four foundational components, accomplish the proposed ERC vision, and achieve the desired long-term societal impact. Note that the functional roles of the two mandated ERC Advisory Bodies, the Council of Deans and the Student Leadership Council, are defined earlier in the section on Community Feedback. Since the quality of team member interaction is critical to team effectiveness, describe the managerial processes overlaying the organization chart that will be used to integrate the team. Please provide sufficient detail to allow critical evaluation.

Institutional Configuration: Describe the institutional configuration given the proposed vision for the ERC. Discuss the value added by each core partner university in meeting the goals of the four foundational components. Discuss the value added by any partnerships as described in the Key Elements of an ERC – Partners section.

IV. Convergent Research (CR)

ERCs are expected to have center-scale convergent engineering research that will support the ERC's overall potential for societal impact. The research program is the core of the ERC from which all ERC activities evolve.

Research Strategy: Clearly describe the proposed engineered system (a combination of components and elements that work together to perform a useful function) for the ERC. This section must include detailed research strategies, such as the 3-plane diagram (described below), research thrusts, and testbeds. A 10-year roadmap must illustrate the critical path, milestones, contributions from research projects, interdependence of research activities, short- and long-term deliverables, and overarching objectives in knowledge, technology, and proof of principle testbeds included in the ERC's vision. Impacts of the proposed research and technology outcomes on society, stakeholders, and the scientific and engineering communities must be included. Discuss how the research strategy will support the proposed societal impact of the ERC, including any potential negative consequences that would arise from the development of new technologies. Include risk mitigation strategies if appropriate. This section should also include strategies for building and maintaining teams appropriate for the proposed convergent approach and the process for starting, managing, and potentially ending research projects throughout the lifetime of the ERC. This section should clearly state what fundamental knowledge is expected within each thrust to advance the state of the art, including engineering as a whole discipline.

ERC 3-Plane Strategic Planning Chart: Identify and characterize interdependent research thrusts and activities at fundamental knowledge, enabling technology, and systems-level testbed(s) scales. Integration of research activities must be graphically depicted on a clearly legible version of the ERC Program's 3-Plane Strategic Planning Chart ( https://erc-assoc.org/content/strategic-planning-research-3-plane-chart ) that is tailored to the proposed ERC. The chart should be at least half a page, but a full page is recommended for legibility, as this chart is used at several stages of the NSF review process.

Research Thrusts: Each thrust description should start with a table that lists the thrust leader and other faculty/research participants by name, department, and institution. International partners, if any, who may be involved in the early stages of the thrust efforts must also be listed. Discuss the goals and objectives of the thrust vis-à-vis the goals of the ERC and the convergent research strategic plan and how these thrusts will support each other. Provide information on fundamental knowledge and technology deliverables. Identify the gaps and barriers the thrust will address in the context of the ERC's strategic plan. Discuss the convergent cross-disciplinary mix of expertise needed to achieve the goals of the thrust, as well as how the proposed team fulfills that need. Describe how future team building will support the convergent approach. Benchmark the research proposed for the thrust with respect to the state-of-the-art. Discuss the role of the thrust's research relative to the ERC's 3- Plane Strategic Planning Chart.

Project-level descriptions of specific research activities for each thrust must describe the proposed research and link it to the thrust goals. Describe a few exemplar projects in depth to allow judgment of the quality of the effort proposed, rather than superficially describing all projects. For these projects, provide examples of fundamental barriers the research will address, the need for a convergent approach, and project-level methods to address the barriers.

Demonstrate that the desired results constitute breakthroughs and are attainable in ten years. Discuss how projects support and integrate with other thrusts, enabling technologies, and systems-level testbeds in an overall convergent research approach.

Testbeds: Enabling- and systems-level testbeds must include a description of proposed proof-of-concept demonstration(s) in each testbed and personnel needed to construct and implement each proposed testbed. The research program budget should support technical staff to work with students and faculty to build these testbeds.

Note: NSF funds may not be used to support clinical trials. If the research involves vertebrate animals or includes human subjects, PAPPG requirements must be followed for the full proposal.

V. Engineering Workforce Development (EWD)

The ERC EWD program is driven by the future education, workforce development, and labor market needs relevant to the proposed Center. A proposed evidence-based program for building human capacity for the future engineering and technical workforce must be described. The proposed program should provide strategic goals for the ERC as well as targeted and specific outcomes related to workforce development and education.

Workforce Development occurs at all levels of the Center and provides opportunities for all ERC members including students, faculty, and external partners as appropriate. Proposed activities should logically lead to targeted outcomes and support diverse pathways and experiences for participants. Engineering workforce activities should contribute to a diverse, globally competitive, and team-oriented engineering workforce that has experience in convergent research, technology advancement, industrial practice, and innovation. Rather than a comprehensive set of training opportunities (general public, faculty, professional, vocational, graduate students, undergraduate students, and K-12), EWD programs should include a strategic selection of targeted activities that logically connect to each other and that will enable the long-term vision of the Center ERCs should leverage team and institutional expertise and resources to maximize impact with targeted activities.

At least 6 non-ERC students must enroll in a Research Experiences for Undergraduates (REU) program budgeted at a minimum of $80K per year from the ERC base budget, as well as at least 6 participants must be engaged in a Research Experiences for Teachers (RET) program budgeted at a minimum of $60K per year from the ERC base budget. Awarded ERCs are encouraged to submit proposals to the annual Research Experiences for Undergraduates (REU) Site and Research Experiences for Teachers (RET) Site competitions to expand the Center's workforce development impact. Partnerships with inner city, rural, or other high needs schools are especially encouraged, as is participation of the full spectrum of diverse talent in STEM. Suitable metrics to assess progress towards meeting the ERC's goals should be described, and feedback loops should be in place for continuous program improvement.

Describe how the leadership team will effectively support workforce development and educational programming and their growth. This section should also clearly describe how the proposed workforce development program will interact with existing educational or training systems at all partner institutions. Include a description of plans for engaging with partners, recruiting participants, and anticipated participant experiences. Educational partnerships may be leveraged to support the program and provide opportunities to engage with potential participants. All Engineering Workforce Development program participants, whether internal or external to the ERC, should have opportunities that are unique and would otherwise not be possible without the ERC.

VI. Diversity and Culture of Inclusion (DCI)

Describe the vision and plans for nurturing a culture that ensures participation of the full spectrum of diverse talent in STEM. A culture of inclusion has many important aspects that are essential for deep collaboration, including the participation of members from diverse scientific backgrounds and training which is necessary for true convergent research and innovation. A culture of inclusion must also foster participation of a diversity of partner institutions, including industry and practitioners, that will bring different perspectives to bear on the goals of the ERC. At least one core partner institution that enrolls and graduates a high percentage of underrepresented students in engineering and STEM fields must be included.

Describe preliminary ideas to create and nurture a culture that fosters the engagement of all ERC participants, including those from a diverse range of scientific backgrounds. This section should include evidence-based and intentional programming to support the inclusion of all talent that integrates and strengthen convergent research efforts across all institutions. Suitable metrics to assess the ERC's goals should be described, and feedback loops should be in place for independent assessment and continuous improvement in all dimensions of ERC operation.

In this section, describe how the leadership team will effectively create an inclusive culture for the ERC in which all members feel valued and welcomed, creatively contribute, and gain mutual benefit from participating. Include a description of plans for recruiting, mentoring, and retaining undergraduates, graduate students, and members of the research and leadership team from full spectrum of diverse talent in engineering. Describe the role of all partners, including plans to connect with ERC’s research and innovation goals in meaningful way, benefiting the students and faculty in the Center.

The ERC program is committed to including the participation of the full spectrum of diverse talent in STEM.

VII. Innovation Ecosystem (IE)

At its core, the innovation ecosystem is a network formed among trusted partners working together towards the common goal of creating and enhancing the capacity for innovation within the ecosystem.

In this section, discuss how the ERC will foster the creation of societal value from innovations (e.g., inventions, goods, services, businesses) that benefit society in a sustainable fashion (i.e., value creation). Identify the innovation ecosystem stakeholders relevant to realizing the proposed vision and societal impact.

Describe the strategy to form relationships with stakeholders to garner support for the Center's vision. Specifically, include the ERC's plans for developing and fostering industrial/practitioner memberships and involvement; technology transfer to member and non-member firms; if included, the role of university and state and local government as facilitators of entrepreneurship, civics, economic/workforce development and innovation; or regulatory agencies as influencers of the ERC innovation , end users or customers as beneficiaries of the ERC innovation, and plans for supporting translational research when appropriate.

To maximize positive social impact, any anticipated potential negative consequences caused by the introduction of the ERC technology should be addressed. In these cases, make sure to include stakeholder(s) that will work to mitigate the negative impacts, such as through consideration of regulation and ethics.

Provide a description of how the proposed member firms (e.g., innovation partners, facilitators, influencers, and beneficiaries) align to the proposed ERC's technology area. That is, as the ERC's research program evolves, note at which points in time in the ERC development over its 10-year lifespan different types of stakeholders engage with the ERC to enable success and create societal value. Some stakeholders may be engaged for the entire 10 years, and others may be involved with focused research activities at critical points in time (e.g., testbed development).

Discuss the integration of all stakeholders into the governance and operations of the ERC. Include a letter of collaboration ( please make sure to use the template provided in the PAPPG ) from each stakeholder that identifies their commitment to work with the ERC as described in the project description. The letters should be uploaded in the Supplementary Documents section.

Legal Frameworks: The different stakeholder groups/organizations/partners operate under very different legal frameworks that can make seamless collaboration difficult. Consequently, the ERC must work within the university structure to create an environment where the frameworks can be modified so that the different entities can come together for productive interaction. In advance of anyone joining the ERC, it is important to put in place legal agreements that protect the interests of the stakeholder entities and the university partners. Therefore, at a minimum, all ERCs require two legal frameworks to handle (1) intellectual property and (2) industry/practitioner membership agreements. The specifics of the ERC vision and the nature of the stakeholder community will determine whether additional legal frameworks are necessary.

  • Intellectual Property: Describe the overall Intellectual Property (IP) strategy consistent with planned value creation in the ERC, and the corresponding management of the ERC IP across the lead and partner institutions and the approaches that will enable licensing of ERC's IP and/or adopting of other ERC outcomes. This plan must discuss management of possible conflicts-of-interest of any ERC researchers and the ERC's technology transfer endeavors. If an award is made, the IP policy must be prepared and submitted within 90 days of the award.
  • Industry/Practitioner Membership Agreement: Discuss the terms of the draft membership agreement including the proposed fee structure and benefits. Describe the type(s) of support to be received. A letter of commitment (one page maximum for each) from each firm/practitioner organization committed to joining the ERC as a member and providing (cash and/or in-kind) support in the event that an award is made must be uploaded in Supplementary Documents.

Based on the goals and desired outcomes of the ERC strategic plan, a proposed evaluation plan is required that includes all four foundational components as well as a risk analysis . The purpose of ERC evaluation is to provide feedback on progress towards meeting Center goals. The evaluation plan should include formative aspects that allow the Center to make evidence-based decisions about changes in its activities and summative aspects to provide evidence of impact across all elements of the ERC. This section should include the evaluation questions, as well as, a description of the type of evaluation design and methods that will be used to address each question. This section should specify the mechanisms and timeline for how the results and recommendations from evaluation and assessment will be fed back into ERC goals, objectives, and milestones to ensure continual progress and attainment of goals, targets, and impacts during the project period. It should also identify the person(s) who will lead the ERC evaluation and briefly describe their academic training and professional experience that qualifies them to serve as an evaluator. Evaluator(s) may be internal or external to ERC institutions but should be positioned to carry out the evaluation plan as objectively as possible.

Awardees may be required to participate in program-level evaluation activities by which NSF can assess implementation processes and progress toward program level outcomes. NSF, an NSF contractor, or a grantee on behalf of NSF, may periodically conduct program evaluations or special projects that necessitate access to project level staff and data. This activity may occur at any time during the award period and could occur after NSF support has ended. ERC participation includes responding to inquiries, interview and other methods of common data collection and/or aggregation across ERCs. In addition, PIs and ERC evaluators may be asked to assist in developing program evaluation activities that will mutually benefit the agency and ERC participants.

Discuss the plans for financial and in-kind support from all sources, except cost sharing. Include plans for allocation of those resources to fulfill the goals of the ERC. Include a functional budget table, showing only the estimated proportional distribution of effort across the ERC in its first 5 years without showing the support levels from any sources. The table must not show the sources of support, since the reviewers cannot have access to the level of academic support. A template of the table can be found on bullet #3: http://erc-assoc.org/content/templates-proposal-preparation-0 .

This section of the proposal must also include a pie chart showing the allocation of resources and committed levels of support for the first five years from industrial or practitioner member firms and any additional non-member commitments from state and/or local governments for cash and/or in-kind support. A template of the table for Pie Chart Showing Allocation of Resources and Committed Levels of Support can be found on bullet #4: http://erc-assoc.org/content/templates-proposal-preparation-0 .

Provide a pie chart showing the planned distribution of the requested NSF funds for year one between the lead, each domestic partner university, and each university contributing affiliated faculty.

If the Director and Lead PI (if different) identified on the proposal have received prior NSF support, including any award with an end date in the past five years or current funding including any no-cost extensions, the intellectual merit and broader impacts accomplished under that award should be discussed. In cases where the Director and Lead PI have received more than one award (excluding amendments to existing awards), they should only report on the award that is most closely related to the proposal (for each, if the Director and Lead PI are different people) . See PAPPG II.D.2.iii for the required format of this section. Recommended length – no more than one page.

In addition, the proposal must also include these documents and information.

References Cited: See PAPPG for format guidelines.

Budgetary Information: Travel Funds for ERC Leadership Team's Participation in Biennial Meetings: Members of the ERC Leadership Team are required to participate in the ERC Biennial Meeting (typically held in odd years) and the cross- ERC Leadership Team retreats (which are typically held annually). The purpose of biennial meeting is to share successes and failures across the ERCs, receive updates on the ERC Program, and provide input for future ERC Program improvements. The purpose of the retreats is to focus on issues and best practices specific to the different leadership team groups. The biennial meetings are held in the Washington DC area for 2.5 days. Retreats are held in various locations for 1-2 days. Travel funds must be included in each annual budget to support participation in alternating biennial and leadership retreats for each person identified.

Note: The budget justification section should only identify items that are not cost shared. A justification and explanation of cost shared items needs to be appended to the cost sharing tables that are submitted in the single-copy documents section of the proposal.

Cost sharing is mandatory and is specific to the ERC solicitation . The percentage of cost share is determined using the Cost Sharing Formula in the Budgetary Information section of this solicitation. Lead and core partner institutions are responsible for cost share on their entire portion of NSF funds, including sub-awards from their institutions to affiliate partners or other payees. Please see the Budgetary Information section of this solicitation for additional information.

Facilities, Equipment and Other Resources . In this section, please include ONLY facilities, equipment, and personnel that are directly relevant and unique to the proposed ERC. Briefly discuss such laboratories, facilities, cyberinfrastructure, personnel, and equipment, particularly those shared by the ERC team members. Distinguish existing facilities and equipment from any that will be acquired by the ERC (see PAPPG Chapter II.C.2.i). Space must be identified on the campus of the lead academic institution for the ERC headquarters. Describe the headquarters, including the size, functionality, and features. Discuss how the cyberinfrastructure, facilities, and equipment of the ERC will be used to form and sustain a collaborative ERC team with shared resources and information.

Letters of commitment should be included in the supplementary documents for facilities, equipment, etc. that are being provided by institutions or collaborators which are not from the lead institution or the core partners.

Senior/Key Personnel Documents

In accordance with the guidance in the PAPPG, the following information must be provided for all individuals designated as Senior/Key Personnel. This includes the Lead PI, Center Director if different from the Lead PI, co-PIs, all members of the ERC Leadership Team and key faculty.

  • Biographical Sketch
  • Current and Pending (Other) Support
  • Collaborators & Other Affiliations Information
  • Synergistic Activities

Supplementary Documents . In addition to the requirements contained in the PAPPG, the following items must be provided as supplementary documents.

Table of Academic/Other Participants and Industrial/Practitioner Members: The table should be created using the table format available on the ERC Association website on bullet #5 at: http://erc-assoc.org/content/templates-proposal-preparation-0 . Download and use the Word file named " ERC Participants Table Template for Inclusion in Full Proposal. " Provide all the required information in each section of the table.

Letters of Commitment : These letters should express commitment, but should not praise or advocate for the project, and must follow the format for letters of collaboration given in the PAPPG. Submit the following required letters as indicated:

  • Lead university: Senior university administrators (Dean of Engineering plus one other higher-level university official) for the lead university attesting to the institutional commitment to the goals of the ERC and a commitment to headquarters space in both letters. The letters should not mention cost sharing, as that information cannot be revealed to reviewers. The letters should indicate the institutional commitment to all major aspects of the ERC, including each of the four foundational components, and assure the development of a cross-ERC IP policy within 90 days, if an award is made.
  • Each Core Partner University: A senior administrator (Dean or equivalent) attests to the partner's institutional commitment to the goals of the ERC.
  • If applicable, officials from any participating federal laboratories indicating their involvement in the ERC and their commitment to provide support for their staff participating in the ERC.
  • Member Organizations: A letter of commitment (one page maximum for each) from each firm/practitioner organization committed to joining the ERC as a member and providing (cash and/or in-kind) support.

Letters of Collaboration

The following Letters of Collaboration are required if applicable to the proposed ERC. These letters should state generic willingness to collaborate, but should not provide specific details on types or amounts of contributions and must follow the format for letters of collaboration given in the PAPPG:

  • Officials of firms and agencies able to commit to membership.
  • An administrator of each proposed pre-college or community college partners committing to their roles in the ERC as described in the Project Description.
  • State or local government agencies and other organizations committed to partnership with the ERC.
  • Domestic affiliated facult y if their projects are planned to be in place during years one through five. Note that no letters are required from the administrators of the universities providing affiliated faculty.
  • Foreign collaborators , if any.

All letters should be addressed to:

ERC Program

Division of Engineering Education and Centers

U.S. National Science Foundation

All signed letters must be scanned and uploaded in the Other Supplementary Documents section of the proposal. Please instruct the letter writers not to mail, email, or fax copies to the NSF, as they will not be considered.

Draft Membership Agreement . Submit draft industry/practitioner membership agreement.

Data Management and Sharing Plan . Provide a Data Management and Sharing Plan according to guidance in the PAPPG. Go to ENG Data Management Plans | NSF - National Science Foundation ( https://www.nsf.gov/eng/general/dmp.jsp ) for Engineering-specific guidance.

Mentoring Plan . If applicable, provide a mentoring plan for postdoctoral scholars or graduate students who will be supported by ERC funds.

Single Copy Documents . Viewable only by NSF (also refer to the PAPPG Chapter II.C.1 on "Single-Copy Documents" for additional information):

Optional List of Suggested Reviewers or Reviewers Not to Include: Proposers may include in the single copy documents section a list of suggested reviewers who they believe are especially well qualified to review the proposal. Proposers also may designate persons they would prefer not to review the ERC proposal, indicating why. These suggestions are optional. PAPPG Exhibit II-2 contains information on conflicts of interest that may be useful in the preparation of this list. The cognizant Program Officer handling the proposal considers the suggestions and may contact the proposer for further information. However, the decision whether to use the suggestions remains with the Program Officer.

Required Cost Sharing Tables and Justification: Complete and submit the following tables: " Committed Cash and In-Kind Academic Support, Years 1-5 " and, if applicable, a table showing the " Nature of In-Kind Support " identifying any in-kind commitments and the sources of the commitments. A template of those tables can be found at (bullet #6): http://erc-assoc.org/content/templates-proposal-preparation-0 . The tables should be uploaded into the single copy documents section of the full proposal. Appended to the cost sharing tables will be a justification/explanation of the source, nature, amount, and availability of any proposed cost sharing. The Proposers are directed not to include these tables and the cost sharing justification in any other part of the proposal, as cost sharing commitments are not provided to the reviewers. Refer to the section on Budgetary Information and Cost Sharing in this solicitation for information on cost sharing requirements and policies.

Proposal Update: If the proposed ERC is evaluated by a Site Visit Team (SVT), a 10-page reply that integrates changes in the proposed ERC based on comments from the SVT members and the Site Visit Report will be requested to facilitate the final stages of the review process.

INVITED FULL PROPOSAL REQUIREMENTS

(Note: This is NOT a total list of the ERC proposal requirements. Refer to the ERC Solicitation and the PAPPG for complete requirements).

Academic cost sharing (Lead and domestic core partner universities)

Yes, Single Copy Documents

Identification of funded faculty/staff members from the lead and university-level partner institutions

Project Description

Chart summarizing the leadership team

Project Description

Organizational Chart

Project Description

ERC 3-Plane Strategic Planning Chart

Project Description

Research Thrusts Participant Tables

Project Description

Functional Years 1-5 Budget Table

Project Description

Years 1-5 Committed Industrial and Other Non-NSF, Non-Academic Support table

Project Description

Years 1-5 Planned Distribution of NSF Funds

Project Description

Draft membership agreement

Supplementary Documents

Draft IP policy

Required following award

Lead Institution: Two letters of commitment, one from the Dean of Engineering and one from a higher-level administrator, describing committed institutional resources

Yes - (but no cost sharing identified in letters) Supplementary Documents

Core Partner Institutions: Letters of commitment from a senior administrator at the rank of Dean or equivalent from the partner institution, describing committed institutional resources

Yes - (but no cost sharing identified in letters)-Supplementary Documents

Federal Laboratories: Letters of commitment from administrators of federal laboratories contributing support for staff in the ERC, attesting to laboratory support for that staff time

Yes, if applicable -Supplementary Documents

Letters of commitment to membership from firms / agencies / hospitals committed to joining the ERC as members and providing cash and in-kind support to the ERC

Yes, if applicable -Supplementary Documents

Letters of collaboration from firms / agencies / hospitals committed to joining the ERC as members

Yes, if applicable -Supplementary Documents

Letters of collaboration from pre-college partner administrators (school district or individual schools), community college administrators, or other education and outreach partners

Yes, if applicable -Supplementary Documents

Letters of collaboration from state or local government agency or state governor providing non-member financial support to the ERC

Yes, if applicable -Supplementary Documents

Letters of collaboration from foreign collaborators

Yes, if applicable -Supplementary Documents

Table of "Committed Cash and In-Kind Academic Support, Years 1-5" and a table "Nature of In-Kind Support." Also, append to the tables a justification/explanation of any cost shared items

Single-Copy Documents

Yes, Supplementary Documents

Post Proposal Submission to NSF: Other Required Documents

Cost Sharing:

Cost Sharing is required.

Invited full proposals will include a budget for each of the five years. Research.gov or Grants.gov will automatically provide a cumulative budget. Provide separate budgets for subawards to the domestic core partner institutions and any affiliated institutions whose faculty and students would be supported by the ERC's budget. Allowable budgets for the first five years are as follows: The budget for year one may be no more than $3,500,000, no more than $4,500,000 for year two, no more than $6,000,000 for year three, no more than $6,000,000 for year four, and for year five.

Cost Sharing: Mandatory Cost Sharing is required but inclusion of voluntary committed cost sharing is prohibited.

Mandatory Cost Sharing Requirements and Policies: Cost sharing is required of the lead university and core partner university(ies) to support and sustain the ERC. Cost sharing is not a review criterion for the ERCs; it is an eligibility criterion. Because cost sharing is not a review criterion, details on cost sharing will not be shared with the reviewers.

Upon issuance of the award, the lead university is responsible to secure, retain, manage, and certify to NSF the ERC cost sharing (cash and in-kind), at the level stated in the cooperative agreement. The total level of cost sharing proposed must be calculated using the "Cost Sharing Formula" below.

Cost sharing must not exceed the mandatory level stated in the ERC cost sharing formula. This would be considered "voluntary committed cost sharing" which is specifically prohibited according to NSF's cost sharing policies. ERC proposals that include cost sharing amounts in excess of the specified formula will be returned without review or declined.

Instructions for Disclosure and Non-Disclosure of Cost Sharing within the Proposal:

Cost Sharing and Letters of Commitment: Since cost sharing is not to be seen or considered by reviewers, any letters of commitment should not mention any cost sharing (cash or in-kind), since the reviewers will see these letters. See Section V.A for details concerning the letters of commitment.

Cost Sharing in the Budget Submission: The proposed cost sharing (including the estimated value of any in-kind cost sharing), according to the formula below, must be shown on Line M of the NSF proposal budget form. (Line M is masked from reviewers.)

Cumulative cost sharing should be entered for all 5 years on Line M of the first-year budget. Do not include the cost sharing figures on Line M of the budget for years 2-5. Do not include the justification / explanation for any cost-shared items in the budget justification section of the proposal. Only the non-cost shared items should be explained in the budget justification section, identifying the source, nature, amount and availability of non-cost shared items.

Cost Sharing Tables and Justification: The cost sharing commitment of the ERC must be documented in the proposal and the details presented in the tables of committed support. The lead institution is instructed to provide a table of "Committed Cash and In-Kind Academic Support, Years 1-5" (including any partner university providing cash for years 1-5). Proposers must also complete the table "Nature of In-Kind Support" identifying in-kind commitments and the sources of the commitments. A template of those tables can be found at (bullet #6) http://erc-assoc.org/content/templates-proposal-preparation-0 . The tables should be uploaded into the "Single Copy Documents" section of the proposal. Append to the cost sharing tables a justification / explanation of the source, nature, amount and availability of any proposed cost sharing. Do not include these tables and the cost sharing justification in any other part of the proposal, as cost sharing commitments are not to be provided to reviewers.

Cost Sharing Formula:

ERC cost sharing requirements are determined based on classification at the time of the LOI submission deadline as defined in the "Carnegie Foundation's Classification of Institutions of Higher Education." Limited financial resources at smaller colleges and universities that lack high research activity may present significant challenges to cost sharing. Therefore:

  • RU/VH: Research Universities - required cost sharing level is 20% of the allocation of the NSF budget to the lead or core partner university;
  • RU/H: Research Universities - required cost sharing level is 15% of the allocation of the NSF budget to the lead or core partner university;
  • DRU: Doctoral/Research Universities - cost sharing level is 10% of the allocation of the NSF budget to that core partner university.
  • Master's L: Master's Colleges and Universities - cost sharing level is 10% of the allocation of the NSF budget to that core partner university/college;
  • Bac/Diverse: Baccalaureate Colleges--Diverse Fields - cost sharing level is 5% of the allocation of the NSF budget to that core partner college.

If the university is classified in more than one Carnegie category, it must cost share at the highest cost sharing category as described above. The Carnegie classification shall remain throughout the duration of the competition and any subsequent award. The total ERC cost share shall be 20% or less, depending upon the Carnegie classifications for each of the partners.

ERC Support Cost-Sharing Sources:

The proposed cost sharing must be shown on Line M on the proposal budget. For purposes of budget preparation, the cumulative cost sharing amount must be entered on Line M of the first year’s budget. Should an award be made, the organization’s cost sharing commitment, as specified on the first year’s approved budget, must be met prior to award expiration.

Such cost sharing will be an eligibility, rather than a review criterion. Proposers are advised not to exceed the mandatory cost sharing level or amount specified in the solicitation.

When mandatory cost sharing is included on Line M, and accepted by the Foundation, the commitment of funds becomes legally binding and is subject to audit. When applicable, the estimated value of any in-kind contributions also should be included on Line M. An explanation of the source, nature, amount and availability of any proposed cost sharing must be provided in the budget justification. Contributions may be made from any non-Federal source, including non-Federal grants or contracts, and may be cash or in-kind. 2 CFR § 200.306 describes criteria and procedures for the allowability of cash and in-kind contributions in satisfying cost sharing and matching requirements. It should be noted that contributions derived from other Federal funds or counted as cost sharing toward projects of another Federal agency must not be counted towards meeting the specific cost sharing requirements of the NSF award.

Failure to provide the level of cost sharing required by the NSF solicitation and reflected in the NSF award budget may result in termination of the NSF award, disallowance of award costs and/or refund of award funds to NSF by the awardee.

The overall ERC-level budget should be prepared to assure sufficient funding from all sources to achieve the goals of the ERC. Hence, this budget would include faculty and staff to support the research, education, diversity and culture of inclusion, industrial collaboration/innovation, and management of the ERC. Budgets should include resources for reporting, site visit costs, and travel for cross-ERC collaboration and NSF meetings. The budget submitted to NSF will include an allocation plan for the NSF funding only.

     May 09, 2025

D. Research.gov/Grants.gov Requirements

For Proposals Submitted Via Research.gov:

To prepare and submit a proposal via Research.gov, see detailed technical instructions available at: https://www.research.gov/research-portal/appmanager/base/desktop?_nfpb=true&_pageLabel=research_node_display&_nodePath=/researchGov/Service/Desktop/ProposalPreparationandSubmission.html . For Research.gov user support, call the Research.gov Help Desk at 1-800-381-1532 or e-mail [email protected] . The Research.gov Help Desk answers general technical questions related to the use of the Research.gov system. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this funding opportunity.

For Proposals Submitted Via Grants.gov:

Before using Grants.gov for the first time, each organization must register to create an institutional profile. Once registered, the applicant's organization can then apply for any federal grant on the Grants.gov website. Comprehensive information about using Grants.gov is available on the Grants.gov Applicant Resources webpage: https://www.grants.gov/applicants . In addition, the NSF Grants.gov Application Guide (see link in Section V.A) provides instructions regarding the technical preparation of proposals via Grants.gov. For Grants.gov user support, contact the Grants.gov Contact Center at 1-800-518-4726 or by email: [email protected] . The Grants.gov Contact Center answers general technical questions related to the use of Grants.gov. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this solicitation.

Submitting the Proposal: Once all documents have been completed, the Authorized Organizational Representative (AOR) must submit the application to Grants.gov and verify the desired funding opportunity and agency to which the application is submitted. The AOR must then sign and submit the application to Grants.gov. The completed application will be transferred to Research.gov for further processing.

The NSF Grants.gov Proposal Processing in Research.gov informational page provides submission guidance to applicants and links to helpful resources including the NSF Grants.gov Application Guide , Grants.gov Proposal Processing in Research.gov how-to guide , and Grants.gov Submitted Proposals Frequently Asked Questions . Grants.gov proposals must pass all NSF pre-check and post-check validations in order to be accepted by Research.gov at NSF.

When submitting via Grants.gov, NSF strongly recommends applicants initiate proposal submission at least five business days in advance of a deadline to allow adequate time to address NSF compliance errors and resubmissions by 5:00 p.m. submitting organization's local time on the deadline. Please note that some errors cannot be corrected in Grants.gov. Once a proposal passes pre-checks but fails any post-check, an applicant can only correct and submit the in-progress proposal in Research.gov.

Proposers that submitted via Research.gov may use Research.gov to verify the status of their submission to NSF. For proposers that submitted via Grants.gov, until an application has been received and validated by NSF, the Authorized Organizational Representative may check the status of an application on Grants.gov. After proposers have received an e-mail notification from NSF, Research.gov should be used to check the status of an application.

VI. NSF Proposal Processing And Review Procedures

Proposals received by NSF are assigned to the appropriate NSF program for acknowledgement and, if they meet NSF requirements, for review. All proposals are carefully reviewed by a scientist, engineer, or educator serving as an NSF Program Officer, and usually by three to ten other persons outside NSF either as ad hoc reviewers, panelists, or both, who are experts in the particular fields represented by the proposal. These reviewers are selected by Program Officers charged with oversight of the review process. Proposers are invited to suggest names of persons they believe are especially well qualified to review the proposal and/or persons they would prefer not review the proposal. These suggestions may serve as one source in the reviewer selection process at the Program Officer's discretion. Submission of such names, however, is optional. Care is taken to ensure that reviewers have no conflicts of interest with the proposal. In addition, Program Officers may obtain comments from site visits before recommending final action on proposals. Senior NSF staff further review recommendations for awards. A flowchart that depicts the entire NSF proposal and award process (and associated timeline) is included in PAPPG Exhibit III-1.

A comprehensive description of the Foundation's merit review process is available on the NSF website at: https://www.nsf.gov/bfa/dias/policy/merit_review/ .

Proposers should also be aware of core strategies that are essential to the fulfillment of NSF's mission, as articulated in Leading the World in Discovery and Innovation, STEM Talent Development and the Delivery of Benefits from Research - NSF Strategic Plan for Fiscal Years (FY) 2022 - 2026 . These strategies are integrated in the program planning and implementation process, of which proposal review is one part. NSF's mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

One of the strategic objectives in support of NSF's mission is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions. These institutions must recruit, train, and prepare a diverse STEM workforce to advance the frontiers of science and participate in the U.S. technology-based economy. NSF's contribution to the national innovation ecosystem is to provide cutting-edge research under the guidance of the Nation's most creative scientists and engineers. NSF also supports development of a strong science, technology, engineering, and mathematics (STEM) workforce by investing in building the knowledge that informs improvements in STEM teaching and learning.

NSF's mission calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions that are underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF's mission "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes." NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

  • All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
  • NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These "Broader Impacts" may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
  • Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated, level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (PAPPG Chapter II.C.2.d(i). contains additional information for use by proposers in development of the Project Description section of the proposal). Reviewers are strongly encouraged to review the criteria, including PAPPG Chapter II.C.2.d(i), prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

  • Intellectual Merit: The Intellectual Merit criterion encompasses the potential to advance knowledge; and
  • Broader Impacts: The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

  • Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
  • Benefit society or advance desired societal outcomes (Broader Impacts)?
  • To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
  • Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
  • How well qualified is the individual, team, or organization to conduct the proposed activities?
  • Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

Broader impacts may be accomplished through the research itself, through the activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific knowledge and activities that contribute to achievement of societally relevant outcomes. Such outcomes include, but are not limited to: full participation of women, persons with disabilities, and other underrepresented groups in science, technology, engineering, and mathematics (STEM); improved STEM education and educator development at any level; increased public scientific literacy and public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security; increased economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management Plan and the Postdoctoral Researcher Mentoring Plan, as appropriate.

Additional Solicitation Specific Review Criteria

PRELIMINARY Proposal Additional Review Criteria:

Reviewers should consider these high-level questions:

How well does the preliminary proposal narrative address the following in the project description?

  • What is the compelling new idea and what is the potential high societal impact?
  • What is the engineered system? Is it high-risk but high payoff?
  • Is the 3-plane chart well-conceived and justified?
  • How does the proposed Center's research benchmark against the state-of-the-art?
  • What is the proposed management structure for the ERC? How will the proposed organization and management structure integrate and implement the four foundational components (CR, EWD, DCI, and IE) and foster team-formation?
  • Does the proposed ERC create an inclusive environment where all the ERC participants learn to work on a team towards a common goal?

FULL Proposal Additional Review Criteria:

  • What is the engineered system?
  • Why is the proposed vision compelling?
  • Why is the proposed research competitive when benchmarked against the state-of-the-art?
  • How well does the proposed ERC justify the need for a center or institute-like approach?

High Societal Impact

  • What is the potential for high societal impact?
  • How realistic is the proposed plan for high societal impact?
  • If the proposed strategy is high-risk does the potential payoff from anticipated impacts justify the investment?

Convergence Research

  • Does the proposed research require a convergent approach and is its implementation well documented?
  • How well justified is the argument that convergence is necessary for the desired impact?
  • How well has the convergent approach been fully integrated into the proposal?
  • What is the likelihood the research will lead to significant fundamental advances, new discoveries, and technological developments?
  • How well does the proposed research use the testbeds to integrate and to advance proofs-of-concept to achieve the proposed vision?
  • Are there well-defined implementation milestones for convergence research?

Stakeholder Engagement

  • Are effective mechanisms to gather, engage, and implement feedback from appropriate stakeholders in place (i.e., collaborators, supporters, advisory boards, external committees)?

Team Formation

  • How does the team formation and the implementation of team science support the proposed convergent research?
  • How well has the ERC demonstrated strategies to overcome barriers for effective, dynamic teaming?

Strategic Plan

  • How well does the Center present an integrated strategic plan for the ERC to address the key elements of each foundational component and their integration?
  • How well does the proposal present an appropriate and compelling management structure and plan to carry out Center activities?

Management and Organization

  • How appropriate are the qualifications of proposed leadership and management team?
  • How well does the proposal present appropriate and compelling management structure and plan to carry out Center activities?
  • Are effective mechanisms to gather and implement feedback from appropriate stakeholders in place, including advisory boards and external committees?

Engineering Workforce Development

  • To what extent is the proposed program coherent and aligned with the overall goals and vision of the ERC?
  • Do the proposed Engineering Workforce Development plans include appropriate strategies for recruiting participants and engaging with partners?
  • Are the proposed Engineering Workforce Development plans evidence-based and likely to achieve the desired experiences, outcomes, and impact described?

Diversity and Culture of Inclusion

  • How well does the discussion include a clear strategy to support Diversity and Culture of Inclusion?
  • To what extent does the program propose evidence-based approaches for Diversity and Culture of Inclusion that are integrated with all dimensions of ERC operation?
  • How well does the management plan include clear accountability for Diversity and Culture of Inclusion aspects of the ERC across all partners?

Innovation Ecosystem

  • How well does the proposal describe a plan to build a network of trusted partners for innovation capacity?
  • How appropriate is the proposed structure and processes for value creation to move from ideation to implementation?

Evaluation Plan

  • How well has the Center developed a logic evaluation framework to guide the implementation of the strategic plan and evaluate Center performance?
  • How well does the evaluation plan include formative aspects that allow the Center to make evidence-based decisions about changes in its activities and summative aspects to provide evidence of impact across all elements of the Center?

Financial Support and Resources

  • Are the estimated budget allocations reasonable to achieve the proposed ERC vision?
  • Does the Center have adequate capital (i.e., facilities, equipment, cyberinfrastructure) and procedural (i.e., safety, environmental) resources?
  • Does the Center have a convincing plan for data sharing and management?

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by

Ad hoc Review and/or Panel Review, Site Visit Review, or Reverse Site Review.

For Additional Review Criteria (see above listing)

Reviewers will be asked to evaluate proposals using two National Science Board approved merit review criteria and, if applicable, additional program specific criteria. A summary rating and accompanying narrative will generally be completed and submitted by each reviewer and/or panel. The Program Officer assigned to manage the proposal's review will consider the advice of reviewers and will formulate a recommendation.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to the cognizant Division Director whether the proposal should be declined or recommended for award. NSF strives to be able to tell proposers whether their proposals have been declined or recommended for funding within six months. Large or particularly complex proposals or proposals from new recipients may require additional review and processing time. The time interval begins on the deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director acts upon the Program Officer's recommendation.

After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants and Agreements or the Division of Acquisition and Cooperative Support for review of business, financial, and policy implications. After an administrative review has occurred, Grants and Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.

Once an award or declination decision has been made, Principal Investigators are provided feedback about their proposals. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers or any reviewer-identifying information, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or decline funding.

VII. Award Administration Information

A. notification of the award.

Notification of the award is made to the submitting organization by an NSF Grants and Agreements Officer. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process.)

B. Award Conditions

An NSF award consists of: (1) the award notice, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award notice; (4) the applicable award conditions, such as Grant General Conditions (GC-1)*; or Research Terms and Conditions* and (5) any announcement or other NSF issuance that may be incorporated by reference in the award notice. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF's Website at https://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF . Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-8134 or by e-mail from [email protected] .

More comprehensive information on NSF Award Conditions and other important information on the administration of NSF awards is contained in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) Chapter VII, available electronically on the NSF Website at https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg .

Administrative and National Policy Requirements

Build America, Buy America

As expressed in Executive Order 14005, Ensuring the Future is Made in All of America by All of America’s Workers (86 FR 7475), it is the policy of the executive branch to use terms and conditions of Federal financial assistance awards to maximize, consistent with law, the use of goods, products, and materials produced in, and services offered in, the United States.

Consistent with the requirements of the Build America, Buy America Act (Pub. L. 117-58, Division G, Title IX, Subtitle A, November 15, 2021), no funding made available through this funding opportunity may be obligated for an award unless all iron, steel, manufactured products, and construction materials used in the project are produced in the United States. For additional information, visit NSF’s Build America, Buy America webpage.

Special Award Conditions:

TBD - Programmatic Terms and Conditions: TBD - Financial and Administrative Terms and Conditions:

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer no later than 90 days prior to the end of the current budget period. (Some programs or awards require submission of more frequent project reports). No later than 120 days following expiration of a grant, the PI also is required to submit a final annual project report, and a project outcomes report for the general public.

Failure to provide the required annual or final annual project reports, or the project outcomes report, will delay NSF review and processing of any future funding increments as well as any pending proposals for all identified PIs and co-PIs on a given award. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF's electronic project-reporting system, available through Research.gov, for preparation and submission of annual and final annual project reports. Such reports provide information on accomplishments, project participants (individual and organizational), publications, and other specific products and impacts of the project. Submission of the report via Research.gov constitutes certification by the PI that the contents of the report are accurate and complete. The project outcomes report also must be prepared and submitted using Research.gov. This report serves as a brief summary, prepared specifically for the public, of the nature and outcomes of the project. This report will be posted on the NSF website exactly as it is submitted by the PI.

More comprehensive information on NSF Reporting Requirements and other important information on the administration of NSF awards is contained in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) Chapter VII, available electronically on the NSF Website at https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg .

NSF requires ERCs to submit annual reports that are more extensive in scope than those required of single investigator awards. NSF provides guidelines for these reports. NSF also requires ERCs to collect and submit to NSF data on indicators of progress, outcome, impact, and financial management. NSF provides data definition guidelines and templates for the recording and submission of these data through a secure web site.

VIII. Agency Contacts

Please note that the program contact information is current at the time of publishing. See program website for any updates to the points of contact.

General inquiries regarding this program should be made to:

For questions related to the use of NSF systems contact:

For questions relating to Grants.gov contact:

Grants.gov Contact Center: If the Authorized Organizational Representatives (AOR) has not received a confirmation message from Grants.gov within 48 hours of submission of application, please contact via telephone: 1-800-518-4726; e-mail: [email protected] .

IX. Other Information

The NSF website provides the most comprehensive source of information on NSF Directorates (including contact information), programs and funding opportunities. Use of this website by potential proposers is strongly encouraged. In addition, "NSF Update" is an information-delivery system designed to keep potential proposers and other interested parties apprised of new NSF funding opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Grants Conferences . Subscribers are informed through e-mail or the user's Web browser each time new publications are issued that match their identified interests. "NSF Update" also is available on NSF's website .

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding opportunities may be accessed via this mechanism. Further information on Grants.gov may be obtained at https://www.grants.gov .

About The National Science Foundation

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic research.

NSF receives approximately 55,000 proposals each year for research, education and training projects, of which approximately 11,000 are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Arctic and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities (FASED) provide funding for special assistance or equipment to enable persons with disabilities to work on NSF-supported projects. See the NSF Proposal & Award Policies & Procedures Guide Chapter II.F.7 for instructions regarding preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.

The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants and cooperative agreements for research and education in the sciences, mathematics, and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Website at

2415 Eisenhower Avenue, Alexandria, VA 22314

(NSF Information Center)

(703) 292-5111

(703) 292-5090

Send an e-mail to:

or telephone:

(703) 292-8134

(703) 292-5111

Privacy Act And Public Burden Statements

The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and project reports submitted by proposers will be used for program evaluation and reporting within the Executive Branch and to Congress. The information requested may be disclosed to qualified reviewers and staff assistants as part of the proposal review process; to proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to other government agencies or other entities needing information regarding proposers or nominees as part of a joint application review process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and used to select potential candidates to serve as peer reviewers or advisory committee members. See System of Record Notices , NSF-50 , "Principal Investigator/Proposal File and Associated Records," and NSF-51 , "Reviewer/Proposal File and Associated Records.” Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton Reports Clearance Officer Policy Office, Division of Institution and Award Support Office of Budget, Finance, and Award Management National Science Foundation Alexandria, VA 22314

National Science Foundation

IMAGES

  1. Read How to Write an Introduction for a Research Paper

    why introduction is important in research

  2. How To Write A Research Paper Introduction

    why introduction is important in research

  3. Research Paper Introduction

    why introduction is important in research

  4. How to Write an Introduction for a Research Paper

    why introduction is important in research

  5. Introduction ~ Definition, Overview & Examples

    why introduction is important in research

  6. How to write a introduction for a research paper example

    why introduction is important in research

VIDEO

  1. Why choose ‘Introduction to English as a Second Language’ resources

  2. Kids Answer Questions From the Internet

  3. Why Do We Study? An Introduction to the Introduction of Philosophy

  4. Introduction to Research

  5. Why Integrated MBSE System Modeling Workbench?

  6. Project Tips

COMMENTS

  1. The importance of crafting a good introduction to scholarly research

    Based on any potential impact or perceived importance, the introduction provides an excellent opportunity for the researcher to affirm the significance of the research study and why it should be conducted. ... Whilst crafting a research introduction may seem a challenging and time-consuming task, it is well worth the effort to convey your ...

  2. 4. The Introduction

    The introduction leads the reader from a general subject area to a particular topic of inquiry. It establishes the scope, context, and significance of the research being conducted by summarizing current understanding and background information about the topic, stating the purpose of the work in the form of the research problem supported by a hypothesis or a set of questions, explaining briefly ...

  3. Writing a Research Paper Introduction

    Learn how to write an effective introduction for a research paper, whether it's argumentative or empirical. Follow the five steps to introduce your topic, provide background, establish your problem, specify your objective, and map out your paper.

  4. How to Write a Research Paper Introduction (with Examples)

    Learn how to write a compelling introduction for your research paper with this guide. It covers the key elements, goals, and steps of writing a research paper introduction, with examples and tips.

  5. Research Paper Introduction

    Learn how to write an effective introduction for a research paper, including the structure, purpose, and examples. Find out what to include in the introduction, such as background information, problem statement, research question, significance, and methodology.

  6. The value of introductions and how to write them

    Take the introduction to this paper (one hopes it is a good example, given the subject matter). It has a logical progression: (1) it starts by claiming that the ability to write well is of concern for most academics (including the reader); (2) reading the paper will help to overcome those anxieties; (3) the ideas that follow will explain how ...

  7. Organizing Academic Research Papers: 4. The Introduction

    The introduction serves the purpose of leading the reader from a general subject area to a particular field of research. It establishes the context of the research being conducted by summarizing current understanding and background information about the topic, stating the purpose of the work in the form of the hypothesis, question, or research problem, briefly explaining your rationale ...

  8. How to Write an Introduction for a Research Paper

    Learn the importance, structure, and pitfalls of writing an effective introduction for your research paper. Follow the steps to capture interest, provide background, pinpoint the research challenge, clarify your aims, and sketch the blueprint of your study.

  9. 4 Step approach to writing the Introduction section of a research paper

    Learn the function, structure, and content of the Introduction section of a research paper with examples and tips. Follow a 4-step approach to answer the question 'Why' and set the context for your study.

  10. How to Write an Introduction for a Research Paper

    Learn how to write an effective introduction for your research paper that captures the reader's attention and sets the tone for your study. Find out what elements to include, how to structure your introduction, and what writing techniques to use.

  11. How to Write a Thesis or Dissertation Introduction

    Learn how to write a clear and effective introduction for your thesis or dissertation, with tips on topic, focus, relevance, questions, objectives, and structure. See examples and checklists to guide you through the process.

  12. How to Write an Essay Introduction

    Learn how to write an effective introduction paragraph for your academic essay with this guide. It covers the main goals, steps and tips for hooking your reader, giving background information, presenting your thesis statement and mapping your essay structure.

  13. PDF Wr i tte n by Carol i n e A m m on w w w. sj su . e d u /w r i t i n gc

    The introduction is an important and challenging part of any research paper as it establishes your writing style, the quality of your research, and your credibility as a scholar. It is your first chance to make a good impression on your reader. The introduction gives the reader background and context to convey the importance of your research. It

  14. The Importance of a Well-Structured Introduction in Your ...

    The Importance of an Introduction. When you've done the hard work and compiled your research together to develop an outcome, the next part is to take the skill you have with words and join it with your knowledge to share it with your potential future readers. The part they'll read first is the introduction, and this is where they will learn ...

  15. Writing a Powerful Dissertation Introduction

    Learn how to write a compelling introduction for your dissertation, covering key elements such as background, problem, objectives, significance, and structure. Get tips on how to engage the reader, justify your research, and use clear and precise language.

  16. The Role of an Introduction

    On the other hand, a concise, engaging, and well-written introduction will start your readers off thinking highly of you, your analytical skills, your writing, and your paper. This impression is especially important when the audience you are trying to reach (your instructor) will be grading your work. Your introduction is an important road map ...

  17. 10 tips for writing an effective introduction to original research papers

    Learn how to write an effective introduction to your research paper, including how to state your aims, importance, literature review, and paper overview. Follow 10 tips to start broadly, cite thoroughly, avoid too many citations, state your hypothesis or question, and keep it short.

  18. How to Write the Introduction to a Scientific Paper?

    Learn the importance, principles, models, and tips of writing a good introduction for a scientific paper. Follow the CARS model to establish a territory, a niche, and occupy a niche in your research topic.

  19. 9.1 The Importance of an Introduction

    Learn why an introduction is important for any speech and how to use it to gain audience attention, state the purpose, establish credibility, and preview the main points. Find out how to apply the three factors of credibility (competence, trustworthiness, and caring/goodwill) and some strategies for grabbing attention.

  20. The Why: Explaining the significance of your research

    In addition to the importance stated through the above examples, Leann Zarah offered 7 Reasons Why Research Is Important, as follows: A Tool for Building Knowledge and for Facilitating Learning; ... Schmieder stated, "Significance is conveyed through the introduction, the structure of the study, and the implications for further research ...

  21. Introduction

    Welcome to the research guide for 76-108 Writing about Public Problems (WaPP). This guide will introduce you to research tools and strategies you can use to craft persuasive, public facing arguments. On the Find Sources page here, learn how to: Search the Libraries Catalog; Find & search library databases

  22. PDF Why research is important

    This book chapter argues that research is a systematic process of critical inquiry that leads to valid propositions and conclusions that are communicated to interested others. It challenges the myths and fantasies about research and shows how it can enrich counselling and psychotherapy practice.

  23. Why is Research Important?

    Learn how scientific research helps us understand behaviour, cognitive and physiological processes, and how to critically evaluate research claims. Explore how research informs public policy and personal decisions in various domains.

  24. 2.1 Why is Research Important

    Learn how scientific research addresses questions about behavior, guides public policy, and informs personal decisions. Explore the process of scientific research and the importance of evidence-based claims.

  25. CDC Approach to Program Evaluation

    Why it's important. Program Evaluation helps provide answers to important questions regarding: Program implementation (Are program activities being completed as planned?) Effectiveness (Is the program achieving what was intended?) ... Research and evaluation are scientific activities that use similar methods 3. Research aims to contribute to ...

  26. The Most Important Quality a Romantic Partner Should Have

    According to a recent study published in the Personality and Social Psychology Bulletin, these factors, while important, are not where compatibility is most crucial. Rather, the researchers ...

  27. NSF 24-576: Gen-4 Engineering Research Centers

    The research program is the core of the ERC from which all ERC activities evolve. Research Strategy: Clearly describe the proposed engineered system (a combination of components and elements that work together to perform a useful function) for the ERC. This section must include detailed research strategies, such as the 3-plane diagram ...