High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

20 Effective Math Strategies To Approach Problem-Solving 

Katie Keeton

Math strategies for problem-solving help students use a range of approaches to solve many different types of problems. It involves identifying the problem and carrying out a plan of action to find the answer to mathematical problems.  

Problem-solving skills are essential to math in the general classroom and real-life. They require logical reasoning and critical thinking skills. Students must be equipped with strategies to help them find solutions to problems.

This article explores mathematical problem solving strategies, logical reasoning and critical thinking skills to help learners with solving math word problems independently in real-life situations. 

What are problem-solving strategies?

Problem-solving strategies in math are methods students can use to figure out solutions to math problems. Some problem-solving strategies: 

  • Draw a model
  • Use different approaches
  • Check the inverse to make sure the answer is correct

Students need to have a toolkit of math problem-solving strategies at their disposal to provide different ways to approach math problems. This makes it easier to find solutions and understand math better. 

Strategies can help guide students to the solution when it is difficult ot know when to start.

The ultimate guide to problem solving techniques

The ultimate guide to problem solving techniques

Download these ready-to-go problem solving techniques that every student should know. Includes printable tasks for students including challenges, short explanations for teachers with questioning prompts.

20 Math Strategies For Problem-Solving

Different problem-solving math strategies are required for different parts of the problem. It is unlikely that students will use the same strategy to understand and solve the problem. 

Here are 20 strategies to help students develop their problem-solving skills. 

Strategies to understand the problem

Strategies that help students understand the problem before solving it helps ensure they understand: 

  • The context
  • What the key information is
  • How to form a plan to solve it

Following these steps leads students to the correct solution and makes the math word problem easier .

Here are five strategies to help students understand the content of the problem and identify key information. 

1. Read the problem aloud

Read a word problem aloud to help understand it. Hearing the words engages auditory processing. This can make it easier to process and comprehend the context of the situation.

2. Highlight keywords 

When keywords are highlighted in a word problem, it helps the student focus on the essential information needed to solve it. Some important keywords help determine which operation is needed.  For example, if the word problem asks how many are left, the problem likely requires subtraction.  Ensure students highlight the keywords carefully and do not highlight every number or keyword. There is likely irrelevant information in the word problem.

3. Summarize the information

Read the problem aloud, highlight the key information and then summarize the information. Students can do this in their heads or write down a quick summary.  Summaries should include only the important information and be in simple terms that help contextualize the problem.

4. Determine the unknown

A common problem that students have when solving a word problem is misunderstanding what they are solving. Determine what the unknown information is before finding the answer.  Often, a word problem contains a question where you can find the unknown information you need to solve. For example, in the question ‘How many apples are left?’ students need to find the number of apples left over.

5. Make a plan

Once students understand the context of the word problem, have dentified the important information and determined the unknown, they can make a plan to solve it.  The plan will depend on the type of problem. Some problems involve more than one step to solve them as some require more than one answer.  Encourage students to make a list of each step they need to take to solve the problem before getting started.

Strategies for solving the problem 

1. draw a model or diagram.

Students may find it useful to draw a model, picture, diagram, or other visual aid to help with the problem solving process.  It can help to visualize the problem to understand the relationships between the numbers in the problem. In turn, this helps students see the solution.

math problem that needs a problem solving strategy

Similarly, you could draw a model to represent the objects in the problem:

math problem requiring problem solving

2. Act it out

This particular strategy is applicable at any grade level but is especially helpful in math investigation in elementary school . It involves a physical demonstration or students acting out the problem using movements, concrete resources and math manipulatives .  When students act out a problem, they can visualize and contectualize the word problem in another way and secure an understanding of the math concepts.  The examples below show how 1st-grade students could “act out” an addition and subtraction problem:

The problemHow to act out the problem
Gia has 6 apples. Jordan has 3 apples. How many apples do they have altogether?Two students use counters to represent the apples. One student has 6 counters and the other student takes 3. Then, they can combine their “apples” and count the total.
Michael has 7 pencils. He gives 2 pencils to Sarah. How many pencils does Michael have now?One student (“Michael”) holds 7 pencils, the other (“Sarah”) holds 2 pencils. The student playing Michael gives 2 pencils to the student playing Sarah. Then the students count how many pencils Michael is left holding.

3. Work backwards

Working backwards is a popular problem-solving strategy. It involves starting with a possible solution and deciding what steps to take to arrive at that solution.  This strategy can be particularly helpful when students solve math word problems involving multiple steps. They can start at the end and think carefully about each step taken as opposed to jumping to the end of the problem and missing steps in between.

For example,

problem solving math question 1

To solve this problem working backwards, start with the final condition, which is Sam’s grandmother’s age (71) and work backwards to find Sam’s age. Subtract 20 from the grandmother’s age, which is 71.  Then, divide the result by 3 to get Sam’s age. 71 – 20 = 51 51 ÷ 3 = 17 Sam is 17 years old.

4. Write a number sentence

When faced with a word problem, encourage students to write a number sentence based on the information. This helps translate the information in the word problem into a math equation or expression, which is more easily solved.  It is important to fully understand the context of the word problem and what students need to solve before writing an equation to represent it.

5. Use a formula

Specific formulas help solve many math problems. For example, if a problem asks students to find the area of a rug, they would use the area formula (area = length × width) to solve.   Make sure students know the important mathematical formulas they will need in tests and real-life. It can help to display these around the classroom or, for those who need more support, on students’ desks.

Strategies for checking the solution 

Once the problem is solved using an appropriate strategy, it is equally important to check the solution to ensure it is correct and makes sense. 

There are many strategies to check the solution. The strategy for a specific problem is dependent on the problem type and math content involved.

Here are five strategies to help students check their solutions. 

1. Use the Inverse Operation

For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7. As good practice, encourage students to use the inverse operation routinely to check their work. 

2. Estimate to check for reasonableness

Once students reach an answer, they can use estimation or rounding to see if the answer is reasonable.  Round each number in the equation to a number that’s close and easy to work with, usually a multiple of ten.  For example, if the question was 216 ÷ 18 and the quotient was 12, students might round 216 to 200 and round 18 to 20. Then use mental math to solve 200 ÷ 20, which is 10.  When the estimate is clear the two numbers are close. This means your answer is reasonable. 

3. Plug-In Method

This method is particularly useful for algebraic equations. Specifically when working with variables.  To use the plug-in method, students solve the problem as asked and arrive at an answer. They can then plug the answer into the original equation to see if it works. If it does, the answer is correct.

Problem solving math problem 2

If students use the equation 20m+80=300 to solve this problem and find that m = 11, they can plug that value back into the equation to see if it is correct. 20m + 80 = 300 20 (11) + 80 = 300 220 + 80 = 300 300 = 300 ✓

4. Peer Review

Peer review is a great tool to use at any grade level as it promotes critical thinking and collaboration between students. The reviewers can look at the problem from a different view as they check to see if the problem was solved correctly.   Problem solvers receive immediate feedback and the opportunity to discuss their thinking with their peers. This strategy is effective with mixed-ability partners or similar-ability partners. In mixed-ability groups, the partner with stronger skills provides guidance and support to the partner with weaker skills, while reinforcing their own understanding of the content and communication skills.  If partners have comparable ability levels and problem-solving skills, they may find that they approach problems differently or have unique insights to offer each other about the problem-solving process.

5. Use a Calculator

A calculator can be introduced at any grade level but may be best for older students who already have a foundational understanding of basic math operations. Provide students with a calculator to allow them to check their solutions independently, accurately, and quickly. Since calculators are so readily available on smartphones and tablets, they allow students to develop practical skills that apply to real-world situations.  

Step-by-step problem-solving processes for your classroom

In his book, How to Solve It , published in 1945, mathematician George Polya introduced a 4-step process to solve problems. 

Polya’s 4 steps include:

  • Understand the problem
  • Devise a plan
  • Carry out the plan

Today, in the style of George Polya, many problem-solving strategies use various acronyms and steps to help students recall. 

Many teachers create posters and anchor charts of their chosen process to display in their classrooms. They can be implemented in any elementary, middle school or high school classroom. 

Here are 5 problem-solving strategies to introduce to students and use in the classroom.

CUBES math strategy for problem solving

How Third Space Learning improves problem-solving 

Resources .

Third Space Learning offers a free resource library is filled with hundreds of high-quality resources. A team of experienced math experts carefully created each resource to develop students mental arithmetic, problem solving and critical thinking. 

Explore the range of problem solving resources for 2nd to 8th grade students. 

One-on-one tutoring 

Third Space Learning offers one-on-one math tutoring to help students improve their math skills. Highly qualified tutors deliver high-quality lessons aligned to state standards. 

Former teachers and math experts write all of Third Space Learning’s tutoring lessons. Expertly designed lessons follow a “my turn, follow me, your turn” pedagogy to help students move from guided instruction and problem-solving to independent practice. 

Throughout each lesson, tutors ask higher-level thinking questions to promote critical thinking and ensure students are developing a deep understanding of the content and problem-solving skills.

set of problem solving tools in mathematics

Problem-solving

Educators can use many different strategies to teach problem-solving and help students develop and carry out a plan when solving math problems. Incorporate these math strategies into any math program and use them with a variety of math concepts, from whole numbers and fractions to algebra. 

Teaching students how to choose and implement problem-solving strategies helps them develop mathematical reasoning skills and critical thinking they can apply to real-life problem-solving.

READ MORE :

  • 8 Common Core math examples
  • Tier 3 Interventions: A School Leaders Guide
  • Tier 2 Interventions: A School Leaders Guide
  • Tier 1 Interventions: A School Leaders Guide

There are many different strategies for problem-solving; Here are 5 problem-solving strategies: • draw a model  • act it out  • work backwards  • write a number sentence • use a formula

Here are 10 strategies for problem-solving: • Read the problem aloud • Highlight keywords • Summarize the information • Determine the unknown • Make a plan • Draw a model  • Act it out  • Work backwards  • Write a number sentence • Use a formula

1. Understand the problem 2. Devise a plan 3. Carry out the plan 4. Look back

Some strategies you can use to solve challenging math problems are: breaking the problem into smaller parts, using diagrams or models, applying logical reasoning, and trying different approaches.

Related articles

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

5 Math Mastery Strategies To Incorporate Into Your 4th and 5th Grade Classrooms

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

set of problem solving tools in mathematics

Problem Solving Activities: 7 Strategies

  • Critical Thinking

set of problem solving tools in mathematics

Problem solving can be a daunting aspect of effective mathematics teaching, but it does not have to be! In this post, I share seven strategic ways to integrate problem solving into your everyday math program.

In the middle of our problem solving lesson, my district math coordinator stopped by for a surprise walkthrough. 

I was so excited!

We were in the middle of what I thought was the most brilliant math lesson– teaching my students how to solve problem solving tasks using specific problem solving strategies. 

It was a proud moment for me!

Each week, I presented a new problem solving strategy and the students completed problems that emphasized the strategy. 

Genius right? 

After observing my class, my district coordinator pulled me aside to chat. I was excited to talk to her about my brilliant plan, but she told me I should provide the tasks and let my students come up with ways to solve the problems. Then, as students shared their work, I could revoice the student’s strategies and give them an official name. 

What a crushing blow! Just when I thought I did something special, I find out I did it all wrong. 

I took some time to consider her advice. Once I acknowledged she was right, I was able to make BIG changes to the way I taught problem solving in the classroom. 

When I Finally Saw the Light

To give my students an opportunity to engage in more authentic problem solving which would lead them to use a larger variety of problem solving strategies, I decided to vary the activities and the way I approached problem solving with my students. 

Problem Solving Activities

Here are seven ways to strategically reinforce problem solving skills in your classroom. 

This is an example of seasonal problem solving activities.

Seasonal Problem Solving

Many teachers use word problems as problem solving tasks. Instead, try engaging your students with non-routine tasks that look like word problems but require more than the use of addition, subtraction, multiplication, and division to complete. Seasonal problem solving tasks and daily challenges are a perfect way to celebrate the season and have a little fun too!

Cooperative Problem Solving Tasks

Go cooperative! If you’ve got a few extra minutes, have students work on problem solving tasks in small groups. After working through the task, students create a poster to help explain their solution process and then post their poster around the classroom. Students then complete a gallery walk of the posters in the classroom and provide feedback via sticky notes or during a math talk session.

Notice and Wonder

Before beginning a problem solving task, such as a seasonal problem solving task, conduct a Notice and Wonder session. To do this, ask students what they notice about the problem. Then, ask them what they wonder about the problem. This will give students an opportunity to highlight the unique characteristics and conditions of the problem as they try to make sense of it. 

Want a better experience? Remove the stimulus, or question, and allow students to wonder about the problem. Try it! You’ll gain some great insight into how your students think about a problem.

This is an example of a math starter.

Math Starters

Start your math block with a math starter, critical thinking activities designed to get your students thinking about math and provide opportunities to “sneak” in grade-level content and skills in a fun and engaging way. These tasks are quick, designed to take no more than five minutes, and provide a great way to turn-on your students’ brains. Read more about math starters here ! 

Create your own puzzle box! The puzzle box is a set of puzzles and math challenges I use as fast finisher tasks for my students when they finish an assignment or need an extra challenge. The box can be a file box, file crate, or even a wall chart. It includes a variety of activities so all students can find a challenge that suits their interests and ability level.

Calculators

Use calculators! For some reason, this tool is not one many students get to use frequently; however, it’s important students have a chance to practice using it in the classroom. After all, almost everyone has access to a calculator on their cell phones. There are also some standardized tests that allow students to use them, so it’s important for us to practice using calculators in the classroom. Plus, calculators can be fun learning tools all by themselves!

Three-Act Math Tasks

Use a three-act math task to engage students with a content-focused, real-world problem! These math tasks were created with math modeling in mind– students are presented with a scenario and then given clues and hints to help them solve the problem. There are several sites where you can find these awesome math tasks, including Dan Meyer’s Three-Act Math Tasks and Graham Fletcher’s 3-Acts Lessons . 

Getting the Most from Each of the Problem Solving Activities

When students participate in problem solving activities, it is important to ask guiding, not leading, questions. This provides students with the support necessary to move forward in their thinking and it provides teachers with a more in-depth understanding of student thinking. Selecting an initial question and then analyzing a student’s response tells teachers where to go next. 

Ready to jump in? Grab a free set of problem solving challenges like the ones pictured using the form below. 

Which of the problem solving activities will you try first? Respond in the comments below.

set of problem solving tools in mathematics

Shametria Routt Banks

set of problem solving tools in mathematics

  • Assessment Tools
  • Content and Standards
  • Differentiation
  • Math & Literature
  • Math & Technology
  • Math Routines
  • Math Stations
  • Virtual Learning
  • Writing in Math

You may also like...

set of problem solving tools in mathematics

2 Responses

This is a very cool site. I hope it takes off and is well received by teachers. I work in mathematical problem solving and help prepare pre-service teachers in mathematics.

Thank you, Scott! Best wishes to you and your pre-service teachers this year!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

©2024 The Routty Math Teacher.   All Rights Reserved.  Designed by Ashley Hughes.

Privacy overview, grade level.

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

32 Mathematical Ideas: Problem-Solving Techniques

Jenna Lehmann

Solving Problems by Inductive Reasoning

Before we can talk about how to use inductive reasoning, we need to define it and distinguish it from deductive reasoning.

Inductive reasoning is when one makes generalizations based on repeated observations of specific examples. For instance, if I have only ever had mean math teachers, I might draw the conclusion that all math teachers are mean. Because I witnessed multiple instances of mean math teachers and only mean math teachers, I’ve drawn this conclusion. That being said, one of the downfalls of inductive reasoning is that it only takes meeting one nice math teacher for my original conclusion to be proven false. This is called a counterexample . Since inductive reasoning can so easily be proven false with one counterexample, we don’t say that a conclusion drawn from inductive reasoning is the absolute truth unless we can also prove it using deductive reasoning. With inductive reasoning, we can never be sure that what is true in a specific case will be true in general, but it is a way of making an educated guess.

Deductive reasoning depends on a hypothesis that is considered to be true. In other words, if X = Y and Y = Z, then we can deduce that X = Z. An example of this might be that if we know for a fact that all dogs are good, and Lucky is a dog, then we can deduce that Lucky is good.

Strategies for Problem Solving

No matter what tool you use to solve a problem, there is a method for going about solving the problem.

  • Understand the Problem: You may need to read a problem several times before you can conceptualize it. Don’t become frustrated, and take a walk if you need to. It might take some time to click.
  • Devise a Plan: There may be more than one way to solve the problem. Find the way which is most comfortable for you or the most practical.
  • Carry Out the Plan: Try it out. You may need to adjust your plan if you run into roadblocks or dead ends.
  • Look Back and Check: Make sure your answer gives sense given the context.

There are several different ways one might go about solving a problem. Here are a few:

  • Tables and Charts: Sometimes you’ll be working with a lot of data or computing a problem with a lot of different steps. It may be best to keep it organized in a table or chart so you can refer back to previous work later.
  • Working Backward: Sometimes you’ll be given a word problem where they describe a series of algebraic functions that took place and then what the end result is. Sometimes you’ll have to work backward chronologically.
  • Using Trial and Error: Sometimes you’ll know what mathematical function you need to use but not what number to start with. You may need to use trial and error to get the exact right number.
  • Guessing and Checking: Sometimes it will appear that a math problem will have more than one correct answer. Be sure to go back and check your work to determine if some of the answers don’t actually work out.
  • Considering a Similar, Simpler Problem: Sometimes you can use the strategy you think you would like to use on a simpler, hypothetical problem first to see if you can find a pattern and apply it to the harder problem.
  • Drawing a Sketch: Sometimes—especially with geometrical problems—it’s more helpful to draw a sketch of what is being asked of you.
  • Using Common Sense: Be sure to read questions very carefully. Sometimes it will seem like the answer to a question is either too obvious or impossible. There is usually a phrasing of the problem which would lead you to believe that the rules are one way when really it’s describing something else. Pay attention to literal language.

This chapter was originally posted to the Math Support Center blog at the University of Baltimore on November 6, 2019.

Math and Statistics Guides from UB's Math & Statistics Center Copyright © by Jenna Lehmann is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Problem-Solving in Mathematics Education

  • Reference work entry
  • First Online: 01 January 2020
  • Cite this reference work entry

set of problem solving tools in mathematics

  • Manuel Santos-Trigo 2  

1489 Accesses

9 Citations

Introduction

Problem-solving approaches appear in all human endeavors. In mathematics, activities such as posing or defining problems and looking for different ways to solve them are central to the development of the discipline. In mathematics education, the systematic study of what the process of formulating and solving problems entails and the ways to structure problem-solving approaches to learn mathematics has been part of the research agenda in mathematics education. How have research and practicing problem-solving approaches changed and evolved in mathematics education, and what themes are currently investigated? Two communities have significantly contributed to the characterization and development of the research and practicing agenda in mathematical problem-solving: mathematicians who recognize that the process of formulating, representing, and solving problems is essential in the development of mathematical knowledge (Polya 1945 ; Hadamard 1945 ; Halmos 1980 ) and mathematics...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Artigue M, Houdement C (2007) Problem solving in France: didactic and curricular perspectives. ZDM Int J Math Educ 39(5–6):365–382

Article   Google Scholar  

Cai J, Nie B (2007) Problem solving in Chinese mathematics education: research and practice. ZDM Int J Math Educ 39(5–6):459–473

Common Core State Standards for Mathematics (CCSS) (2010) Common Core State Standards initiative. http://www.corestandards.org/

Devlin K (2002) The millennium problems. The seven greatest unsolved mathematical puzzles of our time. Granta Publications, London

Google Scholar  

Dick TP, Hollebrands K (2011) Focus in high school mathematics: technology to support reasoning and sense making. The National Council of Teachers of Mathematics, Reston

Doorman M, Drijvers P, Dekker T, Van den Heuvel-Panhuizen M, de Lange J, Wijers M (2007) Problem solving as a challenge for mathematics education in the Netherlands. ZDM Int J Math Educ 39(5–6):405–418

English LD, Gainsburg J (2016) Problem solving in a 21st-century mathematics curriculum. In: English LD, Kirshner D (eds) Handbook of international research in mathematics education. Routledge, New York, pp 313–335

Hadamard J (1945) An essay on the psychology of invention in the mathematical field. Dover Publications, New York

Halmos PR (1980) The heart of mathematics. Am Math Mon 87(7):519–524

Halmos PR (1994) What is teaching. Am Math Mon 101(9):848–854

Hilbert D (1902) Mathematical problems. Bulletin of the American Mathematical Society, 8:437–479

Hoyles C, Lagrange J-B (eds) (2010) Mathematics education and technology: rethinking the terrain. The 17th ICMI study. Springer, New York

Krutestkii VA (1976) The psychology of mathematical abilities in school children. University of Chicago Press, Chicago

Lester FK, Kehle PE (1994) From problem solving to modeling: The evolution of thinking about research on complex mathematical activity. In: Lesh R, Doerr HM (ed) Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahawah: New Jersey, pp 501–517

Lesh R, Zawojewski JS (2007) Problem solving and modeling. In: Lester FK Jr (ed) The second handbook of research on mathematics teaching and learning. National Council of Teachers of Mathematics. Information Age Publishing, Charlotte, pp 763–804

Lester F, Kehle PE (2003) From problem solving to modeling: the evolution of thinking about research on complex mathematical activity. In: Lesh R, Doerr H (eds) Beyond constructivism: models and modeling perspectives on mathematics problem solving, learning and teaching. Lawrence Erlbaum, Mahwah, pp 501–518

Liljedahl P, Santos-Trigo M (2019) Mathematical problem solving. Current themes, trends and research, https://doi.org/10.1007/978-3-030-10472-6 Cham, Switzerland: Springer

NCTM (1989) Curriculum and evaluation standards for school mathematics. NCTM, Reston

NCTM (2000) Principles and standards for school mathematics. National Council of Teachers of Mathematics, Reston

NCTM (2009) Focus in high school mathematics. Reasoning and sense making. NCTM, Reston

Perkins DN, Simmons R (1988) Patterns of misunderstanding: An integrative model of science, math, and programming. Rev of Edu Res 58(3):303–326

Polya G (1945) How to solve it. Princeton University Press, Princeton

Book   Google Scholar  

Santos-Trigo M (2007) Mathematical problem solving: an evolving research and practice domain. ZDM Int J Math Educ 39(5, 6):523–536

Santos-Trigo M, Reyes-Martínez I (2018) High school prospective teachers’ problem-solving reasoning that involves the coordinated use of digital technologies. Int J Math Educ Sci Technol. https://doi.org/10.1080/0020739X.2018.1489075

Santos-Trigo M, Reyes-Rodriguez, A (2016) The use of digital technology in finding multiple paths to solve and extend an equilateral triangle task, International. Journal of Mathematical Education in Science and Technology 47:1:58–81. https://doi.org/10.1080/0020739X.2015.1049228

Schoenfeld AH (1985) Mathematical problem solving. Academic, New York

Schoenfeld AH (1992) Learning to think mathematically: problem solving, metacognition, and sense making in mathematics. In: Grows DA (ed) Handbook of research on mathematics teaching and learning. Macmillan, New York, pp 334–370

Schoenfeld AH (2015) How we think: a theory of human decision-making, with a focus on teaching. In: Cho SJ (ed) The proceedings of the 12th international congress on mathematical education. Springer, Cham, pp 229–243. https://doi.org/10.1007/978-3-319-12688-3_16

Chapter   Google Scholar  

Selden J, Mason A, Selden A (1989) Can average calculus students solve nonroutine problems? J Math Behav 8:45–50

Wertheimer M (1945) Productive thinking. Harper, New York

Download references

Author information

Authors and affiliations.

Centre for Research and Advanced Studies, Mathematics Education Department, Cinvestav-IPN, Mexico City, Mexico

Manuel Santos-Trigo

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Manuel Santos-Trigo .

Editor information

Editors and affiliations.

Department of Education, Centre for Mathematics Education, London South Bank University, London, UK

Stephen Lerman

Section Editor information

Department of Science Teaching, The Weizmann Institute of Science, Rehovot, Israel

Ruhama Even

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Cite this entry.

Santos-Trigo, M. (2020). Problem-Solving in Mathematics Education. In: Lerman, S. (eds) Encyclopedia of Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-15789-0_129

Download citation

DOI : https://doi.org/10.1007/978-3-030-15789-0_129

Published : 23 February 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-15788-3

Online ISBN : 978-3-030-15789-0

eBook Packages : Education Reference Module Humanities and Social Sciences Reference Module Education

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • PRINT TO PLAY
  • DIGITAL GAMES

set of problem solving tools in mathematics

Problem-Solving Strategies

October 16, 2019

There are many different ways to solve a math problem, and equipping students with problem-solving strategies is just as important as teaching computation and algorithms. Problem-solving strategies help students visualize the problem or present the given information in a way that can lead them to the solution. Solving word problems using strategies works great as a number talks activity and helps to revise many skills.

Problem-solving strategies

1. create a diagram/picture, 2. guess and check., 3. make a table or a list., 4. logical reasoning., 5. find a pattern, 6. work backward, 1. create a diagram/draw a picture.

Creating a diagram helps students visualize the problem and reach the solution. A diagram can be a picture with labels, or a representation of the problem with objects that can be manipulated. Role-playing and acting out the problem like a story can help get to the solution.

Alice spent 3/4 of her babysitting money on comic books. She is left with $6. How much money did she make from babysitting?

set of problem solving tools in mathematics

2. Guess and check

Teach students the same strategy research mathematicians use.

With this strategy, students solve problems by making a reasonable guess depending on the information given. Then they check to see if the answer is correct and they improve it accordingly.  By repeating this process, a student can arrive at a correct answer that has been checked. It is recommended that the students keep a record of their guesses by making a chart, a table or a list. This is a flexible strategy that works for many types of problems. When students are stuck, guessing and checking helps them start and explore the problem. However, there is a trap. Exactly because it is such a simple strategy to use, some students find it difficult to consider other strategies. As problems get more complicated, other strategies become more important and more effective.

Find two numbers that have sum 11 and product 24.

Try/guess  5 and 6  the product is 30 too high

  adjust  to 4 and 7 with product 28 still high

  adjust  again 3 and 8 product 24

3. Make a table or a list

Carefully organize the information on a table or list according to the problem information. It might be a table of numbers, a table with ticks and crosses to solve a logic problem or a list of possible answers. Seeing the given information sorted out on a table or a list will help find patterns and lead to the correct solution.

To make sure you are listing all the information correctly read the problem carefully.

Find the common factors of 24, 30 and 18

set of problem solving tools in mathematics

Logical reasoning is the process of using logical, systemic steps to arrive at a conclusion based on given facts and mathematic principles. Read and understand the problem. Then find the information that helps you start solving the problem. Continue with each piece of information and write possible answers.

Thomas, Helen, Bill, and Mary have cats that are black, brown, white, or gray. The cats’ names are Buddy, Lucky, Fifi, and Moo. Buddy is brown. Thoma’s cat, Lucky, is not gray. Helen’s cat is white but is not named Moo. The gray cat belongs to Bill. Which cat belongs to each student, and what is its color?

A table or list is useful in solving logic problems.

Thomas Lucky Not gray, the cat is black
Helen Not Moo, not Buddy, not Lucky so Fifi White  
Bill Moo Gray  
Mary Buddy Brown

Since Lucky is not gray it can be black or brown. However, Buddy is brown so Lucky has to be black.

Buddy is brown so it cannot be Helen’s cat. Helen’s cat cannot be Moo, Buddy or Lucky, so it is Fifi.

Therefore, Moo is Bill’s cat and Buddy is Mary’s cat.

5. Find a pattern.

Finding a pattern is a strategy in which students look for patterns in the given information in order to solve the problem. When the problem consists of data like numbers or events that are repeated then it can be solved using the “find a pattern” problem-solving strategy. Data can be organized in a table or a list to reveal the pattern and help discover the “rule” of the pattern.

 The “rule” can then be used to find the answer to the question and complete the table/list.

Shannon’s Pizzeria made 5 pizzas on Sunday, 10 pizzas on Monday, 20 pizzas on Tuesday, and 40 pizzas on Wednesday. If this pattern continues, how many pizzas will the pizzeria make on Saturday?

Sunday 5
Monday 10
Tuesday 20
Wednesday 40
Thursday  
Friday  
Saturday  

6. Working backward

Problems that can be solved with this strategy are the ones that  list a series of events or a sequence of steps .

In this strategy, the students must start with the solution and work back to the beginning. Each operation must be reversed to get back to the beginning. So if working forwards requires addition, when students work backward they will need to subtract. And if they multiply working forwards, they must divide when working backward.

Mom bought a box of candy. Mary took 5 of them, Nick took 4 of them and 31 were given out on Halloween night. The next morning they found 8 pieces of candy in the box. How many candy pieces were in the box when mom bought it.

For this problem, we know that the final number of candy was 8, so if we work backward to “put back” the candy that was taken from the box we can reach the number of candy pieces that were in the box, to begin with.

The candy was taken away so we will normally subtract them. However, to get back to the original number of candy we need to work backward and do the opposite, which is to add them.

8 candy pieces were left + the 31 given out + plus the ones Mary took + the ones Nick took

8+31+5+4= 48   Answer: The box came with 48 pieces of candy.

Selecting the best strategy for a problem comes with practice and often problems will require the use of more than one strategies.

Print and digital activities

I have created a collection of print and digital activity cards and worksheets with word problems (print and google slides) to solve using the strategies above. The collection includes 70 problems (5 challenge ones) and their solution s and explanations.

sample below

set of problem solving tools in mathematics

How to use the activity cards

Allow the students to use manipulatives to solve the problems. (counters, shapes, lego blocks, Cuisenaire blocks, base 10 blocks, clocks) They can use manipulatives to create a picture and visualize the problem. They can use counters for the guess and check strategy. Discuss which strategy/strategies are better for solving each problem. Discuss the different ways. Use the activities as warm-ups, number talks, initiate discussions, group work, challenge, escape rooms, and more.

Ask your students to write their own problems using the problems in this resource, and more, as examples. Start with a simple type. Students learn a lot when trying to compose a problem. They can share the problem with their partner or the whole class. Make a collection of problems to share with another class.

For the google slides the students can use text boxes to explain their thinking with words, add shapes and lines to create diagrams, and add (insert) tables and diagrams.

Many of the problems can be solved faster by using algebraic expressions. However, since I created this resource for grades 4 and up I chose to show simple conceptual ways of solving the problems using the strategies above. You can suggest different ways of solving the problems based on the grade level.

Find the free and premium versions of the resource below. The premium version includes 70 problems (challenge problems included) and their solutions

There are 2 versions of the resource

70 google slides with explanations + 70 printable task cards

70 google slides with explanations + 11 worksheets

You might also like

set of problem solving tools in mathematics

Multiplying fractions/mixed numbers/simplifying

set of problem solving tools in mathematics

Adding and subtracting fractions

set of problem solving tools in mathematics

AM/PM, 24-hour clock, Elapsed Time – ideas, games, and activities

set of problem solving tools in mathematics

Teaching area, ideas, games, print, and digital activities

set of problem solving tools in mathematics

Multi-Digit Multiplication, Area model, Partial Products algorithm, Puzzles, Word problems

set of problem solving tools in mathematics

Place Value – Representing and adding 2/3 digit numbers with manipulatives

set of problem solving tools in mathematics

Multiplication Mission – arrays, properties, multiples, factors, division

set of problem solving tools in mathematics

Fractions Games and activities – Equivalence, make 1, compare, add, subtract, like, unlike

set of problem solving tools in mathematics

Diving into Division -Teaching division conceptually

set of problem solving tools in mathematics

Expressions with arrays

set of problem solving tools in mathematics

Decimals, Decimal fractions, Percentages – print and digital

set of problem solving tools in mathematics

Solving Word Problems- Math talks-Strategies, Ideas and Activities-print and digital

Check out our best selling card games now available at amazon.com and amazon.ca.

set of problem solving tools in mathematics

Chicken Escape

A multiplayer card game that makes mental math practice fun! Chicken Escape is a fast-paced multiplayer card game. While playing…

set of problem solving tools in mathematics

Dragon Times – A math Adventure card game

Dragon Times is an educational fantasy card game that aims to motivate children to practice multiplication and division facts while…

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

set of problem solving tools in mathematics

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

5 Strategies for Successful Problem Solving

  • Powerful teaching strategies
  • December 26, 2023
  • Michaela Epstein

set of problem solving tools in mathematics

Blog > 5 Strategies for Successful Problem Solving

Problem solving can change the way students see maths – and how they see themselves as maths learners.

But, it's tough to help all students get the most out of a task.

To help, here are  5 Strategies for Problem Solving Success.

These are 5 valuable lessons I've learned from working with teachers across the globe .  You can use these strategies with all your students, no matter their level.

5 Strategies for Problem Solving Success

Strategy 1: Choose a task that you're keen on

Your own enthusiasm is quickly picked up by your students. So, choose a problem, puzzle or game that you’re excited and curious about.

How do you know what will spark your curiosity? Do the task yourself!

(That’s why,  in the workshops I run , we spend a lot of time  actually  exploring problems. It’s a chance to step into students' shoes and experience maths from their perspective.)

Strategy 2: Set a goal for strengthening problem solving skills

Often, curriculum content becomes the goal of problem solving. For example, adding fractions, calculating areas or solving quadratic equations.

But, this is a mistake! Here's why-

Low floor, high ceiling tasks give students choices. Choices about what strategies to use, tools to draw on – and even what end-points to get to.

The most valuable goals focus on building confidence and capability in problem solving. For example:

  • To make and break conjectures
  • To use and evaluate different strategies
  • To organise data in meaningful ways
  • To explain and justify their conclusions.

Strategy 3: Plan a short launch to make the task widely accessible

The start of a task is what will get your students curious and hungry to get underway.

Consider: What's the least information your students will need?

At  ​our Members' online PL sessions​ , we look at one of four possibilities for launching a problem:

  • Present a mystery to explore
  • Present an example and non-example
  • Run a demonstration game
  • Show how to use a tool.

Keep the launch short – under 5 minutes. This is just enough to keep students’ attention AND share essential information.

Strategy 4: Use questions, tools and prompts to support productive exploration

Let’s face it, problem solving is hard, no matter your age or mathematical skill set.

Students aren’t afraid of hard work – they’re afraid of feeling or looking stupid. And, when those tricky maths moments do come, you can help.

Using questions, tools and other prompts can bring clarity and boost confidence.

(Here's a  free question catalogue  you might find handy to have in your back pocket.)

This careful support will help your students find problem solving far less daunting. Instead, it can become a chance for wonderous mathematical exploration.

Strategy 5: Wrap up to create space for pivotal learning

Picture this: Your students are elbows deep in a problem, there’s a buzz in the air – oh, and only a minute until the bell.

The  most important  stage of a problem solving task – right at the end – is often the one that gets dropped off.

Why does ‘wrapping up’ matter?

In the last 10 minutes of a problem, students can share conjectures, strategies and solutions. It's also a chance to consider new questions that may open up further exploration.

In wrapping up, important learning will happen. Your students will observe patterns, make connections and clarify conjectures. You might even notice ‘aha’ moments.

Five strategies for problem solving success:

  • Choose a task that YOU'RE keen on,
  • Set a goal for strengthening problem solving skills,
  • Plan a short launch to make the task widely accessible,
  • Use questions, tools and prompts to support productive exploration, and
  • Wrap up to create space for pivotal learning.

Join the Conversation

' src=

Dear Michaela, Greetings !! Thank you for sharing the strategies for problem solving task. These strategies will definitely enhance the skill in the mindset of young learners. In India ,Students of Grade 9 and Grade 10 have to learn and solve lot of theorems of triangle, Quadrilateral, Circle etc. Being an educator I have noticed that most of the students learn the theorems and it’s derivation by heart as a result they lack in understanding the application of these theorems.

I will appreciate if you can share your insights as how to make these topics interesting and easy to grasp.

Once again thanks for sharing such informative ideas.

Leave a comment

Cancel reply.

Your email address will not be published. Required fields are marked *

Don’t miss a thing!

Sign up to our mailing list for inspiring maths teaching ideas, event updates, free resources, and more!

set of problem solving tools in mathematics

Math Solver

Geogebra math solver.

Get accurate solutions and step-by-step explanations for algebra and other math problems, while enhancing your problem-solving skills!

person with long dark hair sit at a table working at a laptop. 3x+2 and x² equations float in the air signifying that she is working on math problems

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

Microsoft

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions
  • Our Mission

Using Video Projects to Reinforce Learning in Math

A collaborative project can help students deeply explore math concepts, explain problem-solving strategies, and demonstrate their learning.

High school students making videos

Problem-solving, and the creativity that generates and fuels it, lies at the heart of mathematics. Mathematics is essentially about reasoning and much less about memorization or even procedural skills, although both processes are meaningful and useful to simplify and support problem-solving. The National Council of Teachers of Mathematics (NCTM) has consistently advocated to keep problem-solving as the centerpiece of mathematics teaching, and global trends in mathematics education have increasingly emphasized problem-solving and mathematical modeling.

Problem-solving allows students to deepen their conceptual comprehension and appreciate the usefulness and relevance of mathematics. Thus, it generates and fosters interest, engagement, and a deeper understanding of the world around them. Because problem-solving is often used in the mathematics classroom, it’s particularly important to find fresh and interesting ways to attract and maintain students’ engagement.

Video Projects Support Interest in Problem-Solving 

To this end, I assign video projects to my students. In groups of two or three, they solve a set of problems on a topic and then choose one to illustrate, solve, and explain their favorite problem-solving strategy in detail, along with the reasons they chose it. The student-created videos are collected and stored on a Padlet even after I have evaluated them—kept as a reference, keepsake, and support. I have a library of student-created videos that benefit current and future students when they have some difficulties with a topic and associated problems.

Some topics in mathematics are well-suited for applications and problem-solving. These are usually multistep problems that require a combination of strategies and procedural fluency. Typical examples are the motion, work, and mixture problems in algebra, the optimization problems in precalculus or calculus, and related rates problems in calculus.

This collection of student-created videos is about related rates problems (note that some links may not work, as this collection is old). Video activities based on problem-solving can be done at any level of mathematics, as problem-solving is a task in which children are engaged in math class from an early age.

Useful Recording Tools

Some examples of useful recording apps include Screencastify , ScreenPal , iMovie , and QuickTime . Each of them has pros and cons, so I suggest looking at the particular specifications of each tool in terms of the number and length of videos allowed by the free version of those apps. I let my students choose what app they want to use to create their videos—they are generally very familiar with this sort of technology and may be more at ease with one tool over another. All they have to produce is a usable link to their video that will be posted on the common Padlet.

Loom is an intuitive, user-friendly screen recording tool that can record audio, video, browser windows, or entire screens in a Chrome extension, desktop app, or mobile app. You can sign up for a free Loom for Education account; students don’t need an account to watch a teacher’s videos, but they will in order to create their own videos.

Loom’s training module is thorough and includes tutorials, special feature descriptions, and examples. Once you click the Loom icon, there’s a short countdown that precedes the recording. When you stop the recording, a link automatically saves to your clipboard and can be easily shared via email, social media, or an embed code.

The videos will also save to your personal library and can be shared to a team library to make them easily accessible to colleagues. Editing features are quite limited (trimming and changing playback speed), which means you may have to do multiple takes, but teachers can control the settings for comment and download options. 

4 Problem-Solving Strategies

Mathematician George Polya outlined a four-step model in his famous book, How to Solve It . It involves understanding the problem, devising a plan, carrying it out, and finally looking back and reflecting. These are the strategies that my students must demonstrate while creating their videos. 

  • Understand the problem: Students reread the problem carefully, summarize and rewrite the information in mathematical notation, use keyword analysis, draw a picture or a diagram, or even act out the scenario.
  • Devise a plan: Looking for patterns and solving a simpler problem are my favorite approaches, but other ideas—guess-and-check, working backward, eliminating possibilities, using a formula and solving an equation—can work well too, depending on the circumstances. Most often, for good problems, several of these strategies have to be employed at the same time and help support confidence in the solution.
  • Carry out the plan: This is where “show your work” comes in with full force. Communicating their thoughts and ideas is paramount: Students should be systematic, show their thinking in a logical progression, check their work, and be flexible and persistent.
  • Look back and reflect: It’s important to consider which part of the problem was the most challenging and why, which process was most effective, and other strategies that could have worked. This makes for more efficient and deeper learning.

Related rates problems can be intimidating at first, and it is useful for students to write out explicitly the steps and strategies they take to solve the first few problems.

My students come up with a model that follows the previously mentioned steps. It includes labeling the rates with their units and sign, an understanding of the rate they must find, finding at least one equation that binds the variables together, differentiating this equation with respect to time, plugging in the given information, and, finally, writing a short sentence that summarizes their conclusion (including sign and units). 

Benefits of the Video Activity

My students and I have experienced several benefits of this task.

Students are encouraged to communicate mathematically. The importance of communication among learners is also heavily emphasized in the NCTM publication Principles and Standards for School Mathematics .

Student collaboration. Viewing learning as a collective endeavor , rather than an individual competition, helps students develop their social and collaborative skills. When students take joint responsibility for their learning—sharing ideas and resources—it fosters a safe environment where they perceive each other as allies rather than competitors, which increases engagement and academic achievement. 

Problem-solving skills are strengthened. As reported in the Executive Summary of the NCTM Principles and Standards for School Mathematics , when solving mathematical problems, students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations that serve them well beyond the classroom. 

Teachers can clearly see students’ understanding. This includes conceptual understanding, procedural precision, logical and analytical thinking, problem-solving strategies, and clarity of communication.

A sense of belonging in math class is cemented. The experience generates positive, affirmative memories—the goal of social and emotional learning—and “ encourages student focus and motivation, improves relationships between students and teachers, and increases student confidence and success .” It should be promoted, particularly in the STEM disciplines.

 In other words, it’s a keeper.

  • Inside Mathematics
  • Math Pathways (DCMP)
  • Keywords Search
  • common core resources
  • mathematical practice standards
  • standard 5 use appropriate tools strategically

Standard 5: Use Appropriate Tools Strategically

Scroll Down ↓

Teachers who are developing students' capacity to "use appropriate tools strategically" make clear to students why the use of manipulatives, rulers, compasses, protractors, and other tools will aid their problem solving processes. A middle childhood teacher might have his students select different color tiles to show repetition in a patterning task. A teacher of adolescents and young adults might have established norms for accessing tools during the students' group "tinkering processes," allowing students to use paper strips, brass fasteners, and protractors to create and test quadrilateral "kite" models. Visit the video excerpts below to view multiple examples of these teachers. 

The Standard

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

  • Make sense of problems & persevere in solving them
  • Reason abstractly & quantitatively
  • Construct viable arguments & critique the reasoning of others
  • Model with mathematics
  • Use appropriate tools strategically
  • Attend to precision
  • Look for & make use of structure
  • Look for & express regularity in repeated reasoning

Begin Lesson

Connections to Classroom Practices

Connections to Classroom Practices (13)

set of problem solving tools in mathematics

Challenge your student with our math, computer science, contest, and science courses!

Something appears to not have loaded correctly.

Click to refresh .

set of problem solving tools in mathematics

share this!

August 30, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Different mathematical solving methods can affect how information is memorized

by University of Geneva

False memories revealing mathematical reasoning

The way we memorize information—a mathematical problem statement, for example—reveals the way we process it. A team from the University of Geneva (UNIGE), in collaboration with CY Cergy Paris University (CYU) and Bourgogne University (uB), has shown how different solving methods can alter the way information is memorized and even create false memories.

By identifying learners' unconscious deductions, this study opens up new perspectives for mathematics teaching. These results are published in the Journal of Experimental Psychology: Learning, Memory, and Cognition .

Remembering information goes through several stages: perception, encoding—the way it is processed to become an easily accessible memory trace—and retrieval (or reactivation). At each stage, errors can occur, sometimes leading to the formation of false memories .

Scientists from the UNIGE, CYU and Bourgogne University set out to determine whether solving arithmetic problems could generate such memories and whether they could be influenced by the nature of the problems.

Unconscious deductions create false memories

When solving a mathematical problem , it is possible to call upon either the ordinal property of numbers, i.e., the fact that they are ordered, or their cardinal property, i.e., the fact that they designate specific quantities. This can lead to different solving strategies and, when memorized, to different encoding.

In concrete terms, the representation of a problem involving the calculation of durations or differences in heights (ordinal problem) can sometimes allow unconscious deductions to be made, leading to a more direct solution. This is in contrast to the representation of a problem involving the calculation of weights or prices (cardinal problem), which can lead to additional steps in the reasoning, such as the intermediate calculation of subsets.

The scientists therefore hypothesized that, as a result of spontaneous deductions, participants would unconsciously modify their memories of ordinal problem statements, but not those of cardinal problems.

To test this, a total of 67 adults were asked to solve arithmetic problems of both types, and then to recall the wording in order to test their memories. The scientists found that in the majority of cases (83%), the statements were correctly recalled for cardinal problems.

In contrast, the results were different when the participants had to remember the wording of ordinal problems, such as: "Sophie's journey takes 8 hours. Her journey takes place during the day. When she arrives, the clock reads 11. Fred leaves at the same time as Sophie. Fred's journey is 2 hours shorter than Sophie's. What time does the clock show when Fred arrives?"

In more than half the cases, information deduced by the participants when solving these problems was added unintentionally to the statement. In the case of the problem mentioned above, for example, they could be convinced—wrongly—that they had read: "Fred arrived 2 hours before Sophie" (an inference made because Fred and Sophie left at the same time, but Fred's journey took 2 hours less, which is factually true but constitutes an alteration to what the statement indicated).

"We have shown that when solving specific problems, participants have the illusion of having read sentences that were never actually presented in the statements, but were linked to unconscious deductions made when reading the statements. They become confused in their minds with the sentences they actually read," explains Hippolyte Gros, former post-doctoral fellow at UNIGE's Faculty of Psychology and Educational Sciences, lecturer at CYU, and first author of the study.

Invoking memories to understand reasoning

In addition, the experiments showed that the participants with the false memories were only those who had discovered the shortest strategy, thus revealing their unconscious reasoning that had enabled them to find this resolution shortcut. On the other hand, the others, who had operated in more stages, were unable to "enrich" their memory because they had not carried out the corresponding reasoning.

"This work can have applications for learning mathematics. By asking students to recall statements, we can identify their mental representations and therefore the reasoning they used when solving the problem, based on the presence or absence of false memories in their restitution," explains Emmanuel Sander, full professor at the UNIGE's Faculty of Psychology and Educational Sciences, who directed this research.

It is difficult to access mental constructs directly. Doing so indirectly, by analyzing memorization processes, could lead to a better understanding of the difficulties encountered by students in solving problems, and provide avenues for intervention in the classroom.

Provided by University of Geneva

Explore further

Feedback to editors

set of problem solving tools in mathematics

Saturday Citations: Teen seals photobomb research site; cell phones are safe; serotonin and emotional resilience

15 hours ago

set of problem solving tools in mathematics

Pottery shards provide insight into the lives and trade networks of enslaved people in the Cayman Islands

set of problem solving tools in mathematics

Nanoscale silver exhibits intrinsic self-healing abilities without external intervention

19 hours ago

set of problem solving tools in mathematics

Two astronauts are left behind in space as Boeing's troubled capsule returns to Earth empty

set of problem solving tools in mathematics

Just how rare is a rare-colored lobster? Scientists say answer could be under the shell

set of problem solving tools in mathematics

Massive merger: Study reveals evidence for origin of supermassive black hole at galaxy's center

Sep 6, 2024

set of problem solving tools in mathematics

Neolithic bones reveal isolated Yersinia pestis infections, not pandemics

set of problem solving tools in mathematics

New quantum error correction method uses 'many-hypercube codes' while exhibiting beautiful geometry

set of problem solving tools in mathematics

Solving the side effect problem of siRNA drugs for genetic disease treatment

set of problem solving tools in mathematics

Researchers advance new class of quantum critical metal that could advance electronic devices

Relevant physicsforums posts, difficult to understand the solution provided in the video (travelling salesman problem), questions regarding kurepa's conjecture, can higher degree nested radicals be simplified.

Sep 4, 2024

Raising to the power of 0 or 1

Calculate new height of truncated cone.

Sep 3, 2024

Scalars, Vectors, Matrices,Tensors, Holors....

More from General Math

Related Stories

set of problem solving tools in mathematics

Drawings of mathematical problems predict their resolution

Mar 7, 2024

set of problem solving tools in mathematics

Have a vexing problem? Sleep on it.

Oct 17, 2019

set of problem solving tools in mathematics

Expert mathematicians stumped by simple subtractions

Jul 10, 2019

set of problem solving tools in mathematics

Study: Cognitive flexibility enhances mathematical reasoning

Nov 29, 2022

set of problem solving tools in mathematics

Research reveals cuttlefish can form false memories, too

Jul 17, 2024

set of problem solving tools in mathematics

A new method for boosting the learning of mathematics

Dec 23, 2019

Recommended for you

set of problem solving tools in mathematics

Virtual learning linked to rise in chronic absenteeism, study finds

Sep 5, 2024

set of problem solving tools in mathematics

Mathematicians model a puzzling breakdown in cooperative behavior

set of problem solving tools in mathematics

Mathematicians debunk GPS assumptions to offer improvements

Aug 28, 2024

set of problem solving tools in mathematics

Framework for solving parabolic partial differential equations could guide computer graphics and geometry processing

set of problem solving tools in mathematics

AI tools like ChatGPT popular among students who struggle with concentration and attention

set of problem solving tools in mathematics

Researchers find academic equivalent of a Great Gatsby Curve in science mentorships

Aug 27, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Watch CBS News

Teens come up with trigonometry proof for Pythagorean Theorem, a problem that stumped math world for centuries

By Bill Whitaker

Updated on: September 1, 2024 / 7:00 PM EDT / CBS News

This is an updated version of a story first published on May 5, 2024. The original video can be viewed  here . 

For many high school students returning to class this month, it may seem like geometry and trigonometry were created by the Greeks as a form of torture. 

So imagine our amazement when we heard two high school seniors had proved a mathematical puzzle that was thought to be impossible for two thousand years. 

We met Calcea Johnson and Ne'Kiya Jackson, at their all-girls Catholic high school in New Orleans. And, as we first reported this past spring, we expected to find two mathematical prodigies.  

Instead, we found at St. Mary's Academy , all students are told their possibilities are boundless.

Come Mardi Gras season, New Orleans is alive with colorful parades, replete with floats, and beads, and high school marching bands.

In a city where uniqueness is celebrated, St. Mary's stands out – with young African American women playing trombones and tubas, twirling batons and dancing - doing it all, which defines St. Mary's, students told us.

Junior Christina Blazio says the school instills in them they have the ability to accomplish anything. 

Christina Blazio: That is kinda a standard here. So we aim very high - like, our aim is excellence for all students. 

The private Catholic elementary and high school sits behind the Sisters of the Holy Family Convent in New Orleans East. The academy was started by an African American nun for young Black women just after the Civil War. The convent still supports the school with the help of alumni.

In December 2022, seniors Ne'Kiya Jackson and Calcea Johnson were working on a school-wide math contest that came with a cash prize.

Ne'Kiya Jackson and Calcea Johnson

Ne'Kiya Jackson: I was motivated because there was a monetary incentive.

Calcea Johnson: 'Cause I was like, "$500 is a lot of money. So I-- I would like to at least try."

Both were staring down the thorny bonus question.

Bill Whitaker: So tell me, what was this bonus question?

Calcea Johnson: It was to create a new proof of the Pythagorean Theorem. And it kind of gave you a few guidelines on how would you start a proof.

The seniors were familiar with the Pythagorean Theorem, a fundamental principle of geometry. You may remember it from high school: a² + b² = c². In plain English, when you know the length of two sides of a right triangle, you can figure out the length of the third.

Both had studied geometry and some trigonometry, and both told us math was not easy. What no one told  them  was there had been more than 300 documented proofs of the Pythagorean Theorem using algebra and geometry, but for 2,000 years a proof using trigonometry was thought to be impossible, … and that was the bonus question facing them.

Bill Whitaker: When you looked at the question did you think, "Boy, this is hard"?

Ne'Kiya Jackson: Yeah. 

Bill Whitaker: What motivated you to say, "Well, I'm going to try this"?

Calcea Johnson: I think I was like, "I started something. I need to finish it." 

Bill Whitaker: So you just kept on going.

Calcea Johnson: Yeah.

For two months that winter, they spent almost all their free time working on the proof.

CeCe Johnson: She was like, "Mom, this is a little bit too much."

CeCe and Cal Johnson are Calcea's parents.

CeCe Johnson:   So then I started looking at what she really was doing. And it was pages and pages and pages of, like, over 20 or 30 pages for this one problem.

Cal Johnson: Yeah, the garbage can was full of papers, which she would, you know, work out the problems and-- if that didn't work she would ball it up, throw it in the trash. 

Bill Whitaker: Did you look at the problem? 

Neliska Jackson is Ne'Kiya's mother.

Neliska Jackson: Personally I did not. 'Cause most of the time I don't understand what she's doing (laughter).

Michelle Blouin Williams: What if we did this, what if I write this? Does this help? ax² plus ….

Their math teacher, Michelle Blouin Williams, initiated the math contest.

Michelle Blouin Williams

Bill Whitaker: And did you think anyone would solve it?

Michelle Blouin Williams: Well, I wasn't necessarily looking for a solve. So, no, I didn't—

Bill Whitaker: What were you looking for?

Michelle Blouin Williams: I was just looking for some ingenuity, you know—

Calcea and Ne'Kiya delivered on that! They tried to explain their groundbreaking work to 60 Minutes. Calcea's proof is appropriately titled the Waffle Cone.

Calcea Johnson: So to start the proof, we start with just a regular right triangle where the angle in the corner is 90°. And the two angles are alpha and beta.

Bill Whitaker: Uh-huh

Calcea Johnson: So then what we do next is we draw a second congruent, which means they're equal in size. But then we start creating similar but smaller right triangles going in a pattern like this. And then it continues for infinity. And eventually it creates this larger waffle cone shape.

Calcea Johnson: Am I going a little too—

Bill Whitaker: You've been beyond me since the beginning. (laughter) 

Bill Whitaker: So how did you figure out the proof?

Ne'Kiya Jackson: Okay. So you have a right triangle, 90° angle, alpha and beta.

Bill Whitaker: Then what did you do?

Bill Whitaker with Calcea Johnson and Ne'Kiya Jackson

Ne'Kiya Jackson: Okay, I have a right triangle inside of the circle. And I have a perpendicular bisector at OP to divide the triangle to make that small right triangle. And that's basically what I used for the proof. That's the proof.

Bill Whitaker: That's what I call amazing.

Ne'Kiya Jackson: Well, thank you.

There had been one other documented proof of the theorem using trigonometry by mathematician Jason Zimba in 2009 – one in 2,000 years. Now it seems Ne'Kiya and Calcea have joined perhaps the most exclusive club in mathematics. 

Bill Whitaker: So you both independently came up with proof that only used trigonometry.

Ne'Kiya Jackson: Yes.

Bill Whitaker: So are you math geniuses?

Calcea Johnson: I think that's a stretch. 

Bill Whitaker: If not genius, you're really smart at math.

Ne'Kiya Jackson: Not at all. (laugh) 

To document Calcea and Ne'Kiya's work, math teachers at St. Mary's submitted their proofs to an American Mathematical Society conference in Atlanta in March 2023.

Ne'Kiya Jackson: Well, our teacher approached us and was like, "Hey, you might be able to actually present this," I was like, "Are you joking?" But she wasn't. So we went. I got up there. We presented and it went well, and it blew up.

Bill Whitaker: It blew up.

Calcea Johnson: Yeah. 

Ne'Kiya Jackson: It blew up.

Bill Whitaker: Yeah. What was the blowup like?

Calcea Johnson: Insane, unexpected, crazy, honestly.

It took millenia to prove, but just a minute for word of their accomplishment to go around the world. They got a write-up in South Korea and a shout-out from former first lady Michelle Obama, a commendation from the governor and keys to the city of New Orleans. 

Bill Whitaker: Why do you think so many people found what you did to be so impressive?

Ne'Kiya Jackson: Probably because we're African American, one. And we're also women. So I think-- oh, and our age. Of course our ages probably played a big part.

Bill Whitaker: So you think people were surprised that young African American women, could do such a thing?

Calcea Johnson: Yeah, definitely.

Ne'Kiya Jackson: I'd like to actually be celebrated for what it is. Like, it's a great mathematical achievement.

Achievement, that's a word you hear often around St. Mary's academy. Calcea and Ne'Kiya follow a long line of barrier-breaking graduates. 

The late queen of Creole cooking, Leah Chase , was an alum. so was the first African-American female New Orleans police chief, Michelle Woodfork …

And judge for the Fifth Circuit Court of Appeals, Dana Douglas. Math teacher Michelle Blouin Williams told us Calcea and Ne'Kiya are typical St. Mary's students.  

Bill Whitaker: They're not unicorns.

Michelle Blouin Williams: Oh, no no. If they are unicorns, then every single lady that has matriculated through this school is a beautiful, Black unicorn.

Pamela Rogers: You're good?

Pamela Rogers, St. Mary's president and interim principal, told us the students hear that message from the moment they walk in the door.

St. Mary's Academy president and interim principal Pamela Rogers

Pamela Rogers: We believe all students can succeed, all students can learn. It does not matter the environment that you live in. 

Bill Whitaker: So when word went out that two of your students had solved this almost impossible math problem, were they universally applauded?

Pamela Rogers: In this community, they were greatly applauded. Across the country, there were many naysayers.

Bill Whitaker: What were they saying?

Pamela Rogers: They were saying, "Oh, they could not have done it. African Americans don't have the brains to do it." Of course, we sheltered our girls from that. But we absolutely did not expect it to come in the volume that it came.  

Bill Whitaker: And after such a wonderful achievement.

Pamela Rogers: People-- have a vision of who can be successful. And-- to some people, it is not always an African American female. And to us, it's always an African American female.

Gloria Ladson-Billings: What we know is when teachers lay out some expectations that say, "You can do this," kids will work as hard as they can to do it.

Gloria Ladson-Billings, professor emeritus at the University of Wisconsin, has studied how best to teach African American students. She told us an encouraging teacher can change a life.

Bill Whitaker: And what's the difference, say, between having a teacher like that and a whole school dedicated to the excellence of these students?

Gloria Ladson-Billings: So a whole school is almost like being in Heaven. 

Bill Whitaker: What do you mean by that?

Bill Whitaker and Gloria Ladson-Billings

Gloria Ladson-Billings: Many of our young people have their ceilings lowered, that somewhere around fourth or fifth grade, their thoughts are, "I'm not going to be anything special." What I think is probably happening at St. Mary's is young women come in as, perhaps, ninth graders and are told, "Here's what we expect to happen. And here's how we're going to help you get there."

At St. Mary's, half the students get scholarships, subsidized by fundraising to defray the $8,000 a year tuition. Here, there's no test to get in, but expectations are high and rules are strict: no cellphones, modest skirts, hair must be its natural color.

Students Rayah Siddiq, Summer Forde, Carissa Washington, Tatum Williams and Christina Blazio told us they appreciate the rules and rigor.

Rayah Siddiq: Especially the standards that they set for us. They're very high. And I don't think that's ever going to change.

Bill Whitaker: So is there a heart, a philosophy, an essence to St. Mary's?

Summer Forde: The sisterhood—

Carissa Washington: Sisterhood.

Tatum Williams: Sisterhood.

Bill Whitaker: The sisterhood?

Voices: Yes.

Bill Whitaker: And you don't mean the nuns. You mean-- (laughter)

Christina Blazio: I mean, yeah. The community—

Bill Whitaker: So when you're here, there's just no question that you're going to go on to college.

Rayah Siddiq: College is all they talk about. (laughter) 

Pamela Rogers: … and Arizona State University (Cheering)

Principal Rogers announces to her 615 students the colleges where every senior has been accepted.

Bill Whitaker: So for 17 years, you've had a 100% graduation rate—

Pamela Rogers: Yes.

Bill Whitaker: --and a 100% college acceptance rate?

Pamela Rogers: That's correct.

Last year when Ne'Kiya and Calcea graduated, all their classmates went to college and got scholarships. Ne'Kiya got a full ride to the pharmacy school at Xavier University in New Orleans. Calcea, the class valedictorian, is studying environmental engineering at Louisiana State University.

Bill Whitaker: So wait a minute. Neither one of you is going to pursue a career in math?

Both: No. (laugh)

Calcea Johnson: I may take up a minor in math. But I don't want that to be my job job.

Ne'Kiya Jackson: Yeah. People might expect too much out of me if (laugh) I become a mathematician. (laugh)

But math is not completely in their rear-view mirrors. This spring they submitted their high school proofs for final peer review and publication … and are still working on further proofs of the Pythagorean Theorem. Since their first two …

Calcea Johnson: We found five. And then we found a general format that could potentially produce at least five additional proofs.

Bill Whitaker: And you're not math geniuses?

Bill Whitaker: I'm not buying it. (laughs)

Produced by Sara Kuzmarov. Associate producer, Mariah B. Campbell. Edited by Daniel J. Glucksman.

headshot-600-bill-whitaker2.jpg

Bill Whitaker is an award-winning journalist and 60 Minutes correspondent who has covered major news stories, domestically and across the globe, for more than four decades with CBS News.

More from CBS News

Student describes Georgia school shooting: "It didn't feel real"

Site for Queen Elizabeth II memorial revealed

Fire tears through school dorm in Kenya, killing at least 17 young boys

IRS has recovered $1.3 billion in unpaid taxes from rich Americans

IMAGES

  1. The Math Problem Solving Toolbox

    set of problem solving tools in mathematics

  2. 4 Of The 7 Problem Solving Tools

    set of problem solving tools in mathematics

  3. Math Problem Solving Tools by Reading in Disguise

    set of problem solving tools in mathematics

  4. Math Problem Solving Examples With Solutions For Grade 4

    set of problem solving tools in mathematics

  5. The 10 Must-Know Math Problem Solving Techniques for Every Student

    set of problem solving tools in mathematics

  6. Problem-Solving Strategies

    set of problem solving tools in mathematics

VIDEO

  1. 8 Disciplines/Problem Solving Tools/LEAN MANUFACTURING

  2. Problem Solving tools

  3. [Tagalog] Solving set problem #set #solvingset #math7 #problemsolving #solvingsetproblem

  4. 7 Problem Solving Tools

  5. Problem Solving Lesson #5

  6. Solution of a nonstandard problem using the row operations tool

COMMENTS

  1. Module 1: Problem Solving Strategies

    Step 1: Understanding the problem. We are given in the problem that there are 25 chickens and cows. All together there are 76 feet. Chickens have 2 feet and cows have 4 feet. We are trying to determine how many cows and how many chickens Mr. Jones has on his farm. Step 2: Devise a plan.

  2. 20 Effective Math Strategies For Problem Solving

    Learn how to use different methods and approaches to solve math problems in the classroom and real-life. This article provides 20 strategies to help students understand, solve and check math problems, such as drawing models, acting out, working backwards and using formulas.

  3. Problem Solving Activities: 7 Strategies

    Learn how to integrate problem solving into your math program with seven strategies, such as seasonal problems, cooperative tasks, notice and wonder, and three-act math tasks. Get a free set of problem solving challenges and tips for asking guiding questions.

  4. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  5. Mathematical Ideas: Problem-Solving Techniques

    Learn how to use inductive and deductive reasoning, strategies, and tools to solve math problems. This chapter covers topics such as tables, charts, working backward, trial and error, guessing and checking, and drawing sketches.

  6. Problem Solving in Mathematics Education

    A book chapter that reviews four aspects of mathematical problem solving: heuristics, creativity, problem posing and digital technologies. It does not address the significance of mathematical reasoning in problem-solving, but it provides conceptual frameworks and research findings on problem solving processes and competencies.

  7. Problem-Solving in Mathematics Education

    Introduction. Problem-solving approaches appear in all human endeavors. In mathematics, activities such as posing or defining problems and looking for different ways to solve them are central to the development of the discipline. In mathematics education, the systematic study of what the process of formulating and solving problems entails and ...

  8. Problem-Solving Strategies

    Learn how to use diagrams, guess and check, tables, logical reasoning, patterns and working backward to solve math word problems. Find print and digital activities with 70 problems and solutions to practice and revise these strategies.

  9. Mathematics as a Complex Problem-Solving Activity

    This web page explains how to teach mathematics as a complex problem-solving activity that involves reasoning, communication, and collaboration. It discusses the theories, beliefs, and benefits of problem-solving in mathematics education, and provides examples of effective problems and strategies.

  10. PDF Six Strategies to Approach Problems 1 Make an Educated Guess and Check

    Learn how to help students construct viable arguments and critique the reasoning of others by using six solution strategies. The guide provides examples, resources, and references for the Common Core Mathematics Practice Standards.

  11. 5 Teaching Mathematics Through Problem Solving

    Learn how to teach mathematics through problem solving, a process that helps students develop a sense of solving real-life problems and applying mathematics to real world situations. Explore the criteria, features, and examples of worthwhile problems, and the benefits of low floor high ceiling tasks and Math in 3-Acts.

  12. 5 Strategies for Successful Problem Solving

    Learn how to choose, launch and wrap up problem solving tasks that build confidence and capability in your students. Find out how to use questions, tools and prompts to support productive exploration and make connections.

  13. Why It's So Important to Learn a Problem-Solving Approach to Mathematics

    Learn why problem solving is the most fundamental logical discipline and how it can help you tackle any problems. The web page explains the difference between problem solving and memorizing tricks, and how problem solving skills transfer to other fields.

  14. 5: Problem Solving

    5.1: Problem Solving An introduction to problem-solving is the process of identifying a challenge or obstacle and finding an effective solution through a systematic approach. It involves critical thinking, analyzing the problem, devising a plan, implementing it, and reflecting on the outcome to ensure the problem is resolved.

  15. GeoGebra Math Solver

    Solve algebra and other math problems with step-by-step explanations and graphs. GeoGebra Math Solver is a free online tool that enhances your problem-solving skills and learning.

  16. Mathway

    Mathway | Algebra Problem Solver

  17. PDF Developing mathematical problem-solving skills in primary school by

    solving the task are often forgotten when describing elements linked to mathematical problem-solving (Näveri et al., 2011p. 169). School mathematics often emphasi, zes teaching certain algorithms to fit certain types of problems instead of providing a wider variety of general tools for problem-solving (Näveri et al., 2011; Leppäaho, 2018).

  18. Microsoft Math Solver

    Solve math problems with step-by-step solutions, graphs, and explanations. Type or scan any math problem and get help in algebra, calculus, trigonometry, and more.

  19. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. You can enter your problem, choose a category and get instant solutions with step-by-step explanations.

  20. PDF Mathematics as a Complex Problem-Solving Activity

    t reading is a complex problem-solving activity. More recently, teachers have come to understand that becoming mathematically literate is also a complex problem-solving activity that increases i. power and flexibility when practiced more often. A problem in mathematics is any situation that must be resolved using mathematical tools but f.

  21. Student-Created Math Videos Reinforce Learning

    Understand the problem: Students reread the problem carefully, summarize and rewrite the information in mathematical notation, use keyword analysis, draw a picture or a diagram, or even act out the scenario. Devise a plan: Looking for patterns and solving a simpler problem are my favorite approaches, but other ideas—guess-and-check, working backward, eliminating possibilities, using a ...

  22. Standard 5: Use Appropriate Tools Strategically

    The Standard. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently ...

  23. PDF MATHEMATICAL PROBLEM-SOLVING STRATEGIES AMONG STUDENT TEACHERS

    This study explores the cognitive, metacognitive and other strategies used by student teachers in solving mathematical problems. It also examines the influence of these strategies on their academic performance and the role of heuristics in problem-solving.

  24. PDF STUDENTS' USE OF TECHNOLOGY IN MATHEMATICAL PROBLEM SOLVING ...

    This study documents how high school students use dynamic software, excel, and calculators to solve a routine problem in calculus. It explores how students transform technological artifacts into mathematical tools and develop different representations and strategies to analyze the problem.

  25. Math Message Boards FAQ & Community Help

    Small live classes for advanced math and language arts learners in grades 1-12. Visit AoPS ... math training & tools Alcumus Videos For the Win! ... Art of Problem Solving is an ACS WASC Accredited School. aops programs. AoPS Online. Beast Academy. AoPS Academy.

  26. Different mathematical solving methods can affect how information is

    When solving a mathematical problem, it is possible to call upon either the ordinal property of numbers, i.e., the fact that they are ordered, or their cardinal property, i.e., the fact that they ...

  27. Teens come up with trigonometry proof for Pythagorean Theorem, a

    A high school teacher didn't expect a solution when she set a 2,000-year-old Pythagorean Theorem problem in front of her students. Then Calcea Johnson and Ne'Kiya Jackson stepped up to the challenge.