• Show search

Perspectives

The Science of Sustainability

Can a unified path for development and conservation lead to a better future?

October 13, 2018

Aerial view of roads cutting through a forest of trees.

  • A False Choice
  • Two Paths to 2050
  • What's Possible
  • The Way Forward
  • Engage With Us

The Cerrado may not have the same name recognition as the Amazon , but this vast tropical savannah in Brazil has much in common with that perhaps better-known destination. The Cerrado is also a global biodiversity hotspot, home to thousands of species only found there, and it is also a critical area in the fight against climate change, acting as a large carbon pool.

But Brazil is one of the two largest soy producers in the world—the crop is one of the country’s most important commodities and a staple in global food supplies—and that success is placing the Cerrado in precarious decline. To date, around 46% of the Cerrado has been deforested or converted for agriculture.

Producing more soy doesn’t have to mean converting more native habitat, however. A new spatial data tool is helping identify the best places to expand soy without further encroachment on the native landscapes of the Cerrado. And with traders and bankers working together to offer preferable financing to farmers who expand onto already-converted land, Brazil can continue to produce this important crop, while protecting native habitat and providing more financial stability for farmers.

The Cerrado is just one region of a vast planet, of course, but these recent efforts to protect it are representative of a new way of thinking about the relationship between conservation and our growing human demands. It is part of an emerging model for cross-sector collaboration that aims to create a world prepared for the sustainability challenges ahead.

Is this world possible? Here, we present a new science-based view that says “Yes”—but it will require new forms of collaboration across traditionally disconnected sectors, and on a near unprecedented scale.

Thumbnail of The Science of Sustainability download

Download a PDF version of this feature. Click to see translated versions of this page.

I.  A False Choice

Many assume that economic interests and environmental interests are in conflict. But new research makes the case that this perception of development vs. conservation is not just unnecessary but actively counterproductive to both ends. Achieving a sustainable future will be dependent on our ability to secure both thriving human communities and abundant and healthy natural ecosystems.

The Nature Conservancy partnered with the University of Minnesota and 11 other organizations to ask whether it is possible to achieve a future where the needs of both people and nature are advanced. Can we actually meet people’s needs for food, water and energy while doing more to protect nature? 

The perception of development vs. conservation is not just unnecessary, but actively counterproductive to both ends.

To answer this question, we compared what the world will look like in 2050 if economic and human development progress in a “business-as-usual” fashion and what it would look like if instead we join forces to implement a “sustainable” path with a series of fair-minded and technologically viable solutions to the challenges that lie ahead.

In both options, we used leading projections of population growth and gross domestic product to estimate how demand for food, energy and water will evolve between 2010 and 2050. Under business-as-usual, we played out existing expectations and trends in how those changes will impact land use, water use, air quality, climate, protected habitat areas and ocean fisheries. In the more sustainable scenario, we proposed changes to how and where food and energy are produced, asking if these adjustments could result in better outcomes for the same elements of human well-being and nature. Our full findings are described in a peer-reviewed paper— “An Attainable Global Vision for Conservation and Human Well-Being” —published in  Frontiers in Ecology and the Environment .

These scenarios let us ask, can we do better? Can we design a future that meets people’s needs without further degrading nature in the process?

Our answer is “yes,” but it comes with several big “ifs.” There is a path to get there, but matters are urgent—if we want to accomplish these goals by mid-century, we’ll have to dramatically ramp up our efforts now. The next decade is critical.

Furthermore, changing course in the next ten years will require global collaboration on a scale not seen perhaps since World War II. The widely held impression that economic and environmental goals are mutually exclusive has contributed to a lack of connection among key societal constituencies best equipped to solve interconnected problems—namely, the public health, development, financial and conservation communities. This has to change.

The good news is that protecting nature and providing water, food and energy to a growing world do not have to be either-or propositions. Our view, instead, calls for smart energy, water, air, health and ecosystem initiatives that balance the needs of economic growth and resource conservation equally. Rather than a zero-sum game, these elements are balanced sides of an equation, revealing the path to a future where people and nature thrive together.

View of the English Bay in Vancouver, Canada at sunset.

II. Two Paths to 2050

This vision is not a wholesale departure from what others have offered. A number of prominent scientists and organizations have put forward important and thoughtful views for a sustainable future; but often such plans consider the needs of people and nature in isolation from one another, use analyses confined to limited sectors or geographies, or assume that some hard tradeoffs must be made, such as slowing global population growth, taking a reduction in GDP growth or shifting diets off of meat. Our new research considers global economic development and conservation needs together, more holistically, in order to find a sustainable path forward.

What could a different future look like? We’ve used as our standard the United Nations’ Sustainable Development Goals (SDGs), a set of 17 measures for “a world where all people are fed, healthy, employed, educated, empowered and thriving, but not at the expense of other life on Earth.” Our analysis directly aligns with ten of those goals. Using the SDGs as our guideposts, we imagine a world in 2050 that looks very different than the one today—and drastically different from the one we will face if we continue in business-as-usual fashion.

A sustainable future is possible.

To create our assessment of business-as-usual versus a more sustainable path, we looked at 14 measurements including temperature change, carbon dioxide levels, air pollution, water consumption, food and energy footprints, and protected areas.

Business as usual compared to conservation pathway showing changes in temperature, air quality, fisheries, and protected land.

Over the next 30 years, we know we’ll face rapid population growth and greater pressures on our natural resources. The statistics are sobering—with 9.7 billion people on the planet by 2050, we can expect a 54 percent increase in global food demand and 56 percent increase in energy demand. While meetings these growing demands and achieving sustainability is possible, it is helpful to scrutinize where the status quo will get us.

The World Health Organization, World Economic Forum and other leading global development organizations now say that air pollution and water scarcity—environmental challenges—are among the biggest dangers to human health and prosperity. And our business-as-usual analysis makes clear what many already fear: that human development based on the same practices we use today will not prepare us for a world with nearly 10 billion people.

To put it simply, if we stay on today’s current path, we risk being trapped in an intensifying cycle of scarcity—our growth opportunities severely capped and our natural landscapes severely degraded. Under this business-as-usual scenario, we can expect global temperature to increase 3.2°C; worsened air pollution affecting 4.9 billion more people; overfishing of 84 percent of fish stocks; and greater water stress affecting 2.75 billion people. Habitat loss continues, leaving less than 50 percent of native grasslands and several types of forests intact.

However, if we make changes in where and how we meet food, water and energy demands for the same growing global population and wealth, the picture can look markedly different by mid-century. This “sustainability” path includes global temperature increase limited to 1.6°C—meeting Paris Climate Accord goals—zero overfishing with greater fisheries yields, a 90 percent drop in exposure to dangerous air pollution, and fewer water-stressed people, rivers and agricultural fields. These goals can be met while natural habitats extend both inside and outside protected areas. All signatory countries to the Aichi Targets meet habitat protection goals, and more than 50 percent of all ecoregions’ extents remain unconverted, except temperate grasslands (of which over 50 percent are already converted today).

Behind the Science

Discover how TNC and its partners developed the models for 2050.

Aerial view of wind turbines on agricultural land.

III. What's Possible

Achieving this sustainable future for people and nature is possible with existing and expected technology and consumption, but only with major shifts in production patterns. Making these shifts will require overcoming substantial economic, social and political challenges. In short, it is not likely that the biophysical limits of the planet will determine our future, but rather our willingness to think and act differently by putting economic development and the environment on equal footing as central parts of the same equation.

Climate, Energy and Air Quality

Perhaps the most pressing need for change is in energy use. In order to both meet increased energy demand and keep the climate within safe boundaries, we’ll need to alter the way we produce energy, curtailing emissions of carbon and other harmful chemicals.

Under a business-as-usual scenario, fossil fuels will still claim a 76 percent share of total energy in 2050. A more sustainable approach would reduce that share to 13 percent by 2050. While this is a sharp change, it is necessary to stanch the flow of harmful greenhouse gases into the atmosphere.

future environment essay

The reduction in carbon-based energy could be offset by increasing the share of energy from renewable sources to 54 percent and increasing nuclear energy to one third of total energy output—delivering a total of almost 85 percent of the world’s energy demand from non-fossil-fuel sources.

Additionally, we will only achieve the full extent of reduced climate impacts if we draw down existing carbon from the atmosphere. This can be done through greater investment in carbon capture and storage efforts, including natural climate solutions—land management strategies such as avoiding forest loss, reforestation, investments in soil health and coastal ecosystem restoration.

The net benefit of these energy redistribution efforts is twofold. First, they lower the rate at which greenhouse gases are flowing into the air—taking atmospheric carbon projections down to 442 parts per million, compared to business-as-usual estimates that put the level closer to 520 ppm.

Second, these energy source shifts would create a marked decline in particulate air pollution. Our models show that the higher fossil fuel use in the business-as-usual scenario is likely to expose half the people on the planet to poorer air quality by 2050. Under the sustainable scenario, that figure drops to just 7 percent of the world’s inhabitants, thanks to lower particulate emissions from renewable and nuclear energy sources.

Case Studies: 

  • Forests That Fight Climate Change: Brazil’s Serra da Mantiqueira region demonstrates how reforestation can tackle climate change, improve water supplies, and increase incomes in rural communities.  Learn More
  • Can Trees Be a Prescription for Urban Health?:  Conservationists, community organizations and public health researchers joined forces to plant trees in Louisville, Kentucky and monitor their impact on air quality and residents’ health.  Learn More

Near Cachoeira Reservoir, Brazil.

Food, Habitat and City Growth

Meeting the sustainable targets we propose requires a second front on land to shift how we use available real estate and where we choose to conduct necessary activities. Overall, the changes we include in our more sustainable view allow the world to meet global food, water and energy demands with no additional conversion of natural habitat for those needs—an outcome that is not possible under business as usual.

While transitioning away from fossil fuels is essential to meet climate goals, new renewable energy infrastructure siting will present land-use challenges. Renewable energy production takes up space, and if not sited well it can cause its own negative impacts on nature and its services to people. In our more sustainable path, we address this challenge by preferencing the use of already converted land for renewables development, lessening the impact of new wind and solar on natural habitat. We also exclude expansion of biofuels, as they are known to require extensive land area to produce, causing conflicts with natural habitat and food security.

Perhaps most encouraging, we show that it is possible to meet future food demands on less agricultural land than is used today. Notably, our scenario keeps the mix of crops in each growing region the same, so as not to disrupt farmers’ cultures, technologies, capacity or existing crop knowledge. Instead, we propose moving which crops are grown where within growing regions, putting more “thirsty” crops in areas with more water, and matching the nutrient needs of various crops to the soils available.

Unlike some projections used by others, for this scenario we left diet expectations alone, matching meat consumption with business-as-usual expectations. If we were able to reduce meat consumption, especially by middle- and high-income countries where nutritional needs are met, reducing future agricultural land, water and pollution footprints would be even easier.

Meanwhile, on the land protection front, our analysis is guided by the Convention on Biological Diversity, the leading global platform most countries have signed. Each signatory country has agreed to protect up to 17 percent of each habitat type within its borders. While many countries will fall short of this goal under business as usual, it can be achieved in our more sustainable option.

Use already degraded land for energy development.

By making changes in food, water and energy use, we can better protect nearly all habitat types.

We acknowledge 17 percent is an imperfect number, and many believe more natural habitat is needed to allow the world’s biodiversity to thrive. Looking beyond protected areas, we see additional differences in the possible futures we face. Our more sustainable option retains 577 million hectares more natural habitat than business as usual, much of it outside of protected areas. Conservation has long focused on representation—it is not only important to conserve large areas, but to represent different kinds of habitat. Under business as usual, we will lose more than half of several major habitat types by mid-century, including temperate broadleaf and mixed forests, Mediterranean forest, and temperate grassland. Flooded and tropical grasslands approach this level of loss as well.

But with the proposed shifts in food, water and energy use, we can do better for nearly all habitats in our more sustainable scenario. The one exception is temperate grasslands, a biome that has already lost more than 50 percent of its global extent today. In all, the more sustainable scenario shows a future that would be largely compatible with emerging views that suggest protecting half of the world’s land system.

 Case Study:

  • Managing Sprawling Soy:  A partnership between businesses and nonprofit groups in Brazil will help farmers plant soy in the areas where it is has the smallest impact on natural habitats.  Learn More

The gravel bottoms and braided channels of rivers leading into Iliamna Lake in southwest Alaska are ideal for the many king salmon that spawn in the lake's waters.

Drinking Water, River Basins and Fisheries

Water presents a complex set of challenges. Like land, it is both a resource and a habitat. Fresh water resources are dwindling while ocean ecosystems are overburdened by unregulated fishing and pollution. Business-as-usual projections estimate that 2.75 billion people will experience water scarcity by 2050 and 770 water basins will experience water stress. Africa and Central Asia in particular would see fewer water stressed basins in the sustainable scenario.

future environment essay

Changes in energy sources and food production (see above sections) would lead to significant water savings by reducing use of water as a coolant in energy production and by moving crops to areas where they need less irrigation. Thanks to these changes, our more sustainable option for the future would relieve 104 million people and biodiversity in 25 major river basins from likely water stress.

Meanwhile, in the seas, we find an inspiring possibility for fisheries. Continuing business-as-usual fisheries management adds further stress to the oceans and the global food system as more stocks decline, further diminishing the food we rely on from the seas. But more sustainable fisheries management is possible, and our projections using a leading fisheries model shows that adopting sustainable management in all fisheries by mid-century would actually increase yield by over a quarter more than we saw in 2010.

And, while we know that aquaculture is a certain element of the future of fish and food, many questions remain about precisely how this industry will grow, and how it can be shaped to be a low-impact part of the global food system. Given these unknowns, we kept aquaculture growth the same in both our views of the future.

future environment essay

 Case Studies:

  • Cities and Farmers Find Common Ground on Water: Smarter agricultural practices in the Kenya’s Upper Tana River Watershed are resulting in better yields for farmers and more reliable water supplies for the city of Nairobi.  Learn More
  • Technology Offers a Lifeline for Fish:  A new mobile application being piloted in Indonesia is helping fill a crucial gap in fisheries management—providing accurate data about what species are being caught where.  Learn More

The land meets the sea in Uruma City, Japan

IV.  The Way Forward

This analysis does not represent a panacea for the growing need for economic development across the planet or for the environmental challenges that are ahead. But it does provide an optimistic viewpoint and an integrated picture that can serve as a starting point for discussion.

Our goal is to apply new questions—and ultimately new solutions—to our known problems. We present one of many possible paths to a different future, and we welcome like-minded partners and productive critics to share their perspectives with us. We encourage people from across society to join the conversation, to fill gaps where they exist, and to bring other important considerations to our attention. Most of all, we call on the development (e.g. energy, agriculture, infrastructure), health, and financial communities—among others—to work with us to find new ways of taking action together.

Ultimately, by illustrating a viable pathway to sustainability that serves both the needs of economic and environmental interests—goals that many have long assumed were mutually exclusive—we hope to inspire the global community to engage in the difficult but necessary social, economic and political dialogue that can make a sustainable future a reality.

Protecting nature and providing water, food and energy to the world can no longer be either-or propositions. Nature and human development are both central factors in the same equation. We have at our disposal the cross-sector expertise necessary to make informed decisions for the good of life on our planet, so let’s use it wisely. Our science affirms there is a way.

Join us as we chart a new path to 2050 by helping people and nature thrive—together.

Testimonials

future environment essay

Opportunities to Engage

Designing strategies to address global challenges for people and nature requires integration of diverse bodies of evidence that are now largely segregated. As actors across the health, development and environment sectors pivot to act collectively, they face challenges in finding and interpreting evidence on sector interrelationships, and thus in developing effective evidence-based responses.

Learn more about these emerging coalitions that offer opportunities to engage and connect with shared resources.

future environment essay

Bridge Collaborative

The Bridge Collaborative unites people and organizations in health, development and the environment with the evidence and tools to tackle the world’s most pressing challenges. Learn More

SNAPP logo

Science for Nature and People Partnership

SNAPP envisions a world where protecting and promoting nature works in concert with sustainable development and improving human well-being. Learn More

Wicked Econfest Logo

Wicked Econ Fest

Wicked Econ Fests are workshops between leading economics, finance, conservation and policy experts to tackle specific, decision-driven challenges. Learn More

Macro view of a leaf.

Global Insights

Check out our latest thinking and real-world solutions to some of the most complex challenges facing people and the planet today. Explore our Insights

Life in 2050: What Will the Environment Look Like Where You Live in 20 Years?

The world will be a very different place by 2050, as environmental problems become an existential threat to civilization as we know it..

Matthew S. Williams

Matthew S. Williams

Life in 2050: What Will the Environment Look Like Where You Live in 20 Years?

Welcome to the final installment in the “Life in 2050” series! Our previous installments examined what life will look like from different vantage points –  warfare , economics , education , everyday living , space exploration (in two installments ), transportation , and medicine . Today, we conclude things by taking a look at the impact climate change will have by mid-century.

As noted a few times in this series, climate change is (and will continue to be) one of the main drivers of change in this century (the other being the accelerating pace of technological change). And when it comes to changes in our climate, the resulting impact will be significant, far-reaching, and will come in many forms.

These include environmental crises and natural disasters and the geopolitical, economic, health, and humanitarian crises that will result. Our attempts to address any one of these problems have the potential to exacerbate one or more of the others. Ultimately, this raises some very serious questions.

For starters, just how bad will things get by 2050 ? Second, how will we deal with the problems that are anticipated? And lastly, is there a chance things will get better after 2050, or are they expected to keep getting worse? Interestingly enough, the answer to this last question depends on how we deal with the first two.

Things will get worse

Between now and 2050, we will continue to see an increase in the environmental and climate-related hazards that are a major concern today. These hazards are innumerable but can be broken down into five broad categories:

  • Increased drought and wildfires
  • Increased flooding and extreme weather
  • Icecap melting and rising sea levels
  • Collapsing agriculture and fisheries
  • Pandemics and increased spread of disease
  • Ecosystem disruption and species extinction

No matter what, these issues are all predicted to become worse between now and 2050. The only question is, will things get better after they become worse? The difference between the two comes down to our efforts as a species to address our habits and dependencies. As the research shows, the overall impact on our environment depends entirely on our ability to curb carbon emissions.

For this reason, international environmental summits have set baseline goals for emission reductions. Previously, the signatories of the Kyoto Protocols had identified atmospheric CO 2 concentrations of 400 to 450 parts per million (ppm) as a limit. The theory is that, if we can keep CO 2 levels below this baseline, we could mitigate the environmental changes that will result.

To illustrate, the last time that atmospheric CO 2 levels were as high as they are today was during the Pleiocene Era (ca. 3 million years ago). At this time, average global temperatures were 3.6 to 5.4 °F (2 to 3 °C) higher than they were during the pre-industrial era (prior to 1750 to the present), and sea levels were 50 to 80 feet (15 to 25 meters) higher than they are today.

Unfortunately, as of April of 2015 , the NOAA announced that atmospheric levels of CO 2 reached 400 ppm and were still climbing. As of February of 2021, they have reached 415 ppm, and the upward trend will continue. This essentially means that even if we abandoned fossil fuels entirely today, the resulting effects of climate change will still be felt for decades (even centuries) to come.

At this point, it’s clear that CO 2 levels will not level off anytime soon, and that establishing new goals is the best we can do. The only question is, just how much will we be able to curb our emissions? If we can keep them, and the resulting atmospheric CO 2 within a certain threshold, things will get better after they’ve gotten worse. If we don’t, things will continue to get worse.

Because of this, scientific agencies engaged in climate and Earth science – NASA, the National Oceanic and Atmospheric Agency (NOAA), the Intergovernmental Panel on Climate Change (IPCC), the United Nations Environmental Program (UNEP), and others – have created climate models that offer different predictive scenarios based on how high CO 2 levels will reach.

Hotter days lie ahead!

According to the IPCC Fifth Assessment Report (AR5), average global temperatures will rise between 2.7 to 3.6 º F ( 1.5 ºC to 2 ºC). As before, these figures are entirely dependent on our ability to curb carbon emissions. The former is based on accumulated atmospheric levels of 430 to 480 gigatons of CO 2 (GtCO 2 ), where the latter is based on levels of 480 to 530.

While this may not sound like a big increase, it’s important to note that this represents a global average, accounting for seasonal and regional variations. It should also be noted that the first scenario represents a 50% reduction in annual CO 2 emissions (compared to 2010 levels), whereas the latter reflects no change at all.

At the Earth’s mid-latitudes, the hottest days will be up to 5.4ºF (3ºC) hotter in the first scenario, while an increase of up to 7.2ºF (4ºC) will occur in the second scenario. At higher latitudes, the coldest nights will warm by 8.1 to 10.8°F (4.5 to 6°C) while in the Arctic, temperatures will become warmer by 9.9 to 14.4°F (5.5 to 8°C) and cold spells will be shorter.

This will mean that less ice will be retained by the polar ice caps every passing winter, which in turn will mean increased absorption of solar radiation come summer. It is also estimated that 14% of Earth’s population will be exposed to severe heat waves at least once every five years in the first scenario. That number jumps to 37% and near-annual heatwaves in the second.

Densely-populated regions will be especially hard hit, and up to 350 million more people in megacities will suffer from the resulting heat stress by 2050. Similarly, these temperature increases will lead to severe drought in many parts of the world, which will drastically impact agriculture and increased water stress in urban areas.

South Asia will be in particular danger since  four of the  most heavily populated cities will be located there by 2050. These include Mumbai (42.4 million; first place), Delhi (36 million; second place), and Kolkatta (33 million; fifth place) in India, and Dhaka (35.2 million; third place), and Karachi (31.7 million; in eighth place) in neighboring Bangladesh and Pakistan (respectively).

Those areas that will be particularly hard hit include the Mediterranean (Southern Europe, Northern Africa, and West Asia), Sub-Saharan Africa, South America, and Australia.  While the resulting death toll is difficult to predict, recent heatwaves and the resulting deaths indicate that it won’t be pretty.

In West Asia and the Middle East, increased temperatures of between 5.4 and 7.2ºF (3 and 4ºC) will greatly exacerbate the problem of droughts and severe heatwaves . In this region, considerable stress is already placed on the Tigris and Euphrates rivers, which originate in the mountains of eastern Turkey and pass through Syria and Iraq before entering into the Euphrates.

In the summer of 2019, heatwaves in June and July were responsible for the deaths of close to 1500 people in France , 400 in the Netherlands , and 900 “extra deaths” in the UK . Similarly, in 2015, India experienced one of its most intense heatwaves in recent years, which caused more than 2,500 deaths between May and June .

Once again, these highlighted scenarios represent the difference between a 50% reduction in emissions vs. “business as usual.” If CO 2 emissions exceed the 2010 baseline, the situation will become far worse. According to the AR5, emissions of 580 – 720 Gt will result in an increase of 3.6 to 5.4°F (2 and 3°C) while levels of 720 – 1000 Gt will mean an increase of 6.3°F (3.5°C) or more.

While temperature increases within the two highlighted scenarios will have significant implications, they will potentially be sustainable in the long run. If average temperatures increase further, life will become untenable for many regions on the planet, with the potential to displace tens of millions.

Rising sea levels

Another major threat associated with climate change is the prospect that temperature increases will result in the loss, or severe shrinking, of the polar ice caps. This will result in rising sea levels around the world, threatening coastal cities, as well as inland regions wherever major waterways are connected to the world’s oceans.

This trend is already happening, and the consequences are being felt all across the world. According to a recent study by the  NASA Goddard Space Flight Center , sea levels have been rising at an average rate of 3.4 mm/year between January 15 th , 1993, and March 11 th , 2021. The same data indicates that since 1900, global sea levels have risen by an average of 20 cm in total.

According to the IPCC  Special Report on the Ocean and Cryosphere in a Changing Climate (issued in 2019), by 2050 global sea levels (GSL) are expected to be 9.44 to 15 inches ( 24 to 38 cm) higher on average. However, more recent NOAA estimates have incorporated new findings on ice sheet dynamics from Greenland and Iceland.

These ice samples indicate that average increases in GSLs have been accelerating over time and that this could mean an average increase of 1 to 3 ft (0.3 to 0.9 m) by 2050. During storm surges, coastal waters will be pushed further inland, leading to drastically increased instances of “nuisance flooding.”

Again, this represents an average increase and will vary depending on the region, thermal expansion, changing winds, air-sea heat, freshwater fluxes, atmospheric pressure, and the addition of melting ice into the ocean. These factors will alter ocean circulation and weather patterns, which will disrupt fisheries and threaten coastal and low-lying regions.

Again, urban centers will be especially hard hit, mainly because many people live close to the world’s oceans. According to a 2017 report by the UN Ocean Conference , more than 10% of the world’s population lives in coastal areas that are less than 33 ft (10 m) above sea level. Meanwhile, about 40% of the world’s population lives within 60 mi (100 km) of the coast.

This works out to about 37% of the global population living within “coastal communities,” where access to the sea and marine resources is vital to the lives and livelihood of the local population. According to projections issued by the Climate Center in 2019 , annual flooding and sea-level rise will mean land occupied by more than 300 million people will be underwater.

Increased spread of disease

Another major consideration presented by the IPCC AR5 is how changing temperatures will result in increased levels of disease . As it states :

“Throughout the 21st century, climate change is expected to lead to increases in ill-health in many regions and especially in developing countries with low income, as compared to a baseline without climate change… Risks from vector-borne diseases are projected to generally increase with warming, due to the extension of the infection area and season, despite reductions in some areas that become too hot for disease vectors.”

The major drivers of this trend will include increased temperatures, flooding, urbanization, and the movement of human populations around the world. This will lead to increases in food- and water-borne diseases, especially those spread by pests like fleas, ticks, and mosquitoes .

In fact, by 2050, it is estimated that half the world’s population could be at risk of mosquito-borne diseases like malaria , dengue fever, and the Zika virus. As a result, infectious diseases are projected to surpass heart disease as the world’s number one cause of death, creating a healthcare crisis that would cost at least $100 trillion in the process .

Increased levels of air pollution, ground-level ozone, and airborne allergens will also lead to higher rates of c hronic obstructive pulmonary disease (COPD) and other respiratory illnesses. Combined with other disease vectors, this will put a significant strain on health care systems , especially in urban centers in the least developed countries.

Species extinction

Another major warning contained in the AR5 is how climate change will impact biodiversity and lead to increased rates of species extinction due to drought, forest fires, and the spread of invasive species. Once again, the report found that the potential impact varied considerably between temperature increases of 2.7 and 3.6º F ( 1.5ºC to 2ºC).

The report studied 105,000 species of insects, plants, and vertebrates and determined that in both scenarios, there would be a significant impact on their populations. In the former scenario, 6% of insects, 8% of plants, and 4% of vertebrates were projected to lose over half of their geographic range. In the latter, those numbers rose to 18% of insects, 16% of plants, and 8% of vertebrates.

The consequences of this would be considerable. For insects, the loss of range would mean a loss of pollinators, such as bees , hoverflies, and blowflies, which are essential to the life cycle of countless species of plants (and agriculture). In polar regions, the increased loss of habitat could lead to the extinction of species such as penguins and polar bears .

In ocean basins , sharks , many species of fish, rays , and phytoplankton are becoming increasingly threatened as temperature changes  and altered ecosystems force migrations poleward and/or to deeper, cooler waters. Increased temperatures are also leading to bleaching and habitat loss in warm-water coral reefs.

Once again, the extent of this depends on which scenario comes true. In the first, about 7% of land areas are projected to see their ecosystems shift from one type of biome to another, which increases to 13% in the second. The warming trends will also lead to a reduction of rainforest biomass, increased deforestation, and the loss of the southern boundaries in boreal forests.

Sinking cities

The population of Africa is expected to increase by 83% and reach 2.5 billion by 2050, which will be driven largely by urban growth, which itself will increase threefold by 2050. The largest population centers are expected to include Kinshasha, Lagos, Cairo, Khartoum, and Dar es Salaam, with populations ranging from 35 million (Kinshasha) to slightly less than 16 million (Dar es Salaam).

Every one of these cities is located on a major river and/or coastal region, which means flooding will also be a major concern. As a result of rising sea levels and extreme weather, these cities risk increased flooding, the displacement of their residents, and (in some cases) may even need to be abandoned.

Consider the Nile Delta, where the majority of Egypt’s heavy industry and population are currently located. By 2050, much of the Delta will be submerged, meaning that cities like Alexandria will be underwater, while Cairo will see heavy flooding. In part to address this, Egypt plans to move its seat of government to the New Administrative Capital located 28 miles (45 km) to the east.

On top of that, many cities in low-lying areas are expected to be completely flooded or submerged by 2050. These include Basra , southern Iraq, and the coastlines of southern Pakistan and north-east India – ironically, as severe drought will be taking place further in the interior. Farther east, Kolkata and much of southern Bangladesh will also experience flooding and/or be submerged.

The coastal city of Mumbai , India’s financial capital and one of the largest cities in the world, also faces severe flooding and could even be wiped out by rising tides. The city’s historic downtown core and all the densely populated areas built on the series of islands that make up the region have been identified as being at risk. 

future environment essay

In Southeast Asia, at least two major capitals may have to be abandoned because of rising sea levels and flooding. These include Bangkok and Jakarta , the capitals of Thailand and Indonesia, respectively. Similarly, the Mekong Delta could be underwater as well, not to mention Ho Chi Minh City (formerly Saigon) and parts of the northern capital of Hanoi.

In addition, the capital city of Manila is anticipated to become the 12th most populous city in the world, with a population of over 23.5 million . However, recent studies have also indicated that the Metro Manila region (and many other places in the Philippines) could effectively be submerged by then , forcing the evacuation of tens of millions.

In China, floodwaters and rising tides threaten to consume the very heart of Shanghai , one of Asia’s most important economic hubs, and many other cities around it. Then there’s the Pearl River Delta , a major economic hub in southern China that includes Guangzhou, Shenzen, Hong Kong, Macau, and others.

This region is currently home to more than 78 million people and will also experience significant flooding by 2050. In North America, cities like New Orleans are expected to be submerged by 2050, despite its extensive system of levees. The southern tip of the Everglades in Florida will also be underwater this time, as well as much of the Mexican state of Tabasco and the Mayan Riveria in southern Mexico.

Further north, flooding will also devastate much of southern Philadelphia, Hoboken, Newark, Jersey City , and Long Island’s southern coast . In the west, Canada’s city of Vancouver (which sits on the Fraser River Delta) will be largely underwater, as will towns along the coast just north of Seattle and parts of San Francisco .

Up to the challenge?

Dealing with the range of changes that will result from climate change will be no easy task. All across the globe, new pandemics, extreme weather , mass migrations, conflict, and natural disasters will stress disaster relief, healthcare, and governments to their breaking point. If not properly addressed, the death toll is expected to reach a few hundred million or more.

In short, the world will be torn between two extremes: heavy rains, floods, and surging tides on the one side, and drought, wildfires, and disease on the other. Given that some parts of the world will be hit harder than others, these hazards will trigger mass migrations, which will lead to humanitarian crises.

With their resources stressed to the breaking point – particularly food, water, and medicine – the least-impacted nations of the world will only be willing or able to do so much. In fact, increased shortages at home are likely to lead to isolationist and xenophobic governments whose solution to the crisis is to close the door and throw up barriers.

These problems are already apparent in the world today and will pick up speed as time goes on. Luckily for all of us, the solutions are also already here, and their development and adoption will speed up as 2050 draws nearer. For starters, desalination technology has come a long way, specifically as a means of addressing future water shortages.

There are also countless technologies designed to reduce water use, recycle greywater, and eliminate waste. Big data and machine learning are also being used to address the various symptoms of climate change by ensuring better monitoring, disaster response, and prevention.

Urban planning and architectural design are also evolving to emphasize sustainability and potentially turn megacities into hubs of green innovation. There are also many ways to mitigate flooding, ranging from large-scale engineering projects to small-scale, individualized solutions .

As Shanghai is China’s largest city and economic hub, that country is anticipated to do whatever it takes to keep the city “ unsinkable .” Many other cities are doing the same in preparation, from building up coastlines to constructing levees. And there are countless ways humans can reduce their carbon footprint and the amount of waste they generate.

One of them is to adopt alternative energy and fuels, which is becoming easier thanks to lower costs and greater efficiency. By 2050, renewables are projected to provide 49% of global electricity , followed by natural gas (23%), coal (23%), and nuclear (5%). As climate change continues to become more pressing, adoption efforts and production will increase further.

In addition to reducing our emissions, there are also strategies for reducing the amount of CO 2 already in our atmosphere. These take the form of carbon capture technology, genetically engineered trees , artificial trees, smog-eating surfaces, carbon upcycling , and geological engineering (aka. geoengineering).

As the saying goes, “every problem has a solution.” However, in many cases, every potential solution has a window of opportunity on it. Miss that window and the problem will continue to get worse and require more drastic measures. If humanity can significantly reduce its carbon footprint between now and 2050, we can expect that the changes in our climate will be sustainable.

If we cannot, then we can look forward to some rather severe outcomes. Coupled with all of the changes that will result from our rapidly-changing technological base, we can reasonably expect that the world of 2050 will be very different than it is today. In fact, you could say it would be enough to frighten and astound anyone alive today!

RECOMMENDED ARTICLES

In any case, 2050 will come around on its own, and being morose about how bad things could get is not an effective way to cope with change. What matters is what we do in the here and now and that we take the prospect of those changes seriously. After all, if we do our jobs right, things may still get worse before they get better. But ultimately, they will get better!

The Blueprint Daily

Stay up-to-date on engineering, tech, space, and science news with The Blueprint.

By clicking sign up, you confirm that you accept this site's Terms of Use and Privacy Policy

ABOUT THE EDITOR

Matthew S. Williams Matthew S Williams is an author, a writer for Universe Today, and the curator of their Guide to Space section. His works include sci-fi/mystery The Cronian Incident and his articles have been featured in Phys.org, HeroX, Popular Mechanics, Business Insider, Gizmodo, and IO9, ScienceAlert, Knowridge Science Report, and Real Clear Science, with topics ranging from astronomy and Earth sciences to technological innovation and environmental issues. He is also a former educator and a 5th degree Black Belt Tae Kwon Do instructor. He lives on Vancouver Island with his wife and family.  

POPULAR ARTICLES

World’s 1st smart glasses with gpt-4o identify objects, answer queries, chinese robot dogs get foot-eyes for unmatched off-road skills, civil servant robot ‘commits suicide’, deadly plunge under probe, world’s 1st hydrogen-hybrid research vessel causes 75% less emissions, related articles.

Nuclear microreactor gets unmatched safety with live 3D temperature mapping

Nuclear microreactor gets unmatched safety with live 3D temperature mapping

Game-changing military drone tech can bypass jamming with 90% accuracy

Game-changing military drone tech can bypass jamming with 90% accuracy

World’s fastest AI supercomputer could be 30x more powerful than Frontier

World’s fastest AI supercomputer could be 30x more powerful than Frontier

US Navy’s P-8 Poseidon to get upgraded with long-range ship-killing missile

US Navy’s P-8 Poseidon to get upgraded with long-range ship-killing missile

share this!

September 10, 2021

What will the planet look like in 50 years? Here's how climate scientists figure it out

by Margo Rosenbaum

climate

Climate change scientists don't like to use the term "prediction." Rather, they're making "projections" about the future of the planet as sea levels rise, wildfires sweep the West and hurricanes become more ferocious.

There's a good reason for that.

In a world awash in misinformation—about medicine, politics and climate, and pretty much everything else—part of a scientist's job now involves teaching the public about how science works. Convincing the public to have faith in science means making precise, measured projects about the future.

They've got to overcome the big question: Can you really make accurate projections about what the planet will look like in 50 years, a century from now?

Climate scientists think they can, based on the past five decades of climate science that has proven accurate. Futurists, such as Jamais Cascio, a distinguished fellow for the Institute for the Future, a nonprofit foresight group based in Silicon Valley, study present trends and available data to lay out plausible outcomes for the future.

Today, a lot of Cascio's work is centered around climate change, helping people prepare for the future and make informed decisions for a warming world.

"Everything in the world," Cascio said, "every future outcome will have to be examined through the lens of climate."

In the future, climate change may only get worse. But how much worse will it get?

Scientists have relied on climate models for over 50 years. To people who aren't scientists, it's challenging to understand the calculations that go into these projections. So, what exactly is a climate model?

Meteorologists can make weather predictions for the next hour, or even week, based on weather data and forecast models that use humidity, temperature, air pressure, wind speed, among other current atmospheric, land and oceanic conditions. But with climate, a specific region's weather averaged over decades, is a little more challenging to project and understand.

An extension of weather forecasting, climate models factor in even more atmospheric, land and oceanic conditions to make longer-term forecasts. Using mathematical equations and thousands of data points, the models create representations of physical conditions on earth and simulations of the current climate.

Climate models predict how average conditions will change in a region over the coming decades as well as how the climate appeared before humans recorded it.

Researchers can then understand how these changing conditions could impact the planet, which is useful especially for understanding climate change, said Zeke Hausfather, a climate scientist and director of climate and energy at the Breakthrough Institute, an environmental research center based in the Bay Area.

"Perhaps the most important (purpose) is to try to suggest the types of changes that might occur as the world continues to emit CO2 and other greenhouse gases," Hausfather said.

The first climate model, developed over 50 years ago in the early days of climate science, helped scientists gauge how the ocean and atmosphere interacted with each other to influence the climate. The model predicted how temperature changes and shifts in ocean and atmospheric currents could lead to climate change.

Today, these models are much more complicated and run on some of the world's most powerful supercomputers. A decade ago, most models broke up the world into 250-kilometer segments, but now the models are 100 square kilometers. More regional patterns emerge when simulations are at a finer scale.

"People aren't drawing a picture of temperature and carbon dioxide and drawing a line through it and then extrapolating that into the future," said Gavin A. Schmidt, a senior climate adviser at NASA.

Through these advancements in technology, these models are becoming even more useful to scientists in understanding the climate of the past, present and future.

"Fortunately, they don't do such a terrible job," Schmidt said.

All of this works toward convincing the public and businesses to take action.

A majority of Americans already notice the effects of climate change around them, according to a Pew Research Center survey from 2020. But individuals, businesses and politics must "adapt to a radically and dangerously changing climate," Cascio said.

On the individual level, people must consider the climate in all of their monumental decisions: whether to have children; which car to buy; how to invest; when and where to buy a house. Governments are tasked with climate decisions that impact the future of entire nations, such as whether to invest in alternative energy or write policy curbing emissions.

Are climate models useful?

Instead of thinking about climate models as whether or not they are right, Schmidt said climate models should be considered as to whether they provide useful forecasts.

"Do they tell us things? Do they get things right more than you would have done without them?" Schmidt said.

Usually, the answer is yes, and what these models inform scientists is crucial for their understanding of the future climate.

Hausfather knows this better than anyone, as he led a study published in the journal Geophysical Research Letters analyzing the accuracy of early climate models. Some of the findings were included in the latest report from the United Nations' Intergovernmental Panel on Climate Change published in August.

Hausfather, along with co-author Schmidt, compared 17 model projections of global average temperature developed between 1970 and 2007 with actual changes in global temperature observed through the end of 2017.

Hausfather and his colleagues found promising news: Most of the models have been quite accurate. More specifically, 10 of the model projections show results consistent with observations. Of the remaining seven model projections, four projected more warming than observed while three projected less warming than observed.

But Hausfather and his colleagues realized this wasn't telling the whole story. After accounting for differences between modeled and actual changes in atmospheric carbon dioxide and other factors driving the climate, it turns out 14 of 17 model projections were "effectively identical" to warming observed in the real world.

"That was strong evidence that these models are effectively right," Hausfather said. "They're doing a very good job of predicting global temperatures."

The accuracy was particularly impressive in the earliest climate models, Hausfather said, especially given the limited observational evidence of warming at the time.

But not all of the early models were error-free. One of the first climate models, created in 1971 by climate scientists Rasool and Schneider, projected that the world would cool due to the cooling effect of atmospheric aerosols.

"(The researchers) thought that the cooling effect of these aerosols from burning fossil fuels that would reflect sunlight back to space would be much stronger than the warming effects of the greenhouse gas," Hausfather said.

While the 1970s were still in the early days of climate research, most of the scientific literature of the time was still pointing toward a warming future as much more likely. Yet, Rasool and Schneider's model still spurred a slew of news stories about a potential ice age. Even today, the model "still gets trotted out every now and then by folks trying to discredit climate science today," Hausfather said.

Now the model is proven to be wrong. It's a consensus among climate scientists that the planet is not cooling—instead it's warming at an alarming rate.

Even today, despite the promise of climate models shown by Hausfather's study, these models still have their limitations, especially with regard to the uncertainty of future emissions. Climate scientists are physicists—not economists or political scientists, and it's challenging to understand how policy will shape emissions standards.

"We don't have a crystal ball that can predict the future human behavior in terms of how much our emissions will change," Hausfather said. "We can just predict how the climate will respond to the emissions."

Issues of accuracy in climate models also still arise when models are pushed outside of their specific parameters. To combat this, climate models focus their projections on physical conditions seen in the natural world, instead of statistical probability, Schmidt said.

Researchers have more confidence in the predictability of physics than statistics, because physics doesn't change into the future. Researchers can have confidence that they can use these models outside of the time period where they have observational data, such as looking at climate during the last ice age, Schmidt said.

"How things get expressed might be different but the basic physics ... the underlying processes don't really change," Schmidt said.

Hausfather said there's still a lot of work still to improve climate models, but they are consistently getting better over time. Simulations of the Earth become sharper as more physical processes are added and computer power grows.

Why make projections for the future?

While climate scientists focus on physics to make forecasts for the future climate, Cascio and other futurists place scientific data in a larger context, making foresight based on climate change, new technological developments, as well as political and social movements. Futurism is "essentially anticipatory history," Cascio said.

"The idea is to take the science and embed it into a historian's understanding of how the world works to try to get a sense of what are the possible outcomes that we see going forward," Cascio said.

But, just like with climate models , uncertainty is inherent to the nature of projections. Futurists do not want to over-promise, but they provide a forecast of what could happen and reasons why it could happen, Cascio said.

Most of Cascio's work with climate change projects a grim future. In his perspective, an "absolutely radical" and "transformative" climate plan is necessary to make the necessary change. Plans that are "sensible and acceptable (are) almost definitely not enough."

"I really want to be wrong about all of this stuff," Cascio said, "because there are no futures that are not really depressing for the next generation."

Despite the despair projected by many climate scientists and futurists, there's still hope. If global emissions can be brought down to zero, Hausfather said the best climate model estimates illustrate that the world will stop warming.

"It's not too late to act," Hausfather said. "The world is not locked into a particular amount of warming."

Cascio still tries to consider himself a long-term optimist for the future, because the changes necessary to mitigate climate change will also lead to a much more "transparent and equitable" world, he said.

"If we can make it through the second half of this century, there's a very good chance that what we'll end up with is a really wonderful world," Cascio said.

Journal information: Geophysical Research Letters

Distributed by Tribune Content Agency, LLC.

Explore further

Feedback to editors

future environment essay

The Milky Way's eROSITA bubbles are large and distant

Jun 29, 2024

future environment essay

Saturday Citations: Armadillos are everywhere; Neanderthals still surprising anthropologists; kids are egalitarian

future environment essay

NASA astronauts will stay at the space station longer for more troubleshooting of Boeing capsule

future environment essay

The beginnings of fashion: Paleolithic eyed needles and the evolution of dress

Jun 28, 2024

future environment essay

Analysis of NASA InSight data suggests Mars hit by meteoroids more often than thought

future environment essay

New computational microscopy technique provides more direct route to crisp images

future environment essay

A harmless asteroid will whiz past Earth Saturday. Here's how to spot it

future environment essay

Tiny bright objects discovered at dawn of universe baffle scientists

future environment essay

New method for generating monochromatic light in storage rings

future environment essay

Soft, stretchy electrode simulates touch sensations using electrical signals

Relevant physicsforums posts, the secrets of prof. verschure's rosetta stones.

Jun 27, 2024

Should We Be Planting More Trees?

Jun 18, 2024

Earthquake precursors associated with the Turkey earthquakes

Jun 13, 2024

Is it possible to transform an electric thunderstorm into an EMP storm?

Jun 4, 2024

Jacchia Atmospheric Model

Jun 3, 2024

Iceland warming up again - quakes swarming

More from Earth Sciences

Related Stories

future environment essay

Climate models are often attacked, but most of the time they're remarkably good

Dec 5, 2019

future environment essay

Yes, a few climate models give unexpected predictions, but the technology remains a powerful tool

Aug 9, 2021

future environment essay

Climate change may lead to more landfalling tropical cyclones in China

Jun 21, 2021

future environment essay

Why do we need sharper weather and climate models?

Aug 6, 2021

future environment essay

Polar ice, atmospheric water vapor biggest drivers of variation among climate models

Oct 7, 2020

future environment essay

Ocean circulation is key to understanding uncertainties in climate change predictions

Jun 16, 2021

Recommended for you

future environment essay

Drowning in waste: Pollution hotspots in aquatic environments

future environment essay

Climate change to shift tropical rains northward, suggests computer modeling

future environment essay

Antarctic ice shelves hold twice as much meltwater as previously thought

future environment essay

Clean Water Act leaves about 55% of water flowing out of rivers vulnerable to pollution, study suggests

future environment essay

Dunes decoded: A comprehensive and precise mapping for coastal conservation

future environment essay

Some Chinese cities have outsourced on others' efforts to cut carbon emissions

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

future environment essay

45,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

future environment essay

Verification Code

An OTP has been sent to your registered mobile no. Please verify

future environment essay

Thanks for your comment !

Our team will review it before it's shown to our readers.

future environment essay

Essay on Save Environment

dulingo

  • Updated on  
  • Apr 24, 2020

Essay on Save Environment

Essay writing is an important part of the school curriculum, competitive exams like GRE , IELTS , TOEFL , etc. and higher education as well. One must know how to precisely select arguments, collect the data based on them and put it all together in their write-up. Usually, the essay topics given to students are based on the latest political, social and environmental issues. Due to the changes occurring in our surroundings, essays based on saving the Environment are becoming very popular. Keeping that in mind, this blog presents you some sample essays on Save Environment. 

Sample Essay 1 on Save Environment



In the 21st century, environmental concern has sent shockwaves to the world leaders and people living on the planet. The unprecedented climate changes and natural calamities have become a major global pandemic of contemporary times. The superpowers of the world are boasting high on their technological innovations, but they seem helpless in tackling environmental affairs efficiently. 

The environment constitutes the soil, trees, animals, flora and fauna. It comprises plants, air, water, sunlight and the dynamism in eco-system.  We cannot imagine living on this planet earth without environmental sustainability. There is a dire need of saving the environment, especially when the humungous urbanisation activities are taking place. Trees are being cut down mercilessly and the concentration of toxic gases are poisoning the planet. The heavy presence of Methane gases, as well as Cholorofloro Carbons, have massively lead to the depletion of Ozone Layer, which resulted in Acid rain and Skin Cancer in many areas on the planet. 

At such crucial juncture, the inspirational speech of Greta Thunberg on Save Environment and other environmental activists should be taken into utmost consideration. There is a dire need for saving the environment & be protagonists for sustainable development in order to do away with the natural calamities. 

This essay on save environment can help you in the PTE Writing Essay, TOEFL Essay Topics and TOEFL Sample Essays !

Sample Essay 2



As human beings, we exist because of environmental support. Had there be no air, no freshwater, no other natural resources, our existence would have been impossible. It is because of innumerable trees around us, we are able to breath fresh air. We eat when the process of photosynthesis takes place in plants. We are living comfortably in our habitats when there the food chain in the ecosystem is properly maintained. 

Whenever there is any ecological disturbance, be it rise of harmful gases in the environment rise of earth’s temperature due to global warming, depletion of the ozone layer, glacier melting, unprecedented climatic changes, extreme air pollution, and water pollution are taking a heavy toll on human lives and certainly, this is the creation of anthropogenic approach. 

Delhi is the best example of poor air quality that engulfed the capital city last year. It happened due to the presence of toxic gases emitting from industrial units and countless vehicles. The poor air quality has forced to change the vehicular movement strategy which resulted in massive human sufferings and hardships. 

We have so many examples from the northernmost belt of India, where the massive soil erosion is washing away residential areas away in a harsh deluge. Such conditions arise when trees are being uprooted mercilessly. 

There is a dire need to embrace the concept of ‘Sustainable Development’ that talks about the judicious usage of natural resources. It is the time when we have to Save Environment from further degradation. It is the time when human beings have to utilise their collective consciousness towards environmental sustainability and refrain using those resources and products which causes environmental degradation

Sample Essay 3 on Save Environment



We have mesmerizing landscapes and breathtaking water bodies which constitute a great contribution to fresh air and houses various species of animals and aquatic life. But, the unfortunate part is the rise of humungous plastic pollutions which lead to a disastrous impact on environmental change. Other than a climatic change, plastic pollution posing a massive threat to the environment, it is affecting not only the quality of soil but affecting the aquatic life as well. 

It would grow more alarmingly if concrete steps are not being taken at the right time; it is sure that we may lose water bodies at a vast scale. 

Same is the case with the excessive usage of Carbon gases in the environment which is causing the depletion of the Ozone layer in the Stratosphere. Joseph Farman first time discovered the ozone depletion over the South Pole. Its depletion has caused acid rains in many parts of the globe as well as skin diseases. 

Another level of environmental degradation is taking place when a large chunk of trees are being cut. Humans not only cut down the vast land of the forest for the construction of houses but destroy the natural habitat of wildlife. When the wildlife is losing their dwelling places, they migrate to human settlements areas, causing a heavy imbalance in the food chain, ecosystem and insecurity for human beings. The massive rise of deforestation has caused floods to enter into human settlements, causing loss of precious lives and property.

Now that the environmental issues are buzzing at the international forums, many awareness programs are being conducted to keep people updated about the repercussions of environmental exploitation. A number of campaigns are being launched to spread the message of Saving Environment. 

It is a need of the hour to the hour to protect the environment, come what may otherwise face the brutal repercussions. 

[Bonus] Apart from these sample essays on Save Environment, check out other trending topics for essay writing!

We hope our sample essay on Save Environment have given you some great ideas. If you are preparing for exams like GMAT, GRE, IELTS or SAT and need guidance for the writing session? Book you one on one session with Leverage Edu experts to get a divisive strategy and preparation tips to crack these examinations!

' src=

Team Leverage Edu

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

future environment essay

Resend OTP in

future environment essay

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

future environment essay

How would you describe this article ?

Please rate this article

We would like to hear more.

Logo

Essay on Environmental Sustainability

Students are often asked to write an essay on Environmental Sustainability in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Environmental Sustainability

Understanding environmental sustainability.

Environmental sustainability is about making decisions that do not harm the environment. It’s about preserving nature for future generations.

Importance of Environmental Sustainability

Ways to achieve sustainability.

We can achieve sustainability by reducing waste, recycling, and using renewable energy. It’s about changing our lifestyles to protect the environment.

Environmental sustainability is crucial for our future. We all need to play our part to ensure our planet remains healthy.

250 Words Essay on Environmental Sustainability

Introduction to environmental sustainability.

Environmental sustainability is an integral aspect of our existence, intertwined with the notion of preserving the natural world for future generations. It encapsulates the concept of stewardship, wherein we are responsible for managing the Earth’s resources responsibly and efficiently.

The Imperative of Sustainable Practices

The current environmental crisis, characterized by climate change, deforestation, and biodiversity loss, underscores the urgency of sustainable practices. These practices aim to minimize the environmental footprint by reducing waste, conserving energy, and promoting recycling. They are not merely an ethical obligation, but a necessity for human survival.

Role of Innovation in Sustainability

Innovation plays a pivotal role in environmental sustainability. Technological advancements like renewable energy, green architecture, and waste management systems pave the way for a sustainable future. They provide practical solutions to environmental problems, enabling us to balance economic growth with ecological preservation.

Individual Responsibility and Collective Action

Environmental sustainability demands individual responsibility and collective action. Each of us can contribute by adopting sustainable lifestyles, such as minimizing waste, conserving water, and reducing energy consumption. Collective action, on the other hand, involves policy changes, corporate responsibility, and international cooperation.

500 Words Essay on Environmental Sustainability

Environmental sustainability is a concept that has grown in prominence as the world grapples with the effects of climate change. It refers to the practice of using resources in a way that preserves the environment for future generations. This includes reducing waste, promoting renewable energy, and maintaining biodiversity.

The Importance of Environmental Sustainability

The significance of environmental sustainability cannot be overstated. As the world’s population continues to grow, so does the demand for resources. This increased demand, coupled with unsustainable practices, has led to environmental degradation, loss of biodiversity, and climate change. By practicing environmental sustainability, we can help ensure that future generations inherit a planet that is as rich and diverse as the one we enjoy today.

Principles of Environmental Sustainability

Environmental sustainability is underpinned by several key principles. First, we must recognize the finite nature of our planet’s resources and strive to use them sparingly. Second, we must work towards reducing waste and promoting recycling. Third, we must strive to reduce our carbon footprint and promote renewable energy. Lastly, we must value and protect our biodiversity, recognizing the intrinsic worth of all living things.

Challenges to Environmental Sustainability

Role of individuals and institutions in promoting environmental sustainability.

Individuals and institutions have a crucial role to play in promoting environmental sustainability. Individuals can make a difference by making sustainable choices in their daily lives, such as reducing waste, recycling, and choosing renewable energy. Institutions, on the other hand, can implement sustainable practices in their operations and advocate for environmental sustainability at the policy level.

If you’re looking for more, here are essays on other interesting topics:

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

future environment essay

Protecting the Environment Argumentative Essay

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Protecting the environment is the act of taking care of natural resources and using them rationally to prevent annihilation and pollution. It also involves the use of comprehensive management measures that can create an environment that supports human activities and life.

Protecting the environment creates sustainable development in an economy. An attractive, natural environment encourages both domestic, and international tourism and this create revenue for the country.

Tourism also contributes to the economic growth of a nation as it leads to the creation of jobs for many people (Holden 177). Some people work as tour guides and agents while others work in food and accommodation sector.

Protecting the environment also attracts many foreign investors into the country. Foreign investors invest their money and introduce industries in other nations, thus promoting economic growth (Goodstein 26).

If a country has a terrible environment, investors will avoid making businesses there, and this reduces economic development in a country.

Another way that protecting the environment creates sustainable development is through preservation of natural resources. Most development activities make use of natural resources, and if the environment lacks protection, such resources may become depleted, thus, making further developments impossible.

Also, environmental protection causes sustainable development as governments cut the money spent on health-care costs. A good natural environment protects human beings from diseases like skin cancer, cataracts and other illnesses that arise due to environmental pollution. This, in turn, makes governments cut down on health costs.

Protecting the environment enhances welfare of human beings. People suffer from health-related issues in areas where the environment gets stressed (Frumkin et al. 4). A harmful environment is accountable for almost a quarter of the worldwide disease problem.

In emerging nations, use of incompetent wood-burning stoves to make food causes illnesses. A rising figure of cleaner and more competent stoves, which cut down both the amount of biomass that needs collection to fuel the stove and domestic airborne particulates, are becoming obtainable.

Proper environmental management can lessen the risk of malaria through destroying mosquito habitats, breeding mosquitoes that are resistant to the malaria parasite as well as reducing populations of mosquitoes.

This fact also relates with the concept of sustainable development as health is a vital element in sustainable development. Sick families cannot meet their daily needs, a mother with respiratory tract infections could be unable to take proper care of the family and a sick child is likely to miss school, or underperform in academics.

Protecting the environment enhances continuity of life. The world has limited resources, and rapid consumption of these resources by humans has led to severe environmental degradation. Failure to protect the environment is a crime as it means that we do not care about future generations.

Therefore, we must attach significance to protection of the environment so that we can give future generations a better living space.

As a result of failing to protect the environment, we continue experiencing much retribution from nature. For instance, there is scarcity in land resources due to expansion of towns and industrial development (Rubio 9).

Besides, there is pollution in lakes and rivers due to the large waste that factories emit. The number of deserts has also increased due to continuous cutting of trees. Toxic gas and liquid air have also caused pollution of water supplies.

Protecting the environment secures both plant and animal lives through preventing ozone depletion. The most common causes of ozone depletion are releasing harmful gases into the atmosphere and cutting down of trees. Depletion of ozone makes higher levels of ultra violet rays to hit into the earth’s surface (McMichael 61).

These rays may cause skin cancer and cataracts among human beings. Equally, ultra violet rays affect growth of plants and aquatic food systems. These rays affect nutrient distribution in plants as well as secondary metabolism, thus causing disease in plants.

Besides, ultra violet rays affect the euphotic zone, which limits productivity of phytoplankton. The euphotic zone is the top cover of water column where there is adequate light to promote net productivity.

Although most phytoplankton can move actively to enhance their efficiency and, thus, their continued existence, contact with ultra violet rays from the sun affects survival rates of phytoplankton. Also, ultra violet rays from the sun affect early developmental phases of shrimp, fish, amphibians and crabs.

Other dangerous effects of ultra violet rays to aquatic life include decreased reproductive ability and weakened development of larvae (McMichael 63).

Considering present levels, solar radiation is a restrictive feature, and small raises in ultra violet exposure could cause noteworthy decrease in the number of animals that feed on these minor organisms.

In conclusion, protecting the environment is essential for enhanced human and plant life, continuity of life, sustainable development of an economy as well as economic enhancement. Natural resources are essential for life on earth, and thus they need protection. Failure to protect the environment may affect future generations of both plants and animals.

Works Cited

Frumkin, Howard, Richard Jackson, and Christine Coussens. Health and the Environment in the Southeastern United States , Washington, D.C: National Academy Press, 2002. Print.

Goodstein, Eban. Economics and the Environment, Hoboken, N.J: John Wiley and Sons, 2011. Print.

Holden, Andrew. Environment and Tourism , New York, NY: Routledge, 2008. Print.

McMichael, Asunta. Climate Change and Human Health: Risks and Responses , Geneva, Switzerland: World Health Organization, 2003. Print.

Rubio, Jose. Water scarcity, Land Degradation and Desertification in the Mediterranean Region Environmental and Security Aspects , Dordrecht, MA: Springer, 2009. Print.

  • The Effect of the Ozone Layer on the earth
  • What we can do to protect Ozone layer
  • Ozone Depletion: A Case of Humans Fixing What They Broke
  • Managing Environmental Sustainability
  • Creating and Implementing an Absorb-Type Activity
  • Issues in Non-Point Source Pollution
  • Globalization and Environment Essay
  • Plant Safety Issues Relating to “Heat Exchange Rupture and Ammonia Release in Houston, Texas”
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2019, June 18). Protecting the Environment. https://ivypanda.com/essays/protecting-the-environment/

"Protecting the Environment." IvyPanda , 18 June 2019, ivypanda.com/essays/protecting-the-environment/.

IvyPanda . (2019) 'Protecting the Environment'. 18 June.

IvyPanda . 2019. "Protecting the Environment." June 18, 2019. https://ivypanda.com/essays/protecting-the-environment/.

1. IvyPanda . "Protecting the Environment." June 18, 2019. https://ivypanda.com/essays/protecting-the-environment/.

Bibliography

IvyPanda . "Protecting the Environment." June 18, 2019. https://ivypanda.com/essays/protecting-the-environment/.

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Rendering of new A.R.T.

Construction begins on A.R.T.’s new home in Allston

Sarah Lewis and Klara Jelinkova talking on stage

AI, new technologies, and ‘courage to fail’ mark IT Summit

Aerial view of Harvard's campus from Eliot House tower.

Presidential task forces deliver preliminary recommendations to Garber

Eyes on tomorrow, voices of today.

Candice Chen (left) and Noah Secondo are pictured.

Candice Chen ’22 (left) and Noah Secondo ’22.

Photos by Stephanie Mitchell/Harvard Staff Photographer

Alvin Powell

Harvard Staff Writer

Harvard students share thoughts, fears, plans to meet environmental challenges

For many, thinking about the world’s environmental future brings concern, even outright alarm.

There have been, after all, decades of increasingly strident warnings by experts and growing, ever-more-obvious signs of the Earth’s shifting climate. Couple this with a perception that past actions to address the problem have been tantamount to baby steps made by a generation of leaders who are still arguing about what to do, and even whether there really is a problem.

It’s no surprise, then, that the next generation of global environmental leaders are preparing for their chance to begin work on the problem in government, business, public health, engineering, and other fields with a real sense of mission and urgency.

The Gazette spoke to students engaged in environmental action in a variety of ways on campus to get their views of the problem today and thoughts on how their activities and work may help us meet the challenge.

Eric Fell is pictured.

Eric Fell and Eliza Spear

Fell is president and Spear is vice president of Harvard Energy Journal Club. Fell is a graduate student at the Harvard John H. Paulson School of Engineering and Applied Sciences and Spear is a graduate student in the Department of Chemistry and Chemical Biology.

FELL:   For the past three centuries, fossil fuels have enabled massive growth of our civilization to where we are today. But it is now time for a new generation of cleaner-energy technologies to fuel the next chapter of humanity’s story. We’re not too late to solve this environmental challenge, but we definitely shouldn’t procrastinate as much as we have been. I don’t worry about if we’ll get it done, it’s the when. Our survival depends on it. At Harvard, I’ve been interested in the energy-storage problem and have been focusing on developing a grid-scale solution utilizing flow batteries based on organic molecules in the lab of Mike Aziz . We’ll need significant deployment of batteries to enable massive penetration of renewables into the electrical grid.

SPEAR: Processes leading to greenhouse-gas emissions are so deeply entrenched in our way of life that change continues to be incredibly slow. We need to be making dramatic structural changes, and we should all be very worried about that. In the Harvard Energy Journal Club, our focus is energy, so we strive to learn as much as we can about the diverse options for clean-energy generation in various sectors. A really important aspect of that is understanding how much of an impact those technologies, like solar, hydro, and wind, can really have on reducing greenhouse-gas emissions. It’s not always as much as you’d like to believe, and there are still a lot of technical and policy challenges to overcome.

I can’t imagine working on anything else, but the question of what I’ll be working on specifically is on my mind a lot. The photovoltaics field is at a really exciting point where a new technology is just starting to break out onto the market, so there are a lot of opportunities for optimization in terms of performance, safety, and environmental impact. That’s what I’m working on now [in Roy Gordon’s lab ] and I’m really enjoying it. I’ll definitely be in the renewable-energy technology realm. The specifics will depend on where I see the greatest opportunity to make an impact.

Kritika Kharbanda is pictured.

Photo (left) courtesy of Kritika Kharbanda; photo by Tiera Satchebell.

Kritika Kharbanda ’23 and Laier-Rayshon Smith ’21

Kharbanda is with the Harvard Student Climate Change Conference, Harvard Circular Economy Symposium. Smith is a member of Climate Leaders Program for Professional Students at Harvard. Both are students at Harvard Graduate School of Design.

KHARBANDA: I come from a country where the most pressing issues are, and will be for a long time, poverty, food shortage, and unemployment born out of corruption, illiteracy, and rapid gentrification. India was the seventh-most-affected country by climate change in 2019. With two-thirds of the population living in rural areas with no access to electricity, even the notion of climate change is unimaginable.

I strongly believe that the answer lies in the conjugality of research and industry. In my field, achieving circularity in the building material processes is the burning concern. The building industry currently contributes to 40 percent of global carbon dioxide emissions, of which 38 percent is contributed by the embedded or embodied energy used for the manufacturing of materials. A part of the Harvard i-lab, I am a co-founder of Cardinal LCA, an early stage life-cycle assessment tool that helps architects and designers visualize this embedded energy in building materials, saving up to 46 percent of the energy from the current workflow. This venture has a strong foundation as a research project for a seminar class I took at the GSD in fall 2020, instructed by Jonathan Grinham. I am currently working as a sustainability engineer at Henning Larsen architects in Copenhagen while on a leave of absence from GSD. In the decades to come, I aspire to continue working on the embodied carbon aspect of the building industry. Devising an avant garde strategy to record the embedded carbon is the key. In the end, whose carbon is it, anyway?

SMITH: The biggest challenges are areas where the threat of climate change intersects with environmental justice. It is important that we ensure that climate-change mitigation and adaptation strategies are equitable, whether it is sea-level rise or the increase in urban heat islands. We should seek to address the threats faced by the most vulnerable communities — the communities least able to resolve the threat themselves. These often tend to be low-income communities and communities of color that for decades have been burdened with bearing the brunt of environmental health hazards.

During my time at Harvard, I have come to understand how urban planning and design can seek to address this challenge. Planners and designers can develop strategies to prioritize communities that are facing a significant climate-change risk, but because of other structural injustices may not be able to access the resources to mitigate the risk. I also learned about climate gentrification: a phenomenon in which people in wealthier communities move to areas with lower risks of climate-change threats that are/were previously lower-income communities. I expect to work on many of these issues, as many are connected and are threats to communities across the country. From disinvestment and economic extraction to the struggle to find quality affordable housing, these injustices allow for significant disparities in life outcomes and dealing with risk.

Lucy Shaw is pictured.

Lucy Shaw ’21

Shaw is co-president of the HBS Energy and Environment Club. She is a joint-degree student at Harvard Business School and Harvard Kennedy School.

SHAW: I want to see a world where climate change is averted and the environment preserved, without it being at the expense of the development and prosperity of lower-income countries. We have, or are on the cusp of having, many of the financial and technological tools we need to reduce emissions and environmental damage from a wide array of industries, such as agriculture, energy, and transport. The challenge I am most worried about is how we balance economic growth and opportunity with reducing humanity’s environmental impact and share this burden equitably across countries.

I came to Harvard as a joint degree student at the Kennedy School and Business School to be able to see this challenge from two different angles. In my policy-oriented classes, we learned about the opportunities and challenges of global coordination among national governments — the difficulty in enforcing climate agreements, and in allocating and agreeing on who bears the responsibility and the costs of change, but also the huge potential that an international framework with nationally binding laws on environmental protection and carbon-emission reduction could have on changing the behavior of people and businesses. In my business-oriented classes, we learned about the power of business to create change, if there is a driven leadership. We also learned that people and businesses respond to incentives, and the importance of reducing cost of technologies or increasing the cost of not switching to more sustainable technologies — for example, through a tax. After graduate school, I plan to join a leading private equity investor in their growing infrastructure team, which will equip me with tools to understand what makes a good investment in infrastructure and what are the opportunities for reducing the environmental impact of infrastructure while enhancing its value. I hope to one day be involved in shaping environmental and development policy, whether it is on a national or international level.

future environment essay

Photo (left) by Tabitha Soren.

Quinn Lewis ’23 and Suhaas Bhat ’24

Both are with the Student Climate Change Conference, Harvard College.

LEWIS:   When I was a kid, I imagined being an adult as a future with a stable house, a fun job, and happy kids. That future didn’t include wildfires that obscured the sun for months, global water shortages, or billionaires escaping to terrariums on Mars. The threats are so great and so assured by inaction that it’s very hard for me to justify doing anything else with my time and attention because very little will matter if there’s 1 billion climate refugees and significant portions of the continental United States become uninhabitable for human life.

For whatever reason, I still feel a great deal of hope around giving it a shot. I can’t imagine not working to mitigate the climate crisis. Media and journalism will play a huge role in raising awareness, as they generate public pressure that can sway those in power. Another route for change is to cut directly to those in power and try to convince them of the urgency of the situation. Given that I am 22 years old, it is much easier to raise public awareness or work in media and journalism than it is to sit down with some of the most powerful people on the planet, who tend to be rather busy. At school, I’m on a team that runs the University-wide Student Climate Change Conference at Harvard, which is a platform for speakers from diverse backgrounds to discuss the climate crisis and ways students and educators can take immediate and effective action. Also, I write about and research challenges and solutions to the climate crisis through the lenses of geopolitics and the global economy, both as a student at the College and as a case writer at the Harvard Business School. Outside of Harvard, I have worked in investigative journalism and at Crooked Media, as well as on political campaigns to indirectly and directly drive urgency around the climate crisis.

BHAT:   The failure to act on climate change in the last few decades, despite mountains of scientific evidence, is a consequence of political and institutional cowardice. Fossil fuel companies have obfuscated, misinformed, and lobbied for decades, and governments have failed to act in the best interests of their citizens. Of course, the fight against climate change is complex and multidimensional, requiring scientific, technical, and entrepreneurial expertise, but it will ultimately require systemic change to allow these talents to shine.

At Harvard, my work on climate has been focused on running the Harvard Student Climate Conference, as well as organizing for Fossil Fuel Divest Harvard. My hope for the Climate Conference is to provide students access to speakers who have dedicated their careers to all aspects of the fight against climate change, so that students interested in working on climate have more direction and inspiration for what to do with their careers. We’ve featured Congresswoman Ayanna Pressley, members of the Sunrise Movement, and the CEO of Impossible Foods as some examples of inspiring and impactful people who are working against climate change today.

I organize for FFDH because I believe that serious institutional change is necessary for solving the climate crisis and also because of a sort of patriotism I have for Harvard. I deeply respect and care for this institution, and genuinely believe it is an incredible force for good in the world. At the same time, I believe Harvard has a moral duty to stand against the corporations whose misdeeds and falsification of science have enabled the climate crisis.

Libby Dimenstein is pictured.

Libby Dimenstein ’22

Dimenstein is co-president of Harvard Law School Environmental Law Society.

DIMENSTEIN:   Climate change is the one truly existential threat that my generation has had to face. What’s most scary is that we know it’s happening. We know how bad it will be; we know people are already dying from it; and we still have done so little relative to the magnitude of the problem. I also worry that people don’t see climate change as an “everyone problem,” and more as a problem for people who have the time and money to worry about it, when in reality it will harm people who are already disadvantaged the most.

I want to recognize Professor Wendy Jacobs, who recently passed away. Wendy founded HLS’s fantastic Environmental Law and Policy Clinic, and she also created an interdisciplinary class called the Climate Solutions Living Lab. In the lab, groups of students drawn from throughout the University would conduct real-world projects to reduce greenhouse-gas emissions. The class was hard, because actually reducing greenhouse gases is hard, but it taught us about the work that needs to be done. This summer I’m interning with the Environmental Defense Fund’s U.S. Clean Air Team, and I anticipate a lot of my work will revolve around the climate. After graduating, I’m hoping to do environmental litigation, either with a governmental division or a nonprofit, but I also have an interest in policy work: Impact litigation is fascinating and important, but what we need most is sweeping policy change.

Candice Chen is pictured.

Candice Chen ’22 and Noah Secondo ’22

Chen and Secondo are co-directors of the Harvard Environmental Action Committee. Both attend Harvard College.

SECONDO: The environment is fundamental to rural Americans’ identity, but they do not believe — as much as urban Americans — that the government can solve environmental problems. Without the whole country mobilized and enthusiastic, from New Hampshire to Nebraska, we will fail to confront the climate crisis. I have no doubt that we can solve this problem. To rebuild trust between the U.S. government and rural communities, federal departments and agencies need to speak with rural stakeholders, partner with state and local leaders, and foreground rural voices. Through the Harvard College Democrats and the Environmental Action Committee, I have contributed to local advocacy efforts and creative projects, including an environmental art publication.

I hope to work in government to keep the policy development and implementation processes receptive to rural perspectives, including in the environmental arena. At every level of government, if we work with each other in good faith, we will tackle the climate crisis and be better for it.

CHEN: I’m passionate about promoting more sustainable, plant-based diets. As individual consumers, we have very little control over the actions of the largest emitters, massive corporations, but we can all collectively make dietary decisions that can avoid a lot of environmental degradation. Our food system is currently very wasteful, and our overreliance on animal agriculture devastates natural ecosystems, produces lots of potent greenhouse gases, and creates many human health hazards from poor animal-waste disposal. I feel like the climate conversation is often focused around the clean energy transition, and while it is certainly the largest component of how we can avoid the worst effects of global warming, the dietary conversation is too often overlooked. A more sustainable future also requires us to rethink agriculture, and especially what types of agriculture our government subsidizes. In the coming years, I hope that more will consider the outsized environmental impact of animal agriculture and will consider making more plant-based food swaps.

To raise awareness of the environmental benefits of adopting a more plant-based diet, I’ve been involved with running a campaign through the Environmental Action Committee called Veguary. Veguary encourages participants to try going vegetarian or vegan for the month of February, and participants receive estimates for how much their carbon/water/land use footprints have changed based on their pledged dietary changes for the month.

Cristina Liu is pictured.

Photo (left) courtesy of Cristina Su Liu.

Cristina Su Liu ’22 and James Healy ’21

More like this.

Denis Hayes on phone as associate holds posters advertising Environmental Teach-In in 1970.

How Earth Day gave birth to environmental movement

Student in gas mask

The culture of Earth Day

Watercolor of Earth.

Spirituality, social justice, and climate change meet at the crossroads

Liu is with Harvard Climate Leaders Program for Professional Students. Healy is with the Harvard Student Climate Change Conference. Both are students at Harvard T.H. Chan School of Public Health.

HEALY:   As a public health student I see so many environmental challenges, be it the 90 percent of the world who breathe unhealthy air, or the disproportionate effects of extreme heat on communities of color, or the environmental disruptions to the natural world and the zoonotic disease that humans are increasingly being exposed to. But the central commonality at the heart of all these crises is the climate crisis. Climate change, from the greenhouse-gas emissions to the physical heating of the Earth, is worsening all of these environmental crises. That’s why I call the climate crisis the great exacerbator. While we will all feel the effects of climate change, it will not be felt equally. Whether it’s racial inequity or wealth inequality, the climate crisis is widening these already gaping divides.

Solutions may have to be outside of our current road maps for confronting crises. I have seen the success of individual efforts and private innovation in tackling the COVID-19 pandemic, from individuals wearing masks and social distancing to the huge advances in vaccine development. But for climate change, individual efforts and innovation won’t be enough. I would be in favor of policy reform and coalition-building between new actors. As an overseer of the Harvard Student Climate Change Conference and the Harvard Climate Leaders Program, I’ve aimed to help mobilize Harvard’s diverse community to tackle climate change. I am also researching how climate change makes U.S. temperatures more variable, and how that’s reducing the life expectancies of Medicare recipients. The goal of this research, with Professor Joel Schwartz, will be to understand the effects of climate change on vulnerable communities. I certainly hope to expand on these themes in my future work.

SU LIU:  A climate solution will need to be a joint effort from the whole society, not just people inside the environmental or climate circles. In addition to cross-sectoral cooperation, solving climate change will require much stronger international cooperation so that technologies, projects, and resources can be developed and shared globally. As a Chinese-Brazilian student currently studying in the United States, I find it very valuable to learn about the climate challenges and solutions of each of these countries, and how these can or cannot be applied in other settings. China-U.S. relations are tense right now, but I hope that climate talks can still go ahead since we have much to learn from each other.

Personally, as a student in environmental health at [the Harvard Chan School], I feel that my contribution to addressing this challenge until now has been in doing research, learning more about the health impacts of climate change, and most importantly, learning how to communicate climate issues to people outside climate circles. Every week there are several climate-change events at Harvard, where a different perspective on climate change is addressed. It has been very inspiring for me, and I feel that I could learn about climate change in a more holistic way.

Recently, I started an internship at FXB Village, where I am working on developing and integrating climate resilience indicators into their poverty-alleviation program in rural communities in Puebla, Mexico. It has been very rewarding to introduce climate-change and climate-resilience topics to people working on poverty alleviation and see how everything is interconnected. When we address climate resilience, we are also addressing access to basic services, livelihoods, health, equity, and quality of life in general. This is where climate justice is addressed, and that is a very powerful idea.

Share this article

You might like.

David E. and Stacey L. Goel Center for Creativity & Performance to include interconnected, adaptable multiuse spaces 

Sarah Lewis and Klara Jelinkova talking on stage

Tech leaders encourage culture of innovation

Aerial view of Harvard's campus from Eliot House tower.

Co-chairs of initiatives to combat anti-Muslim, anti-Arab, and anti-Palestinian bias and antisemitism outline recommendations for near-term action — with final reports expected in the fall

When should Harvard speak out?

Institutional Voice Working Group provides a roadmap in new report

Had a bad experience meditating? You're not alone.

Altered states of consciousness through yoga, mindfulness more common than thought and mostly beneficial, study finds — though clinicians ill-equipped to help those who struggle

College sees strong yield for students accepted to Class of 2028  

Financial aid was a critical factor, dean says

Talk to our experts

1800-120-456-456

  • Environment Essay

ffImage

Essay on Understanding and Nurturing Our Environment

The environment is everything that surrounds us – the air we breathe, the water we drink, the soil beneath our feet, and the diverse flora and fauna that inhabit our planet. It's not just a backdrop to our lives; it's the very essence of our existence. In this essay, we'll explore the importance of our environment, the challenges it faces, and what we can do to ensure a sustainable and thriving world for generations to come.

Our environment is a complex and interconnected web of life. Every living organism, from the tiniest microbe to the largest mammal, plays a crucial role in maintaining the balance of ecosystems. This delicate balance ensures the survival of species, including humans. For instance, bees pollinate plants, which produce the oxygen we breathe. Nature is a masterpiece that has evolved over millions of years, and we are just one small part of this intricate tapestry.

Importance of Environment  

The environment is crucial for keeping living things healthy.

It helps balance ecosystems.

The environment provides everything necessary for humans, like food, shelter, and air.

It's also a source of natural beauty that is essential for our physical and mental health.

The Threats to Our Environment:

Unfortunately, our actions have disrupted this delicate balance. The rapid industrialization, deforestation, pollution, and over-exploitation of natural resources have led to severe environmental degradation. Climate change, driven by the increase in greenhouse gas emissions, is altering weather patterns, causing extreme events like floods, droughts, and storms. The loss of biodiversity is another alarming concern – species are disappearing at an unprecedented rate due to habitat destruction and pollution.

Impact of Human Activities on the Environment

Human activities like pollution, deforestation, and waste disposal are causing environmental problems like acid rain, climate change, and global warming. The environment has living (biotic) and non-living (abiotic) components. Biotic components include plants, animals, and microorganisms, while abiotic components include things like temperature, light, and soil.

In the living environment, there are producers (like plants), consumers (like animals), and decomposers (like bacteria). Producers use sunlight to make energy, forming the base of the food web. Consumers get their energy by eating other organisms, creating a chain of energy transfer. Decomposers break down waste and dead organisms, recycling nutrients in the soil.

The non-living environment includes climatic factors (like rain and temperature) and edaphic factors (like soil and minerals). Climatic factors affect the water cycle, while edaphic factors provide nutrients and a place for organisms to grow.

The environment includes everything from the air we breathe to the ecosystems we live in. It's crucial to keep it clean for a healthy life. All components of the environment are affected by its condition, so a clean environment is essential for a healthy ecosystem.

Sustainable Practices:

Adopting sustainable practices is a key step towards mitigating environmental degradation. This includes reducing our carbon footprint by using renewable energy, practicing responsible consumption, and minimizing waste. Conservation of natural resources, such as water and forests, is essential. Supporting local and global initiatives that aim to protect the environment, like reforestation projects and wildlife conservation efforts, can make a significant impact.

Education and Awareness:

Creating a sustainable future requires a collective effort, and education is a powerful tool in this regard. Raising awareness about environmental issues, the consequences of our actions, and the importance of conservation is crucial. Education empowers individuals to make informed choices and encourages sustainable practices at both personal and community levels.

Why is a Clean Environment Necessary?

To have a happy and thriving community and country, we really need a clean and safe environment. It's like the basic necessity for life on Earth. Let me break down why having a clean environment is so crucial.

First off, any living thing—whether it's plants, animals, or people—can't survive in a dirty environment. We all need a good and healthy place to live. When things get polluted, it messes up the balance of nature and can even cause diseases. If we keep using up our natural resources too quickly, life on Earth becomes a real struggle.

So, what's causing all this environmental trouble? Well, one big reason is that there are just so many people around, and we're using up a lot of stuff like land, food, water, air, and even fossil fuels and minerals. Cutting down a bunch of trees (we call it deforestation) is also a big problem because it messes up the whole ecosystem.

Then there's pollution—air, water, and soil pollution. It's like throwing a wrench into the gears of nature, making everything go wonky. And you've probably heard about things like the ozone layer getting thinner, global warming, weird weather, and glaciers melting. These are all signs that our environment is in trouble.

But don't worry, we can do things to make it better:

Plant more trees—they're like nature's superheroes, helping balance everything out.

Follow the 3 R's: Reuse stuff, reduce waste, and recycle. It's like giving our planet a high-five.

Ditch the plastic bags—they're not great for our landscapes.

Think about how many people there are and try to slow down the population growth.

By doing these things, we're basically giving our planet a little TLC (tender loving care), and that's how we can keep our environment clean and healthy for everyone.

Policy and Regulation:

Governments and institutions play a vital role in shaping environmental policies and regulations. Strong and enforceable laws are essential to curb activities that harm the environment. This includes regulations on emissions, waste disposal, and protection of natural habitats. International cooperation is also crucial to address global environmental challenges, as issues like climate change know no borders.

The Role of Technology:

Technology can be a double-edged sword in environmental conservation. While some technological advancements contribute to environmental degradation, others offer solutions. Innovative technologies in renewable energy, waste management, and sustainable agriculture can significantly reduce our impact on the environment. Embracing and investing in eco-friendly technologies is a step towards a greener and more sustainable future.

Conclusion:

Our environment is not just a collection of trees, rivers, and animals; it's the foundation of our existence. Understanding the interconnectedness of all living things and recognizing our responsibility as stewards of the Earth is essential. By adopting sustainable practices, fostering education and awareness, implementing effective policies, and embracing eco-friendly technologies, we can work towards healing our planet. The choices we make today will determine the world we leave for future generations – a world that can either flourish in its natural beauty or struggle under the weight of environmental degradation. It's our collective responsibility to ensure that it's the former.

arrow-right

FAQs on Environment Essay

1. What is the Environment?

The environment constitutes the entire ecosystem that includes plants, animals and microorganisms, sunlight, air, rain, temperature, humidity, and other climatic factors. It is basically the surroundings where we live. The environment regulates the life of all living beings on Earth.

2. What are the Three Kinds of Environments?

Biotic Environment: It includes all biotic factors or living forms like plants, animals, and microorganisms.

Abiotic Environment: It includes non-living factors like temperature, light, rainfall, soil, minerals, etc. It comprises the atmosphere, lithosphere, and hydrosphere.

Built Environment: It includes buildings, streets, houses, industries, etc. 

3. What are the Major Factors that Lead to the Degradation of the Environment?

The factors that lead to the degradation of the environment are:

The rapid increase in the population.

Growth of industrialization and urbanization.

Deforestation is making the soil infertile (soil that provides nutrients and home to millions of organisms).

Over-consumption of natural resources.

Ozone depletion, global warming, and the greenhouse effect.

4. How do we Save Our Environment?

We must save our environment by maintaining a balanced and healthy ecosystem. We should plant more trees. We should reduce our consumption and reuse and recycle stuff. We should check on the increase in population. We should scarcely use our natural and precious resources. Industries and factories should take precautionary measures before dumping their wastes into the water bodies.

5. How can we protect Mother Earth?

Ways to save Mother Earth include planting more and more trees, using renewable sources of energy, reducing the wastage of water, saving electricity, reducing the use of plastic, conservation of non-renewable resources, conserving the different flora and faunas, taking steps to reduce pollution, etc.

6. What are some ways that humans impact their environment?

Humans have influenced the physical environment in many ways like overpopulation, pollution, burning fossil fuels, and deforestation. Changes like these have generated climate change, soil erosion, poor air quality, and undrinkable water. These negative impacts can affect human behavior and can prompt mass migrations or battles over clean water.  

7. Why is the environment of social importance?

Human beings are social animals by nature. They spend a good amount of time in social environments. Their responsibility towards the environment is certainly important because these social environments might support human beings in both personal development goals as well as career development goals.

COMMENTS

  1. What will the world look like in 2050? - The Nature Conservancy

    There is a clear path to 2050 in which both nature and 10 billion people can thrive together. But we are running out of time: Research shows we must make changes now to embrace our LAST CHANCE for a more sustainable future.

  2. The future of the environment is still in our hands ... - Medium

    There is no time left to waste. The Earths environment is already starting to experience irreversible damage — to its climate, to its biological diversity and ecosystems, and to its natural resources — and much more is coming soon if we don’t quickly change our ways.

  3. A Sustainable Future: Two Paths to 2050 - The Nature Conservancy

    A sustainable future is possible. To create our assessment of business-as-usual versus a more sustainable path, we looked at 14 measurements including temperature change, carbon dioxide levels, air pollution, water consumption, food and energy footprints, and protected areas.

  4. Life in 2050: What Will the Environment Look Like Where You ...

    Between now and 2050, we will continue to see an increase in the environmental and climate-related hazards that are a major concern today.

  5. What will the planet look like in 50 years? Here's how ...

    Governments are tasked with climate decisions that impact the future of entire nations, such as whether to invest in alternative energy or write policy curbing emissions. Are climate models...

  6. Essay on Save Environment: 5 Long & Short Samples - Leverage Edu

    Essay on Save Environment: How can we save the environment essay? How to write this essay? What should be covered? Understand with 3 samples!

  7. Essay on Environmental Sustainability for Students

    Environmental sustainability is an integral aspect of our existence, intertwined with the notion of preserving the natural world for future generations. It encapsulates the concept of stewardship, wherein we are responsible for managing the Earth’s resources responsibly and efficiently.

  8. Protecting the Environment - 823 Words | Essay Example - IvyPanda

    Protecting the environment is the act of taking care of natural resources and using them rationally to prevent annihilation and pollution. It also involves the use of comprehensive management measures that can create an environment that supports human activities and life. Get a custom essay on Protecting the Environment.

  9. Harvard students share thoughts on environmental challenges

    For many, thinking about the worlds environmental future brings concern, even outright alarm. There have been, after all, decades of increasingly strident warnings by experts and growing, ever-more-obvious signs of the Earth’s shifting climate.

  10. Environment Essay for Students in English - Vedantu

    Delve into the complexities of environmental issues and human influence in this insightful essay, examining the consequences and potential solutions. Gain a deeper understanding with Vedantu.