Math Problem Solving Strategies

In these lessons, we will learn some math problem solving strategies for example, Verbal Model (or Logical Reasoning), Algebraic Model, Block Model (or Singapore Math), Guess & Check Model and Find a Pattern Model.

Related Pages Solving Word Problems Using Block Models Heuristic Approach to Problem-Solving Algebra Lessons

Problem Solving Strategies

The strategies used in solving word problems:

  • What do you know?
  • What do you need to know?
  • Draw a diagram/picture

Solution Strategies Label Variables Verbal Model or Logical Reasoning Algebraic Model - Translate Verbal Model to Algebraic Model Solve and Check.

Solving Word Problems

Step 1: Identify (What is being asked?) Step 2: Strategize Step 3: Write the equation(s) Step 4: Answer the question Step 5: Check

Problem Solving Strategy: Guess And Check

Using the guess and check problem solving strategy to help solve math word problems.

Example: Jamie spent $40 for an outfit. She paid for the items using $10, $5 and $1 bills. If she gave the clerk 10 bills in all, how many of each bill did she use?

Problem Solving : Make A Table And Look For A Pattern

  • Identify - What is the question?
  • Plan - What strategy will I use to solve the problem?
  • Solve - Carry out your plan.
  • Verify - Does my answer make sense?

Example: Marcus ran a lemonade stand for 5 days. On the first day, he made $5. Every day after that he made $2 more than the previous day. How much money did Marcus made in all after 5 days?

Find A Pattern Model (Intermediate)

In this lesson, we will look at some intermediate examples of Find a Pattern method of problem-solving strategy.

Example: The figure shows a series of rectangles where each rectangle is bounded by 10 dots. a) How many dots are required for 7 rectangles? b) If the figure has 73 dots, how many rectangles would there be?

Rectangles Pattern Total dots
1 10 10
2 10 + 7 17
3 10 + 14 24
4 10 + 21 31
5 10 + 28 38
6 10 + 35 45
7 10 + 42 52
8 10 + 49 59
9 10 + 56 66
10 10 + 63 73

a) The number of dots required for 7 rectangles is 52.

b) If the figure has 73 dots, there would be 10 rectangles.

Example: Each triangle in the figure below has 3 dots. Study the pattern and find the number of dots for 7 layers of triangles.

Layers Pattern Total dots
1 3 3
2 3 + 3 6
3 3 + 3 + 4 10
4 3 + 3 + 4 + 5 15
5 3 + 3 + 4 + 5 + 6 21
6 3 + 3 + 4 + 5 + 6 + 7 28
7 3 + 3 + 4 + 5 + 6 + 7 + 8 36

The number of dots for 7 layers of triangles is 36.

Example: The table below shows numbers placed into groups I, II, III, IV, V and VI. In which groups would the following numbers belong? a) 25 b) 46 c) 269

I 1 7 13 19 25
II 2 8 14 20 26
III 3 9 15 21 27
IV 4 10 16 22
V 5 11 17 23
VI 6 12 18 24

Solution: The pattern is: The remainder when the number is divided by 6 determines the group. a) 25 ÷ 6 = 4 remainder 1 (Group I) b) 46 ÷ 6 = 7 remainder 4 (Group IV) c) 269 ÷ 6 = 44 remainder 5 (Group V)

Example: The following figures were formed using matchsticks.

a) Based on the above series of figures, complete the table below.

Number of squares 1 2 3 4 5 6 7 8
Number of triangles 4 6 8 10
Number of matchsticks 12 19 26 33

b) How many triangles are there if the figure in the series has 9 squares?

c) How many matchsticks would be used in the figure in the series with 11 squares?

Number of squares 1 2 3 4 5 6 7 8
Number of triangles 4 6 8 10 12 14 16 18
Number of matchsticks 12 19 26 33 40 47 54 61

b) The pattern is +2 for each additional square.   18 + 2 = 20   If the figure in the series has 9 squares, there would be 20 triangles.

c) The pattern is + 7 for each additional square   61 + (3 x 7) = 82   If the figure in the series has 11 squares, there would be 82 matchsticks.

Example: Seven ex-schoolmates had a gathering. Each one of them shook hands with all others once. How many handshakes were there?

A B C D E F G
A
B
C
D
E
F
G
HS 6 5 4 3 2 1

Total = 6 + 5 + 4 + 3 + 2 + 1 = 21 handshakes.

The following video shows more examples of using problem solving strategies and models. Question 1: Approximate your average speed given some information Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern. Find the number of seats in the last row. Question 3: You are hanging three pictures in the wall of your home that is 16 feet wide. The width of your pictures are 2, 3 and 4 feet. You want space between your pictures to be the same and the space to the left and right to be 6 inches more than between the pictures. How would you place the pictures?

The following are some other examples of problem solving strategies.

Explore it/Act it/Try it (EAT) Method (Basic) Explore it/Act it/Try it (EAT) Method (Intermediate) Explore it/Act it/Try it (EAT) Method (Advanced)

Finding A Pattern (Basic) Finding A Pattern (Intermediate) Finding A Pattern (Advanced)

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

  • Online math tutors
  • Math classes
  • 1st Grade Math Worksheets
  • 2nd Grade Math Worksheets
  • 3rd Grade Math Worksheets
  • 4th Grade Math Worksheets
  • 5th Grade Math Worksheets
  • 6th Grade Math Worksheets
  • 7th Grade Math Worksheets
  • 8th Grade Math Worksheets
  • Knowledge Base
  • Math tutors

10 Strategies for Problem Solving in Math

Updated on January 6, 2024

strategies for problem solving in math

When faced with problem-solving, children often get stuck. Word puzzles and math questions with an unknown variable, like x, usually confuse them. Therefore, this article discusses math strategies and how your students may use them since instructors often have to lead students through this problem-solving maze.

What Are Problem Solving Strategies in Math?

If you want to fix a problem, you need a solid plan. Math strategies for problem solving are ways of tackling math in a way that guarantees better outcomes. These strategies simplify math for kids so that less time is spent figuring out the problem. Both those new to mathematics and those more knowledgeable about the subject may benefit from these methods.

There are several methods to apply problem-solving procedures in math, and each strategy is different. While none of these methods failsafe, they may help your student become a better problem solver, particularly when paired with practice and examples. The more math problems kids tackle, the more math problem solving skills they acquire, and practice is the key.

Strategies for Problem-solving in Math

Even if a student is not a math wiz, a suitable solution to mathematical problems in math may help them discover answers. There is no one best method for helping students solve arithmetic problems, but the following ten approaches have shown to be very effective.

Understand the Problem

Understanding the nature of math problems is a prerequisite to solving them. They need to specify what kind of issue it is ( fraction problem , word problem, quadratic equation, etc.). Searching for keywords in the math problem, revisiting similar questions, or consulting the internet are all great ways to strengthen their grasp of the material. This step keeps the pupil on track.

1:1 Math Lessons

Want to raise a genius? Start learning Math with Brighterly

Guess and check.

One of the time-intensive strategies for resolving mathematical problems is the guess and check method. In this approach, students keep guessing until they get the answer right.

After assuming how to solve a math issue, students should reintroduce that assumption to check for correctness. While the approach may appear cumbersome, it is typically successful in revealing patterns in a child’s thought process.

Work It Out

Encourage pupils to record their thinking process as they go through a math problem. Since this technique requires an initial comprehension of the topic, it serves as a self-monitoring method for mathematics students. If they immediately start solving the problem, they risk making mistakes.

Students may keep track of their ideas and fix their math problems as they go along using this method. A youngster may still need you to explain their methods of solving the arithmetic questions on the extra page. This confirmation stage etches the steps they took to solve the problem in their minds.

Work Backwards

In mathematics, a fresh perspective is sometimes the key to a successful solution. Young people need to know that the ability to recreate math problems is valuable in many professional fields, including project management and engineering.

Students may better prepare for difficulties in real-world circumstances by using the “Work Backwards” technique. The end product may be used as a start-off point to identify the underlying issue.

In most cases, a visual representation of a math problem may help youngsters understand it better. Some of the most helpful math tactics for kids include having them play out the issue and picture how to solve it.

One way to visualize a workout is to use a blank piece of paper to draw a picture or make tally marks. Students might also use a marker and a whiteboard to draw as they demonstrate the technique before writing it down.

Find a Pattern

Kids who use pattern recognition techniques can better grasp math concepts and retain formulae. The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition.

Students may use this strategy to spot patterns and fill in the blanks. Over time, this strategy will help kids answer math problems quickly.

When faced with a math word problem, it might be helpful to ask, “What are some possible solutions to this issue?” It encourages you to give the problem more thought, develop creative solutions, and prevent you from being stuck in a rut. So, tell the pupils to think about the math problems and not just go with the first solution that comes to mind.

Draw a Picture or Diagram

Drawing a picture of a math problem can help kids understand how to solve it, just like picturing it can help them see it. Shapes or numbers could be used to show the forms to keep things easy. Kids might learn how to use dots or letters to show the parts of a pattern or graph if you teach them.

Charts and graphs can be useful even when math isn’t involved. Kids can draw pictures of the ideas they read about to help them remember them after they’ve learned them. The plan for how to solve the mathematical problem will help kids understand what the problem is and how to solve it.

Trial and Error Method

The trial and error method may be one of the most common problem solving strategies for kids to figure out how to solve problems. But how well this strategy is used will determine how well it works. Students have a hard time figuring out math questions if they don’t have clear formulas or instructions.

They have a better chance of getting the correct answer, though, if they first make a list of possible answers based on rules they already know and then try each one. Don’t be too quick to tell kids they shouldn’t learn by making mistakes.

Review Answers with Peers

It’s fun to work on your math skills with friends by reviewing the answers to math questions together. If different students have different ideas about how to solve the same problem, get them to share their thoughts with the class.

During class time, kids’ ways of working might be compared. Then, students can make their points stronger by fixing these problems.

Check out the Printable Math Worksheets for Your Kids!

There are different ways to solve problems that can affect how fast and well students do on math tests. That’s why they need to learn the best ways to do things. If students follow the steps in this piece, they will have better experiences with solving math questions.

Author Jessica Kaminski

Jessica is a a seasoned math tutor with over a decade of experience in the field. With a BSc and Master’s degree in Mathematics, she enjoys nurturing math geniuses, regardless of their age, grade, and skills. Apart from tutoring, Jessica blogs at Brighterly. She also has experience in child psychology, homeschooling and curriculum consultation for schools and EdTech websites.

Previous Article Image

As adults, we take numbers for granted, but preschoolers and kindergartners have no idea what these symbols mean. Yet, we often demand instant understanding and flawless performance when we start teaching numbers to our children. If you don’t have a clue about how to teach numbers for kids, browse no more. You will get four […]

May 19, 2022

Previous Article Image

Teaching children is a complex process because they require more attention than an adult person. You may need to employ different teaching strategies when teaching kids. But what are teaching strategies? Teaching strategies are the methods to ensure your kids or students learn efficiently. But not all strategies yield similarly, and if the one you […]

Math programs from 1st to 8th grade

Online summer math camp for kids and teens.

Image -Online Summer Math Camp for Kids and Teens

Choose kid's grade

Summer Math Program Boost Your Child's Math Abilities! Ideal for 1st-8th Graders, Perfectly Synced with School Curriculum!

Online Summer Math Camp for Kids and Teens

What do we offer?

Related posts.

Best Educational Websites for Kids

20+ Best Educational Websites for Kids

Is it hard for your child to get engaged in studying? Looking for the solution? You’ve come to the right place.  Here are the right educational websites for kids and teens, with tutors, apps, games, and other activities included. Choose the platform, based on the type, your needs, budget, and user reviews (like Trustpilot, Commonsense). […]

Apr 10, 2024

how to use an abacus

How to Use an Abacus?

Have you ever quickly done math with an abacus? Aside from being useful, the tool has also been shown to be fun and instructive. You will learn about abacus math and how to use one in this article. Specifically, you will learn addition, subtraction, multiplication, division, and figuring out percentages. We will show you how […]

Apr 29, 2022

examples of problem solving mathematics

Remote Learning: Advantages and Disadvantages

Since the COVID-19 pandemic hit the world in 2019, remote learning has become an important part of the educational process. But it wasn’t the only reason: advancements in technology and changes in educational practices have made remote learning extremely popular. Even if there’s no need to avoid on-site learning, students prefer online classes. However, along […]

Jul 30, 2024

Want your kid to excel in math?

Kid’s grade

Image full form

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

Problem Solving in Mathematics

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade

The main reason for learning about math is to become a better problem solver in all aspects of life. Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems. Ask yourself exactly what type of information is being asked for: Is it one of addition, subtraction, multiplication , or division? Then determine all the information that is being given to you in the question.

Mathematician George Pólya’s book, “ How to Solve It: A New Aspect of Mathematical Method ,” written in 1957, is a great guide to have on hand. The ideas below, which provide you with general steps or strategies to solve math problems, are similar to those expressed in Pólya’s book and should help you untangle even the most complicated math problem.

Use Established Procedures

Learning how to solve problems in mathematics is knowing what to look for. Math problems often require established procedures and knowing what procedure to apply. To create procedures, you have to be familiar with the problem situation and be able to collect the appropriate information, identify a strategy or strategies, and use the strategy appropriately.

Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

Look for Clue Words

Think of yourself as a math detective. The first thing to do when you encounter a math problem is to look for clue words. This is one of the most important skills you can develop. If you begin to solve problems by looking for clue words, you will find that those words often indicate an operation.

Common clue words for addition  problems:

Common clue words for  subtraction  problems:

  • How much more

Common clue words for multiplication problems:

Common clue words for division problems:

Although clue words will vary a bit from problem to problem, you'll soon learn to recognize which words mean what in order to perform the correct operation.

Read the Problem Carefully

This, of course, means looking for clue words as outlined in the previous section. Once you’ve identified your clue words, highlight or underline them. This will let you know what kind of problem you’re dealing with. Then do the following:

  • Ask yourself if you've seen a problem similar to this one. If so, what is similar about it?
  • What did you need to do in that instance?
  • What facts are you given about this problem?
  • What facts do you still need to find out about this problem?

Develop a Plan and Review Your Work

Based on what you discovered by reading the problem carefully and identifying similar problems you’ve encountered before, you can then:

  • Define your problem-solving strategy or strategies. This might mean identifying patterns, using known formulas, using sketches, and even guessing and checking.
  • If your strategy doesn't work, it may lead you to an ah-ha moment and to a strategy that does work.

If it seems like you’ve solved the problem, ask yourself the following:

  • Does your solution seem probable?
  • Does it answer the initial question?
  • Did you answer using the language in the question?
  • Did you answer using the same units?

If you feel confident that the answer is “yes” to all questions, consider your problem solved.

Tips and Hints

Some key questions to consider as you approach the problem may be:

  • What are the keywords in the problem?
  • Do I need a data visual, such as a diagram, list, table, chart, or graph?
  • Is there a formula or equation that I'll need? If so, which one?
  • Will I need to use a calculator? Is there a pattern I can use or follow?

Read the problem carefully, and decide on a method to solve the problem. Once you've finished working the problem, check your work and ensure that your answer makes sense and that you've used the same terms and or units in your answer.

  • Examples of Problem Solving with 4 Block
  • Using Percents - Calculating Commissions
  • What to Know About Business Math
  • Parentheses, Braces, and Brackets in Math
  • How to Solve a System of Linear Equations
  • How to Solve Proportions to Adjust a Recipe
  • Calculate the Exact Number of Days
  • What Is a Ratio? Definition and Examples
  • Changing From Base 10 to Base 2
  • Finding the Percent of Change Between Numbers
  • Learn About Natural Numbers, Whole Numbers, and Integers
  • How to Calculate Commissions Using Percents
  • Overview of the Stem-and-Leaf Plot
  • Understanding Place Value
  • Probability and Chance
  • Evaluating Functions With Graphs

University of Cambridge logo white

Or search by topic

Number and algebra.

  • Place value and the number system
  • Fractions, decimals, percentages, ratio and proportion
  • Calculations and numerical methods
  • Algebraic expressions, equations and formulae
  • Coordinates, functions and graphs
  • Patterns, sequences and structure
  • Properties of numbers

Geometry and measure

  • 3D geometry, shape and space
  • Transformations and constructions
  • Vectors and matrices
  • Measuring and calculating with units
  • Pythagoras and trigonometry
  • Angles, polygons, and geometrical proof

Probability and statistics

  • Handling, processing and representing data
  • Probability (spec_group)

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets

Advanced mathematics

  • Decision mathematics and combinatorics
  • Advanced probability and statistics

For younger learners

  • Early years foundation stage

Problem Solving, Using and Applying and Functional Mathematics

Problem solving.

The problem-solving process can be described as a journey from meeting a problem for the first time to finding a solution, communicating it and evaluating the route. There are many models of the problem-solving process but they all have a similar structure. One model is given below. Although implying a linear process from comprehension through to evaluation, the model is more of a flow backward and forward, revisiting and revising on the problem-solving journey.

Comprehension

Representation.

  • Can they represent the situation mathematically?
  • What is it that they are trying to find?
  • What do they think the answer might be (conjecturing and hypothesising)?
  • What might they need to find out before they can get started?

Planning, analysis and synthesis

Having understood what the problem is about and established what needs finding, this stage is about planning a pathway to the solution. It is within this process that you might encourage pupils to think about whether they have seen something similar before and what strategies they adopted then. This will help them to identify appropriate methods and tools. Particular knowledge and skills gaps that need addressing may become evident at this stage.

Execution and communication

During the execution phase, pupils might identify further related problems they wish to investigate. They will need to consider how they will keep track of what they have done and how they will communicate their findings. This will lead on to interpreting results and drawing conclusions.

Pupils can learn as much from reflecting on and evaluating what they have done as they can from the process of solving the problem itself. During this phase pupils should be expected to reflect on the effectiveness of their approach as well as other people's approaches, justify their conclusions and assess their own learning. Evaluation may also lead to thinking about other questions that could now be investigated.

Using and Applying Mathematics

Aspects of using and applying reflect skills that can be developed through problem solving. For example:

In planning and executing a problem, problem solvers may need to:

  • select and use appropriate and efficient techniques and strategies to solve problems
  • identify what further information may be required in order to pursue a particular line of enquiry and give reasons for following or rejecting particular approaches
  • break down a complex calculation problem into simpler steps before attempting a solution and justify their choice of methods
  • make mental estimates of the answers to calculations
  • present answers to sensible levels of accuracy; understand how errors are compounded in certain calculations.

During problem solving, solvers need to communicate their mathematics for example by:

  • discussing their work and explaining their reasoning using a range of mathematical language and notation
  • using a variety of strategies and diagrams for establishing algebraic or graphical representations of a problem and its solution
  • moving from one form of representation to another to get different perspectives on the problem
  • presenting and interpreting solutions in the context of the original problem
  • using notation and symbols correctly and consistently within a given problem
  • examining critically, improve, then justifying their choice of mathematical presentation
  • presenting a concise, reasoned argument.

Problem solvers need to reason mathematically including through:

  • exploring, identifying, and using pattern and symmetry in algebraic contexts, investigating whether a particular case may be generalised further and understanding the importance of a counter-example; identifying exceptional cases
  • understanding the difference between a practical demonstration and a proof
  • showing step-by-step deduction in solving a problem; deriving proofs using short chains of deductive reasoning
  • recognising the significance of stating constraints and assumptions when deducing results
  • recognising the limitations of any assumptions that are made and the effect that varying the assumptions may have on the solution to a problem.

Functional Mathematics

Functional maths requires learners to be able to use mathematics in ways that make them effective and involved as citizens, able to operate confidently in life and to work in a wide range of contexts. The key processes of Functional Skills reflect closely the problem solving model but within three phases:

  • Making sense of situations and representing them
  • Processing and using the mathematics
  • Interpreting and communicating the results of the analysis

You are using an outdated browser. Please upgrade your browser to improve your experience.

Math Problem Solving Strategies That Make Students Say “I Get It!”

examples of problem solving mathematics

Even students who are quick with math facts can get stuck when it comes to problem solving.

As soon as a concept is translated to a word problem, or a simple mathematical sentence contains an unknown, they’re stumped.

That’s because problem solving requires us to  consciously choose the strategies most appropriate for the problem   at hand . And not all students have this metacognitive ability.

But you can teach these strategies for problem solving.  You just need to know what they are.

We’ve compiled them here divided into four categories:

Strategies for understanding a problem

Strategies for solving the problem, strategies for working out, strategies for checking the solution.

Get to know these strategies and then model them explicitly to your students. Next time they dive into a rich problem, they’ll be filling up their working out paper faster than ever!

Before students can solve a problem, they need to know what it’s asking them. This is often the first hurdle with word problems that don’t specify a particular mathematical operation.

Encourage your students to:

Read and reread the question

They say they’ve read it, but have they  really ? Sometimes students will skip ahead as soon as they’ve noticed one familiar piece of information or give up trying to understand it if the problem doesn’t make sense at first glance.

Teach students to interpret a question by using self-monitoring strategies such as:

  • Rereading a question more slowly if it doesn’t make sense the first time
  • Asking for help
  • Highlighting or underlining important pieces of information.

Identify important and extraneous information

John is collecting money for his friend Ari’s birthday. He starts with $5 of his own, then Marcus gives him another $5. How much does he have now?

As adults looking at the above problem, we can instantly look past the names and the birthday scenario to see a simple addition problem. Students, however, can struggle to determine what’s relevant in the information that’s been given to them.

Teach students to sort and sift the information in a problem to find what’s relevant. A good way to do this is to have them swap out pieces of information to see if the solution changes. If changing names, items or scenarios has no impact on the end result, they’ll realize that it doesn’t need to be a point of focus while solving the problem.

Schema approach

This is a math intervention strategy that can make problem solving easier for all students, regardless of ability.

Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

[Number/Quantity A] with [Number/Quantity B] removed becomes [end result].

This is the underlying procedure or  schema  students are being asked to use. Once they have a list of schema for different mathematical operations (addition, multiplication and so on), they can take turns to apply them to an unfamiliar word problem and see which one fits.

Struggling students often believe math is something you either do automatically or don’t do at all. But that’s not true. Help your students understand that they have a choice of problem-solving strategies to use, and if one doesn’t work, they can try another.

Here are four common strategies students can use for problem solving.

Visualizing

Visualizing an abstract problem often makes it easier to solve. Students could draw a picture or simply draw tally marks on a piece of working out paper.

Encourage visualization by modeling it on the whiteboard and providing graphic organizers that have space for students to draw before they write down the final number.

Guess and check

Show students how to make an educated guess and then plug this answer back into the original problem. If it doesn’t work, they can adjust their initial guess higher or lower accordingly.

Find a pattern

To find patterns, show students how to extract and list all the relevant facts in a problem so they can be easily compared. If they find a pattern, they’ll be able to locate the missing piece of information.

Work backward

Working backward is useful if students are tasked with finding an unknown number in a problem or mathematical sentence. For example, if the problem is 8 + x = 12, students can find x by:

  • Starting with 12
  • Taking the 8 from the 12
  • Being left with 4
  • Checking that 4 works when used instead of x

Now students have understood the problem and formulated a strategy, it’s time to put it into practice. But if they just launch in and do it, they might make it harder for themselves. Show them how to work through a problem effectively by:

Documenting working out

Model the process of writing down every step you take to complete a math problem and provide working out paper when students are solving a problem. This will allow students to keep track of their thoughts and pick up errors before they reach a final solution.

Check along the way

Checking work as you go is another crucial self-monitoring strategy for math learners. Model it to them with think aloud questions such as:

  • Does that last step look right?
  • Does this follow on from the step I took before?
  • Have I done any ‘smaller’ sums within the bigger problem that need checking?

Students often make the mistake of thinking that speed is everything in math — so they’ll rush to get an answer down and move on without checking.

But checking is important too. It allows them to pinpoint areas of difficulty as they come up, and it enables them to tackle more complex problems that require multiple checks  before  arriving at a final answer.

Here are some checking strategies you can promote:

Check with a partner

Comparing answers with a peer leads is a more reflective process than just receiving a tick from the teacher. If students have two different answers, encourage them to talk about how they arrived at them and compare working out methods. They’ll figure out exactly where they went wrong, and what they got right.

Reread the problem with your solution

Most of the time, students will be able to tell whether or not their answer is correct by putting it back into the initial problem. If it doesn’t work or it just ‘looks wrong’, it’s time to go back and fix it up.

Fixing mistakes

Show students how to backtrack through their working out to find the exact point where they made a mistake. Emphasize that they can’t do this if they haven’t written down everything in the first place — so a single answer with no working out isn’t as impressive as they might think!

Need more help developing problem solving skills?

Read up on  how to set a problem solving and reasoning activity  or explore Mathseeds and Mathletics, our award winning online math programs. They’ve got over 900 teacher tested problem solving activities between them!

3p-solutions-mathletics

Get access to 900+ unique problem solving activities

You might like....

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Praxis Core Math

Course: praxis core math   >   unit 1.

  • Algebraic properties | Lesson
  • Algebraic properties | Worked example
  • Solution procedures | Lesson
  • Solution procedures | Worked example
  • Equivalent expressions | Lesson
  • Equivalent expressions | Worked example
  • Creating expressions and equations | Lesson
  • Creating expressions and equations | Worked example

Algebraic word problems | Lesson

  • Algebraic word problems | Worked example
  • Linear equations | Lesson
  • Linear equations | Worked example
  • Quadratic equations | Lesson
  • Quadratic equations | Worked example

examples of problem solving mathematics

What are algebraic word problems?

What skills are needed.

  • Translating sentences to equations
  • Solving linear equations with one variable
  • Evaluating algebraic expressions
  • Solving problems using Venn diagrams

How do we solve algebraic word problems?

  • Define a variable.
  • Write an equation using the variable.
  • Solve the equation.
  • If the variable is not the answer to the word problem, use the variable to calculate the answer.

What's a Venn diagram?

  • 7 + 10 − 13 = 4 ‍   brought both food and drinks.
  • 7 − 4 = 3 ‍   brought only food.
  • 10 − 4 = 6 ‍   brought only drinks.
  • Your answer should be
  • an integer, like 6 ‍  
  • a simplified proper fraction, like 3 / 5 ‍  
  • a simplified improper fraction, like 7 / 4 ‍  
  • a mixed number, like 1   3 / 4 ‍  
  • an exact decimal, like 0.75 ‍  
  • a multiple of pi, like 12   pi ‍   or 2 / 3   pi ‍  
  • (Choice A)   $ 4 ‍   A $ 4 ‍  
  • (Choice B)   $ 5 ‍   B $ 5 ‍  
  • (Choice C)   $ 9 ‍   C $ 9 ‍  
  • (Choice D)   $ 14 ‍   D $ 14 ‍  
  • (Choice E)   $ 20 ‍   E $ 20 ‍  
  • (Choice A)   10 ‍   A 10 ‍  
  • (Choice B)   12 ‍   B 12 ‍  
  • (Choice C)   24 ‍   C 24 ‍  
  • (Choice D)   30 ‍   D 30 ‍  
  • (Choice E)   32 ‍   E 32 ‍  
  • (Choice A)   4 ‍   A 4 ‍  
  • (Choice B)   10 ‍   B 10 ‍  
  • (Choice C)   14 ‍   C 14 ‍  
  • (Choice D)   18 ‍   D 18 ‍  
  • (Choice E)   22 ‍   E 22 ‍  

Things to remember

  • PRINT TO PLAY
  • DIGITAL GAMES

examples of problem solving mathematics

Problem-Solving Strategies

October 16, 2019

There are many different ways to solve a math problem, and equipping students with problem-solving strategies is just as important as teaching computation and algorithms. Problem-solving strategies help students visualize the problem or present the given information in a way that can lead them to the solution. Solving word problems using strategies works great as a number talks activity and helps to revise many skills.

Problem-solving strategies

1. create a diagram/picture, 2. guess and check., 3. make a table or a list., 4. logical reasoning., 5. find a pattern, 6. work backward, 1. create a diagram/draw a picture.

Creating a diagram helps students visualize the problem and reach the solution. A diagram can be a picture with labels, or a representation of the problem with objects that can be manipulated. Role-playing and acting out the problem like a story can help get to the solution.

Alice spent 3/4 of her babysitting money on comic books. She is left with $6. How much money did she make from babysitting?

examples of problem solving mathematics

2. Guess and check

Teach students the same strategy research mathematicians use.

With this strategy, students solve problems by making a reasonable guess depending on the information given. Then they check to see if the answer is correct and they improve it accordingly.  By repeating this process, a student can arrive at a correct answer that has been checked. It is recommended that the students keep a record of their guesses by making a chart, a table or a list. This is a flexible strategy that works for many types of problems. When students are stuck, guessing and checking helps them start and explore the problem. However, there is a trap. Exactly because it is such a simple strategy to use, some students find it difficult to consider other strategies. As problems get more complicated, other strategies become more important and more effective.

Find two numbers that have sum 11 and product 24.

Try/guess  5 and 6  the product is 30 too high

  adjust  to 4 and 7 with product 28 still high

  adjust  again 3 and 8 product 24

3. Make a table or a list

Carefully organize the information on a table or list according to the problem information. It might be a table of numbers, a table with ticks and crosses to solve a logic problem or a list of possible answers. Seeing the given information sorted out on a table or a list will help find patterns and lead to the correct solution.

To make sure you are listing all the information correctly read the problem carefully.

Find the common factors of 24, 30 and 18

examples of problem solving mathematics

Logical reasoning is the process of using logical, systemic steps to arrive at a conclusion based on given facts and mathematic principles. Read and understand the problem. Then find the information that helps you start solving the problem. Continue with each piece of information and write possible answers.

Thomas, Helen, Bill, and Mary have cats that are black, brown, white, or gray. The cats’ names are Buddy, Lucky, Fifi, and Moo. Buddy is brown. Thoma’s cat, Lucky, is not gray. Helen’s cat is white but is not named Moo. The gray cat belongs to Bill. Which cat belongs to each student, and what is its color?

A table or list is useful in solving logic problems.

Thomas Lucky Not gray, the cat is black
Helen Not Moo, not Buddy, not Lucky so Fifi White  
Bill Moo Gray  
Mary Buddy Brown

Since Lucky is not gray it can be black or brown. However, Buddy is brown so Lucky has to be black.

Buddy is brown so it cannot be Helen’s cat. Helen’s cat cannot be Moo, Buddy or Lucky, so it is Fifi.

Therefore, Moo is Bill’s cat and Buddy is Mary’s cat.

5. Find a pattern.

Finding a pattern is a strategy in which students look for patterns in the given information in order to solve the problem. When the problem consists of data like numbers or events that are repeated then it can be solved using the “find a pattern” problem-solving strategy. Data can be organized in a table or a list to reveal the pattern and help discover the “rule” of the pattern.

 The “rule” can then be used to find the answer to the question and complete the table/list.

Shannon’s Pizzeria made 5 pizzas on Sunday, 10 pizzas on Monday, 20 pizzas on Tuesday, and 40 pizzas on Wednesday. If this pattern continues, how many pizzas will the pizzeria make on Saturday?

Sunday 5
Monday 10
Tuesday 20
Wednesday 40
Thursday  
Friday  
Saturday  

6. Working backward

Problems that can be solved with this strategy are the ones that  list a series of events or a sequence of steps .

In this strategy, the students must start with the solution and work back to the beginning. Each operation must be reversed to get back to the beginning. So if working forwards requires addition, when students work backward they will need to subtract. And if they multiply working forwards, they must divide when working backward.

Mom bought a box of candy. Mary took 5 of them, Nick took 4 of them and 31 were given out on Halloween night. The next morning they found 8 pieces of candy in the box. How many candy pieces were in the box when mom bought it.

For this problem, we know that the final number of candy was 8, so if we work backward to “put back” the candy that was taken from the box we can reach the number of candy pieces that were in the box, to begin with.

The candy was taken away so we will normally subtract them. However, to get back to the original number of candy we need to work backward and do the opposite, which is to add them.

8 candy pieces were left + the 31 given out + plus the ones Mary took + the ones Nick took

8+31+5+4= 48   Answer: The box came with 48 pieces of candy.

Selecting the best strategy for a problem comes with practice and often problems will require the use of more than one strategies.

Print and digital activities

I have created a collection of print and digital activity cards and worksheets with word problems (print and google slides) to solve using the strategies above. The collection includes 70 problems (5 challenge ones) and their solution s and explanations.

sample below

examples of problem solving mathematics

How to use the activity cards

Allow the students to use manipulatives to solve the problems. (counters, shapes, lego blocks, Cuisenaire blocks, base 10 blocks, clocks) They can use manipulatives to create a picture and visualize the problem. They can use counters for the guess and check strategy. Discuss which strategy/strategies are better for solving each problem. Discuss the different ways. Use the activities as warm-ups, number talks, initiate discussions, group work, challenge, escape rooms, and more.

Ask your students to write their own problems using the problems in this resource, and more, as examples. Start with a simple type. Students learn a lot when trying to compose a problem. They can share the problem with their partner or the whole class. Make a collection of problems to share with another class.

For the google slides the students can use text boxes to explain their thinking with words, add shapes and lines to create diagrams, and add (insert) tables and diagrams.

Many of the problems can be solved faster by using algebraic expressions. However, since I created this resource for grades 4 and up I chose to show simple conceptual ways of solving the problems using the strategies above. You can suggest different ways of solving the problems based on the grade level.

Find the free and premium versions of the resource below. The premium version includes 70 problems (challenge problems included) and their solutions

There are 2 versions of the resource

70 google slides with explanations + 70 printable task cards

70 google slides with explanations + 11 worksheets

You might also like

examples of problem solving mathematics

Multiplying fractions/mixed numbers/simplifying

examples of problem solving mathematics

Adding and subtracting fractions

examples of problem solving mathematics

AM/PM, 24-hour clock, Elapsed Time – ideas, games, and activities

examples of problem solving mathematics

Teaching area, ideas, games, print, and digital activities

examples of problem solving mathematics

Multi-Digit Multiplication, Area model, Partial Products algorithm, Puzzles, Word problems

examples of problem solving mathematics

Place Value – Representing and adding 2/3 digit numbers with manipulatives

examples of problem solving mathematics

Multiplication Mission – arrays, properties, multiples, factors, division

examples of problem solving mathematics

Fractions Games and activities – Equivalence, make 1, compare, add, subtract, like, unlike

examples of problem solving mathematics

Diving into Division -Teaching division conceptually

examples of problem solving mathematics

Expressions with arrays

examples of problem solving mathematics

Decimals, Decimal fractions, Percentages – print and digital

examples of problem solving mathematics

Solving Word Problems- Math talks-Strategies, Ideas and Activities-print and digital

Check out our best selling card games now available at amazon.com and amazon.ca.

examples of problem solving mathematics

Chicken Escape

A multiplayer card game that makes mental math practice fun! Chicken Escape is a fast-paced multiplayer card game. While playing…

examples of problem solving mathematics

Dragon Times – A math Adventure card game

Dragon Times is an educational fantasy card game that aims to motivate children to practice multiplication and division facts while…

Free Mathematics Tutorials, Problems and Worksheets

Thousands of math problems and questions with solutions and detailed explanations are included. Free math tutorials and problems to help you explore and gain deep understanding of math topics such as: Algebra and graphing   ,   Precalculus   ,   Practice tests and worksheets   ,   Calculus   ,   Linear Algebra   ,   Geometry   ,   Trigonometry   ,   Math Videos   ,   Math From Grade 4 to Grade 12   ,   Statistics and Probabilities   ,   Applied Math   ,   Engineering Mathematics   ,   More Math Resources   ,   Math Pages in Different languages and Analyzemath.com in Different Languages

ALGEBRA AND GRAPHING

  • Algebra Questions and Problems
  • Fractions Questions and Problems with Solutions
  • Solving Equation and Inequalities
  • Find Domain and Range of Functions
  • Complex Numbers
  • Step by Step Maths Worksheets Solvers
  • Free Graph Paper
  • Online Step by Step Algebra Calculators and Solvers

PRECALCULUS

  • Graphs of Functions, Equations, and Algebra
  • Analytical Tutorials
  • Math Problems
  • Online Math Calculators and Solvers
  • Math Software

PRACTICE TESTS AND WORKSHEETS

  • Free Practice for SAT, ACT and Compass Math tests
  • Free Practice for quantitative GRE Maths Tests
  • Free Math Worksheets to Download
  • Differentiation and Derivatives Questions and Problems with Solutions
  • Integrals Questions and Problems in Calculus
  • Calculus Problem Solving and Applications
  • Calculus Tutorials and Problems
  • Calculus Questions With Answers
  • AP Calculus Questions With Solutions
  • Online Step by Step Calculus Calculators and Solvers
  • Free Calculus Worksheets to Download

LINEAR ALGEBRA

  • Linear Algebra - Questions with Solutions
  • Geometry Tutorials and Problems
  • Online Geometry Calculators and Solvers
  • Online 3D Geometry Calculators and Solvers
  • Free Geometry Worksheets to Download

TRIGONOMETRY

  • Trigonometry Tutorials and Problems for Self Tests
  • Free Trigonometry Questions with Answers
  • Free Trigonometry Worksheets to Download
  • Online Trigonometry Calculators and Solvers
  • Vectors Calculators and Solvers

STATISTICS AND PROBABILITIES

  • Elementary Statistics and Probability Tutorials and Problems
  • Probabilities
  • Statistics Calculators, Solvers and Graphers
  • Probability Calculators
  • Google Sheets in Math, Statistics and Probabilities

MATH FROM GRADE 4 TO GRADE 12

  • Grade 12 Math Problems with Solutions.
  • Grade 11 Math Problems with Solutions.
  • Grade 10 Math Problems with Solutions.
  • Grade 9 Math Problems with Solutions.
  • Grade 8 Math Problems with Solutions.
  • Grade 7 Math Problems with Solutions.
  • Grade 6 Math Problems with Solutions.
  • Grade 5 Math Problems with Solutions.
  • Grade 4 Math Problems with Solutions.
  • High School Math (Grades 10, 11 and 12) - Free Questions and Problems With Answers
  • Middle School Math (Grades 6, 7, 8, 9) - Free Questions and Problems With Answers
  • Primary Math (grades 4 and 5) - Free Questions and Problems With Answers
  • Units Conversion and Calculators
  • Convert Units of Measurements

APPLIED MATH

  • The Applications of Mathematics in Physics and Engineering
  • Linear Programming
  • Mathematics for Machine Learning
  • Mathematical Finance

MORE MATH RESOURCES

  • Math Formulas for Mobile Devices
  • Engineering Mathematics
  • Understanding, Teaching and Learning Mathematics
  • HTML5 Applets for iPads
  • Math Videos

MATH PAGES IN DIFFERENT LANGUAGES

  • Analyzemath.com in Different Languages
  • Exercises de Mathematiques Utilisant les Applets
  • Mathematics pages in French

120 Math Word Problems To Challenge Students Grades 1 to 8

Written by Marcus Guido

  • Teaching Tools

no image

  • Subtraction
  • Multiplication
  • Mixed operations
  • Ordering and number sense
  • Comparing and sequencing
  • Physical measurement
  • Ratios and percentages
  • Probability and data relationships

You sit at your desk, ready to put a math quiz, test or activity together. The questions flow onto the document until you hit a section for word problems.

A jolt of creativity would help. But it doesn’t come.

Whether you’re a 3rd grade teacher or an 8th grade teacher preparing students for high school, translating math concepts into real world examples can certainly be a challenge.

This resource is your jolt of creativity. It provides examples and templates of math word problems for 1st to 8th grade classes . ( See our entire list of back to school resources for teachers here .)

There are 120 examples in total.

The list of examples is supplemented by tips to create engaging and challenging math word problems.

120 Math word problems, categorized by skill

Addition word problems.

A teacher is teaching three students with a whiteboard happily.

Best for: 1st grade, 2nd grade

1. Adding to 10: Ariel was playing basketball. 1 of her shots went in the hoop. 2 of her shots did not go in the hoop. How many shots were there in total?

2. Adding to 20: Adrianna has 10 pieces of gum to share with her friends. There wasn’t enough gum for all her friends, so she went to the store to get 3 more pieces of gum. How many pieces of gum does Adrianna have now?

3. Adding to 100: Adrianna has 10 pieces of gum to share with her friends. There wasn’t enough gum for all her friends, so she went to the store and got 70 pieces of strawberry gum and 10 pieces of bubble gum. How many pieces of gum does Adrianna have now?

4. Adding Slightly over 100: The restaurant has 175 normal chairs and 20 chairs for babies. How many chairs does the restaurant have in total?

5. Adding to 1,000: How many cookies did you sell if you sold 320 chocolate cookies and 270 vanilla cookies?

6. Adding to and over 10,000: The hobby store normally sells 10,576 trading cards per month. In June, the hobby store sold 15,498 more trading cards than normal. In total, how many trading cards did the hobby store sell in June?

7. Adding 3 Numbers: Billy had 2 books at home. He went to the library to take out 2 more books. He then bought 1 book. How many books does Billy have now?

8. Adding 3 Numbers to and over 100: Ashley bought a big bag of candy. The bag had 102 blue candies, 100 red candies and 94 green candies. How many candies were there in total?

Subtraction word problems

Best for: 1st grade, second grade

9. Subtracting to 10: There were 3 pizzas in total at the pizza shop. A customer bought 1 pizza. How many pizzas are left?

10. Subtracting to 20: Your friend said she had 11 stickers. When you helped her clean her desk, she only had a total of 10 stickers. How many stickers are missing?

11. Subtracting to 100: Adrianna has 100 pieces of gum to share with her friends. When she went to the park, she shared 10 pieces of strawberry gum. When she left the park, Adrianna shared another 10 pieces of bubble gum. How many pieces of gum does Adrianna have now?

Five middle school students sitting at a row of desks playing Prodigy Math on tablets.

Practice math word problems with Prodigy Math

Join millions of teachers using Prodigy to make learning fun and differentiate instruction as they answer in-game questions, including math word problems from 1st to 8th grade!

12. Subtracting Slightly over 100: Your team scored a total of 123 points. 67 points were scored in the first half. How many were scored in the second half?

13. Subtracting to 1,000: Nathan has a big ant farm. He decided to sell some of his ants. He started with 965 ants. He sold 213. How many ants does he have now?

14. Subtracting to and over 10,000: The hobby store normally sells 10,576 trading cards per month. In July, the hobby store sold a total of 20,777 trading cards. How many more trading cards did the hobby store sell in July compared with a normal month?

15. Subtracting 3 Numbers: Charlene had a pack of 35 pencil crayons. She gave 6 to her friend Theresa. She gave 3 to her friend Mandy. How many pencil crayons does Charlene have left?

16. Subtracting 3 Numbers to and over 100: Ashley bought a big bag of candy to share with her friends. In total, there were 296 candies. She gave 105 candies to Marissa. She also gave 86 candies to Kayla. How many candies were left?

Multiplication word problems

A hand holding a pen is doing calculation on a pice of papper

Best for: 2nd grade, 3rd grade

17. Multiplying 1-Digit Integers: Adrianna needs to cut a pan of brownies into pieces. She cuts 6 even columns and 3 even rows into the pan. How many brownies does she have?

18. Multiplying 2-Digit Integers: A movie theatre has 25 rows of seats with 20 seats in each row. How many seats are there in total?

19. Multiplying Integers Ending with 0: A clothing company has 4 different kinds of sweatshirts. Each year, the company makes 60,000 of each kind of sweatshirt. How many sweatshirts does the company make each year?

20. Multiplying 3 Integers: A bricklayer stacks bricks in 2 rows, with 10 bricks in each row. On top of each row, there is a stack of 6 bricks. How many bricks are there in total?

21. Multiplying 4 Integers: Cayley earns $5 an hour by delivering newspapers. She delivers newspapers 3 days each week, for 4 hours at a time. After delivering newspapers for 8 weeks, how much money will Cayley earn?

Division word problems

Best for: 3rd grade, 4th grade, 5th grade

22. Dividing 1-Digit Integers: If you have 4 pieces of candy split evenly into 2 bags, how many pieces of candy are in each bag?

23. Dividing 2-Digit Integers: If you have 80 tickets for the fair and each ride costs 5 tickets, how many rides can you go on?

24. Dividing Numbers Ending with 0: The school has $20,000 to buy new computer equipment. If each piece of equipment costs $50, how many pieces can the school buy in total?

25. Dividing 3 Integers: Melissa buys 2 packs of tennis balls for $12 in total. All together, there are 6 tennis balls. How much does 1 pack of tennis balls cost? How much does 1 tennis ball cost?

26. Interpreting Remainders: An Italian restaurant receives a shipment of 86 veal cutlets. If it takes 3 cutlets to make a dish, how many cutlets will the restaurant have left over after making as many dishes as possible?

Mixed operations word problems

A female teacher is instructing student math on a blackboard

27. Mixing Addition and Subtraction: There are 235 books in a library. On Monday, 123 books are taken out. On Tuesday, 56 books are brought back. How many books are there now?

28. Mixing Multiplication and Division: There is a group of 10 people who are ordering pizza. If each person gets 2 slices and each pizza has 4 slices, how many pizzas should they order?

29. Mixing Multiplication, Addition and Subtraction: Lana has 2 bags with 2 marbles in each bag. Markus has 2 bags with 3 marbles in each bag. How many more marbles does Markus have?

30. Mixing Division, Addition and Subtraction: Lana has 3 bags with the same amount of marbles in them, totaling 12 marbles. Markus has 3 bags with the same amount of marbles in them, totaling 18 marbles. How many more marbles does Markus have in each bag?

Ordering and number sense word problems

31. Counting to Preview Multiplication: There are 2 chalkboards in your classroom. If each chalkboard needs 2 pieces of chalk, how many pieces do you need in total?

32. Counting to Preview Division: There are 3 chalkboards in your classroom. Each chalkboard has 2 pieces of chalk. This means there are 6 pieces of chalk in total. If you take 1 piece of chalk away from each chalkboard, how many will there be in total?

33. Composing Numbers: What number is 6 tens and 10 ones?

34. Guessing Numbers: I have a 7 in the tens place. I have an even number in the ones place. I am lower than 74. What number am I?

35. Finding the Order: In the hockey game, Mitchell scored more points than William but fewer points than Auston. Who scored the most points? Who scored the fewest points?

Fractions word problems

A student is drawing on a notebook, holding a pencil.

Best for: 3rd grade, 4th grade, 5th grade, 6th grade

36. Finding Fractions of a Group: Julia went to 10 houses on her street for Halloween. 5 of the houses gave her a chocolate bar. What fraction of houses on Julia’s street gave her a chocolate bar?

37. Finding Unit Fractions: Heather is painting a portrait of her best friend, Lisa. To make it easier, she divides the portrait into 6 equal parts. What fraction represents each part of the portrait?

38. Adding Fractions with Like Denominators: Noah walks ⅓ of a kilometre to school each day. He also walks ⅓ of a kilometre to get home after school. How many kilometres does he walk in total?

39. Subtracting Fractions with Like Denominators: Last week, Whitney counted the number of juice boxes she had for school lunches. She had ⅗ of a case. This week, it’s down to ⅕ of a case. How much of the case did Whitney drink?

40. Adding Whole Numbers and Fractions with Like Denominators: At lunchtime, an ice cream parlor served 6 ¼ scoops of chocolate ice cream, 5 ¾ scoops of vanilla and 2 ¾ scoops of strawberry. How many scoops of ice cream did the parlor serve in total?

41. Subtracting Whole Numbers and Fractions with Like Denominators: For a party, Jaime had 5 ⅓ bottles of cola for her friends to drink. She drank ⅓ of a bottle herself. Her friends drank 3 ⅓. How many bottles of cola does Jaime have left?

42. Adding Fractions with Unlike Denominators: Kevin completed ½ of an assignment at school. When he was home that evening, he completed ⅚ of another assignment. How many assignments did Kevin complete?

43. Subtracting Fractions with Unlike Denominators: Packing school lunches for her kids, Patty used ⅞ of a package of ham. She also used ½ of a package of turkey. How much more ham than turkey did Patty use?

44. Multiplying Fractions: During gym class on Wednesday, the students ran for ¼ of a kilometre. On Thursday, they ran ½ as many kilometres as on Wednesday. How many kilometres did the students run on Thursday? Write your answer as a fraction.

45. Dividing Fractions: A clothing manufacturer uses ⅕ of a bottle of colour dye to make one pair of pants. The manufacturer used ⅘ of a bottle yesterday. How many pairs of pants did the manufacturer make?

46. Multiplying Fractions with Whole Numbers: Mark drank ⅚ of a carton of milk this week. Frank drank 7 times more milk than Mark. How many cartons of milk did Frank drink? Write your answer as a fraction, or as a whole or mixed number.

Decimals word problems

Best for: 4th grade, 5th grade

47. Adding Decimals: You have 2.6 grams of yogurt in your bowl and you add another spoonful of 1.3 grams. How much yogurt do you have in total?

48. Subtracting Decimals: Gemma had 25.75 grams of frosting to make a cake. She decided to use only 15.5 grams of the frosting. How much frosting does Gemma have left?

49. Multiplying Decimals with Whole Numbers: Marshall walks a total of 0.9 kilometres to and from school each day. After 4 days, how many kilometres will he have walked?

50. Dividing Decimals by Whole Numbers: To make the Leaning Tower of Pisa from spaghetti, Mrs. Robinson bought 2.5 kilograms of spaghetti. Her students were able to make 10 leaning towers in total. How many kilograms of spaghetti does it take to make 1 leaning tower?

51. Mixing Addition and Subtraction of Decimals: Rocco has 1.5 litres of orange soda and 2.25 litres of grape soda in his fridge. Antonio has 1.15 litres of orange soda and 0.62 litres of grape soda. How much more soda does Rocco have than Angelo?

52. Mixing Multiplication and Division of Decimals: 4 days a week, Laura practices martial arts for 1.5 hours. Considering a week is 7 days, what is her average practice time per day each week?

Comparing and sequencing word problems

Four students are sitting together and discussing math questions

Best for: Kindergarten, 1st grade, 2nd grade

53. Comparing 1-Digit Integers: You have 3 apples and your friend has 5 apples. Who has more?

54. Comparing 2-Digit Integers: You have 50 candies and your friend has 75 candies. Who has more?

55. Comparing Different Variables: There are 5 basketballs on the playground. There are 7 footballs on the playground. Are there more basketballs or footballs?

56. Sequencing 1-Digit Integers: Erik has 0 stickers. Every day he gets 1 more sticker. How many days until he gets 3 stickers?

57. Skip-Counting by Odd Numbers: Natalie began at 5. She skip-counted by fives. Could she have said the number 20?

58. Skip-Counting by Even Numbers: Natasha began at 0. She skip-counted by eights. Could she have said the number 36?

59. Sequencing 2-Digit Numbers: Each month, Jeremy adds the same number of cards to his baseball card collection. In January, he had 36. 48 in February. 60 in March. How many baseball cards will Jeremy have in April?

Time word problems

66. Converting Hours into Minutes: Jeremy helped his mom for 1 hour. For how many minutes was he helping her?

69. Adding Time: If you wake up at 7:00 a.m. and it takes you 1 hour and 30 minutes to get ready and walk to school, at what time will you get to school?

70. Subtracting Time: If a train departs at 2:00 p.m. and arrives at 4:00 p.m., how long were passengers on the train for?

71. Finding Start and End Times: Rebecca left her dad’s store to go home at twenty to seven in the evening. Forty minutes later, she was home. What time was it when she arrived home?

Money word problems

Best for: 1st grade, 2nd grade, 3rd grade, 4th grade, 5th grade

60. Adding Money: Thomas and Matthew are saving up money to buy a video game together. Thomas has saved $30. Matthew has saved $35. How much money have they saved up together in total?

61. Subtracting Money: Thomas has $80 saved up. He uses his money to buy a video game. The video game costs $67. How much money does he have left?

62. Multiplying Money: Tim gets $5 for delivering the paper. How much money will he have after delivering the paper 3 times?

63. Dividing Money: Robert spent $184.59 to buy 3 hockey sticks. If each hockey stick was the same price, how much did 1 cost?

64. Adding Money with Decimals: You went to the store and bought gum for $1.25 and a sucker for $0.50. How much was your total?

65. Subtracting Money with Decimals: You went to the store with $5.50. You bought gum for $1.25, a chocolate bar for $1.15 and a sucker for $0.50. How much money do you have left?

67. Applying Proportional Relationships to Money: Jakob wants to invite 20 friends to his birthday, which will cost his parents $250. If he decides to invite 15 friends instead, how much money will it cost his parents? Assume the relationship is directly proportional.

68. Applying Percentages to Money: Retta put $100.00 in a bank account that gains 20% interest annually. How much interest will be accumulated in 1 year? And if she makes no withdrawals, how much money will be in the account after 1 year?

Physical measurement word problems

A girl is doing math practice

Best for: 1st grade, 2nd grade, 3rd grade, 4th grade

72. Comparing Measurements: Cassandra’s ruler is 22 centimetres long. April’s ruler is 30 centimetres long. How many centimetres longer is April’s ruler?

73. Contextualizing Measurements: Picture a school bus. Which unit of measurement would best describe the length of the bus? Centimetres, metres or kilometres?

74. Adding Measurements: Micha’s dad wants to try to save money on gas, so he has been tracking how much he uses. Last year, Micha’s dad used 100 litres of gas. This year, her dad used 90 litres of gas. How much gas did he use in total for the two years?

75. Subtracting Measurements: Micha’s dad wants to try to save money on gas, so he has been tracking how much he uses. Over the past two years, Micha’s dad used 200 litres of gas. This year, he used 100 litres of gas. How much gas did he use last year?

A tablet showing an example of Prodigy Math's battle gameplay.

76. Multiplying Volume and Mass: Kiera wants to make sure she has strong bones, so she drinks 2 litres of milk every week. After 3 weeks, how many litres of milk will Kiera drink?

77. Dividing Volume and Mass: Lillian is doing some gardening, so she bought 1 kilogram of soil. She wants to spread the soil evenly between her 2 plants. How much will each plant get?

78. Converting Mass: Inger goes to the grocery store and buys 3 squashes that each weigh 500 grams. How many kilograms of squash did Inger buy?

79. Converting Volume: Shad has a lemonade stand and sold 20 cups of lemonade. Each cup was 500 millilitres. How many litres did Shad sell in total?

80. Converting Length: Stacy and Milda are comparing their heights. Stacy is 1.5 meters tall. Milda is 10 centimetres taller than Stacy. What is Milda’s height in centimetres?

81. Understanding Distance and Direction: A bus leaves the school to take students on a field trip. The bus travels 10 kilometres south, 10 kilometres west, another 5 kilometres south and 15 kilometres north. To return to the school, in which direction does the bus have to travel? How many kilometres must it travel in that direction?

Ratios and percentages word problems

Best for: 4th grade, 5th grade, 6th grade

82. Finding a Missing Number: The ratio of Jenny’s trophies to Meredith’s trophies is 7:4. Jenny has 28 trophies. How many does Meredith have?

83. Finding Missing Numbers: The ratio of Jenny’s trophies to Meredith’s trophies is 7:4. The difference between the numbers is 12. What are the numbers?

84. Comparing Ratios: The school’s junior band has 10 saxophone players and 20 trumpet players. The school’s senior band has 18 saxophone players and 29 trumpet players. Which band has the higher ratio of trumpet to saxophone players?

85. Determining Percentages: Mary surveyed students in her school to find out what their favourite sports were. Out of 1,200 students, 455 said hockey was their favourite sport. What percentage of students said hockey was their favourite sport?

86. Determining Percent of Change: A decade ago, Oakville’s population was 67,624 people. Now, it is 190% larger. What is Oakville’s current population?

87. Determining Percents of Numbers: At the ice skate rental stand, 60% of 120 skates are for boys. If the rest of the skates are for girls, how many are there?

88. Calculating Averages: For 4 weeks, William volunteered as a helper for swimming classes. The first week, he volunteered for 8 hours. He volunteered for 12 hours in the second week, and another 12 hours in the third week. The fourth week, he volunteered for 9 hours. For how many hours did he volunteer per week, on average?

Probability and data relationships word problems

Two students are calculating on a whiteboard

Best for: 4th grade, 5th grade, 6th grade, 7th grade

89. Understanding the Premise of Probability: John wants to know his class’s favourite TV show, so he surveys all of the boys. Will the sample be representative or biased?

90. Understanding Tangible Probability: The faces on a fair number die are labelled 1, 2, 3, 4, 5 and 6. You roll the die 12 times. How many times should you expect to roll a 1?

91. Exploring Complementary Events: The numbers 1 to 50 are in a hat. If the probability of drawing an even number is 25/50, what is the probability of NOT drawing an even number? Express this probability as a fraction.

92. Exploring Experimental Probability: A pizza shop has recently sold 15 pizzas. 5 of those pizzas were pepperoni. Answering with a fraction, what is the experimental probability that he next pizza will be pepperoni?

93. Introducing Data Relationships: Maurita and Felice each take 4 tests. Here are the results of Maurita’s 4 tests: 4, 4, 4, 4. Here are the results for 3 of Felice’s 4 tests: 3, 3, 3. If Maurita’s mean for the 4 tests is 1 point higher than Felice’s, what’s the score of Felice’s 4th test?

94. Introducing Proportional Relationships: Store A is selling 7 pounds of bananas for $7.00. Store B is selling 3 pounds of bananas for $6.00. Which store has the better deal?

95. Writing Equations for Proportional Relationships: Lionel loves soccer, but has trouble motivating himself to practice. So, he incentivizes himself through video games. There is a proportional relationship between the amount of drills Lionel completes, in x , and for how many hours he plays video games, in y . When Lionel completes 10 drills, he plays video games for 30 minutes. Write the equation for the relationship between x and y .

Geometry word problems

Best for: 4th grade, 5th grade, 6th grade, 7th grade, 8th grade

96. Introducing Perimeter:  The theatre has 4 chairs in a row. There are 5 rows. Using rows as your unit of measurement, what is the perimeter?

97. Introducing Area: The theatre has 4 chairs in a row. There are 5 rows. How many chairs are there in total?

98. Introducing Volume: Aaron wants to know how much candy his container can hold. The container is 20 centimetres tall, 10 centimetres long and 10 centimetres wide. What is the container’s volume?

99. Understanding 2D Shapes: Kevin draws a shape with 4 equal sides. What shape did he draw?

100. Finding the Perimeter of 2D Shapes: Mitchell wrote his homework questions on a piece of square paper. Each side of the paper is 8 centimetres. What is the perimeter?

101. Determining the Area of 2D Shapes: A single trading card is 9 centimetres long by 6 centimetres wide. What is its area?

102. Understanding 3D Shapes: Martha draws a shape that has 6 square faces. What shape did she draw?

103. Determining the Surface Area of 3D Shapes: What is the surface area of a cube that has a width of 2cm, height of 2 cm and length of 2 cm?

104. Determining the Volume of 3D Shapes: Aaron’s candy container is 20 centimetres tall, 10 centimetres long and 10 centimetres wide. Bruce’s container is 25 centimetres tall, 9 centimetres long and 9 centimetres wide. Find the volume of each container. Based on volume, whose container can hold more candy?

105. Identifying Right-Angled Triangles: A triangle has the following side lengths: 3 cm, 4 cm and 5 cm. Is this triangle a right-angled triangle?

106. Identifying Equilateral Triangles: A triangle has the following side lengths: 4 cm, 4 cm and 4 cm. What kind of triangle is it?

107. Identifying Isosceles Triangles: A triangle has the following side lengths: 4 cm, 5 cm and 5 cm. What kind of triangle is it?

108. Identifying Scalene Triangles: A triangle has the following side lengths: 4 cm, 5 cm and 6 cm. What kind of triangle is it?

109. Finding the Perimeter of Triangles: Luigi built a tent in the shape of an equilateral triangle. The perimeter is 21 metres. What is the length of each of the tent’s sides?

110. Determining the Area of Triangles: What is the area of a triangle with a base of 2 units and a height of 3 units?

111. Applying Pythagorean Theorem: A right triangle has one non-hypotenuse side length of 3 inches and the hypotenuse measures 5 inches. What is the length of the other non-hypotenuse side?

112. Finding a Circle’s Diameter: Jasmin bought a new round backpack. Its area is 370 square centimetres. What is the round backpack’s diameter?

113. Finding a Circle's Area: Captain America’s circular shield has a diameter of 76.2 centimetres. What is the area of his shield?

114. Finding a Circle’s Radius: Skylar lives on a farm, where his dad keeps a circular corn maze. The corn maze has a diameter of 2 kilometres. What is the maze’s radius?

Variables word problems

A hand is calculating math problem on a blacboard

Best for: 6th grade, 7th grade, 8th grade

115. Identifying Independent and Dependent Variables: Victoria is baking muffins for her class. The number of muffins she makes is based on how many classmates she has. For this equation, m is the number of muffins and c is the number of classmates. Which variable is independent and which variable is dependent?

116. Writing Variable Expressions for Addition: Last soccer season, Trish scored g goals. Alexa scored 4 more goals than Trish. Write an expression that shows how many goals Alexa scored.

117. Writing Variable Expressions for Subtraction: Elizabeth eats a healthy, balanced breakfast b times a week. Madison sometimes skips breakfast. In total, Madison eats 3 fewer breakfasts a week than Elizabeth. Write an expression that shows how many times a week Madison eats breakfast.

118. Writing Variable Expressions for Multiplication: Last hockey season, Jack scored g goals. Patrik scored twice as many goals than Jack. Write an expression that shows how many goals Patrik scored.

119. Writing Variable Expressions for Division: Amanda has c chocolate bars. She wants to distribute the chocolate bars evenly among 3 friends. Write an expression that shows how many chocolate bars 1 of her friends will receive.

120. Solving Two-Variable Equations: This equation shows how the amount Lucas earns from his after-school job depends on how many hours he works: e = 12h . The variable h represents how many hours he works. The variable e represents how much money he earns. How much money will Lucas earn after working for 6 hours?

How to easily make your own math word problems & word problems worksheets

Two teachers are discussing math with a pen and a notebook

Armed with 120 examples to spark ideas, making your own math word problems can engage your students and ensure alignment with lessons. Do:

  • Link to Student Interests:  By framing your word problems with student interests, you’ll likely grab attention. For example, if most of your class loves American football, a measurement problem could involve the throwing distance of a famous quarterback.
  • Make Questions Topical:  Writing a word problem that reflects current events or issues can engage students by giving them a clear, tangible way to apply their knowledge.
  • Include Student Names:  Naming a question’s characters after your students is an easy way make subject matter relatable, helping them work through the problem.
  • Be Explicit:  Repeating keywords distills the question, helping students focus on the core problem.
  • Test Reading Comprehension:  Flowery word choice and long sentences can hide a question’s key elements. Instead, use concise phrasing and grade-level vocabulary.
  • Focus on Similar Interests:  Framing too many questions with related interests -- such as football and basketball -- can alienate or disengage some students.
  • Feature Red Herrings:  Including unnecessary information introduces another problem-solving element, overwhelming many elementary students.

A key to differentiated instruction , word problems that students can relate to and contextualize will capture interest more than generic and abstract ones.

Final thoughts about math word problems

You’ll likely get the most out of this resource by using the problems as templates, slightly modifying them by applying the above tips. In doing so, they’ll be more relevant to -- and engaging for -- your students.

Regardless, having 120 curriculum-aligned math word problems at your fingertips should help you deliver skill-building challenges and thought-provoking assessments.

The result?

A greater understanding of how your students process content and demonstrate understanding, informing your ongoing teaching approach.

Try Prodigy

There's no cost to you or your students and Prodigy is fully aligned with state standards for grades 1-8 math.

Share this article

Table of Contents

Popular Posts

no image

Related Categories

  • Teacher Activities (5)
  • Teacher Resources (74)

Hey teachers! 👋

Use Prodigy to spark a love for math in your students – including when solving word problems!

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

examples of problem solving mathematics

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

  • Our Mission

6 Tips for Teaching Math Problem-Solving Skills

Solving word problems is tougher than computing with numbers, but elementary teachers can guide students to do the deep thinking involved.

Photo of elementary school teacher with students

A growing concern with students is the ability to problem-solve, especially with complex, multistep problems. Data shows that students struggle more when solving word problems than they do with computation , and so problem-solving should be considered separately from computation. Why?

Consider this. When we’re on the way to a new destination and we plug in our location to a map on our phone, it tells us what lane to be in and takes us around any detours or collisions, sometimes even buzzing our watch to remind us to turn. When I experience this as a driver, I don’t have to do the thinking. I can think about what I’m going to cook for dinner, not paying much attention to my surroundings other than to follow those directions. If I were to be asked to go there again, I wouldn’t be able to remember, and I would again seek help.

If we can switch to giving students strategies that require them to think instead of giving them too much support throughout the journey to the answer, we may be able to give them the ability to learn the skills to read a map and have several ways to get there.

Here are six ways we can start letting students do this thinking so that they can go through rigorous problem-solving again and again, paving their own way to the solution. 

1. Link problem-solving to reading

When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools like counters or base 10 blocks, drawing a quick sketch of the problem, retelling the story in their own words, etc., can really help them to utilize the skills they already have to make the task less daunting.

We can break these skills into specific short lessons so students have a bank of strategies to try on their own. Here's an example of an anchor chart that they can use for visualizing . Breaking up comprehension into specific skills can increase student independence and help teachers to be much more targeted in their problem-solving instruction. This allows students to build confidence and break down the barriers between reading and math to see they already have so many strengths that are transferable to all problems.

2. Avoid boxing students into choosing a specific operation

It can be so tempting to tell students to look for certain words that might mean a certain operation. This might even be thoroughly successful in kindergarten and first grade, but just like when our map tells us where to go, that limits students from becoming deep thinkers. It also expires once they get into the upper grades, where those words could be in a problem multiple times, creating more confusion when students are trying to follow a rule that may not exist in every problem.

We can encourage a variety of ways to solve problems instead of choosing the operation first. In first grade, a problem might say, “Joceline has 13 stuffed animals and Jordan has 17. How many more does Jordan have?” Some students might choose to subtract, but a lot of students might just count to find the amount in between. If we tell them that “how many more” means to subtract, we’re taking the thinking out of the problem altogether, allowing them to go on autopilot without truly solving the problem or using their comprehension skills to visualize it. 

3. Revisit ‘representation’

The word “representation” can be misleading. It seems like something to do after the process of solving. When students think they have to go straight to solving, they may not realize that they need a step in between to be able to support their understanding of what’s actually happening in the problem first.

Using an anchor chart like one of these ( lower grade , upper grade ) can help students to choose a representation that most closely matches what they’re visualizing in their mind. Once they sketch it out, it can give them a clearer picture of different ways they could solve the problem.

Think about this problem: “Varush went on a trip with his family to his grandmother’s house. It was 710 miles away. On the way there, three people took turns driving. His mom drove 214 miles. His dad drove 358 miles. His older sister drove the rest. How many miles did his sister drive?”

If we were to show this student the anchor chart, they would probably choose a number line or a strip diagram to help them understand what’s happening.

If we tell students they must always draw base 10 blocks in a place value chart, that doesn’t necessarily match the concept of this problem. When we ask students to match our way of thinking, we rob them of critical thinking practice and sometimes confuse them in the process. 

4. Give time to process

Sometimes as educators, we can feel rushed to get to everyone and everything that’s required. When solving a complex problem, students need time to just sit with a problem and wrestle with it, maybe even leaving it and coming back to it after a period of time.

This might mean we need to give them fewer problems but go deeper with those problems we give them. We can also speed up processing time when we allow for collaboration and talk time with peers on problem-solving tasks. 

5. Ask questions that let Students do the thinking

Questions or prompts during problem-solving should be very open-ended to promote thinking. Telling a student to reread the problem or to think about what tools or resources would help them solve it is a way to get them to try something new but not take over their thinking.

These skills are also transferable across content, and students will be reminded, “Good readers and mathematicians reread.” 

6. Spiral concepts so students frequently use problem-solving skills

When students don’t have to switch gears in between concepts, they’re not truly using deep problem-solving skills. They already kind of know what operation it might be or that it’s something they have at the forefront of their mind from recent learning. Being intentional within their learning stations and assessments about having a variety of rigorous problem-solving skills will refine their critical thinking abilities while building more and more resilience throughout the school year as they retain content learning in the process. 

Problem-solving skills are so abstract, and it can be tough to pinpoint exactly what students need. Sometimes we have to go slow to go fast. Slowing down and helping students have tools when they get stuck and enabling them to be critical thinkers will prepare them for life and allow them multiple ways to get to their own destination.

Over 5 Billion Problems Solved

Step-by-step examples.

  • Adding Using Long Addition
  • Long Subtraction
  • Long Multiplication
  • Long Division
  • Dividing Using Partial Quotients Division
  • Converting Regular to Scientific Notation
  • Arranging a List in Order
  • Expanded Notation
  • Prime or Composite
  • Comparing Expressions
  • Converting to a Percentage
  • Finding the Additive Inverse
  • Finding the Multiplicative Inverse
  • Reducing Fractions
  • Finding the Reciprocal
  • Converting to a Decimal
  • Converting to a Mixed Number
  • Adding Fractions
  • Subtracting Fractions
  • Multiplying Fractions
  • Dividing Fractions
  • Converting Ratios to Fractions
  • Converting Percents to Decimal
  • Converting Percents to Fractions
  • Converting the Percent Grade to Degree
  • Converting the Degree to Percent Grade
  • Finding the Area of a Rectangle
  • Finding the Perimeter of a Rectangle
  • Finding the Area of a Square
  • Finding the Perimeter of a Square
  • Finding the Area of a Circle
  • Finding the Circumference of a Circle
  • Finding the Area of a Triangle
  • Finding the Area of a Trapezoid
  • Finding the Volume of a Box
  • Finding the Volume of a Cylinder
  • Finding the Volume of a Cone
  • Finding the Volume of a Pyramid
  • Finding the Volume of a Sphere
  • Finding the Surface Area of a Box
  • Finding the Surface Area of a Cylinder
  • Finding the Surface Area of a Cone
  • Finding the Surface Area of a Pyramid
  • Converting to a Fraction
  • Simple Exponents
  • Prime Factorizations
  • Finding the Factors
  • Simplifying Fractions
  • Converting Grams to Kilograms
  • Converting Grams to Pounds
  • Converting Grams to Ounces
  • Converting Feet to Inches
  • Converting to Meters
  • Converting Feet to Miles
  • Converting Feet to Yards
  • Converting to Feet
  • Converting to Yards
  • Converting Miles to Feet
  • Converting Miles to Kilometers
  • Converting Miles to Yards
  • Converting Kilometers to Miles
  • Converting Kilometers to Meters
  • Converting Meters to Feet
  • Converting Meters to Inches
  • Converting Ounces to Grams
  • Converting Ounces to Pounds
  • Converting Ounces to Tons
  • Converting Pounds to Grams
  • Converting Pounds to Ounces
  • Converting Pounds to Tons
  • Converting Yards to Feet
  • Converting Yards to Millimeters
  • Converting Yards to Inches
  • Converting Yards to Miles
  • Converting Yards to Meters
  • Converting Fahrenheit to Celsius
  • Converting Celsius to Fahrenheit
  • Finding the Median
  • Finding the Mean (Arithmetic)
  • Finding the Mode
  • Finding the Minimum
  • Finding the Maximum
  • Finding the Lower or First Quartile
  • Finding the Upper or Third Quartile
  • Finding the Five Number Summary
  • Finding a Point's Quadrant
  • Finding the Midpoint of a Line Segment
  • Distance Formula
  • Arithmetic Operations
  • Combining Like Terms
  • Determining if the Expression is a Polynomial
  • Distributive Property
  • Simplifying
  • Multiplication
  • Polynomial Addition
  • Polynomial Subtraction
  • Polynomial Multiplication
  • Polynomial Division
  • Simplifying Expressions
  • Evaluate the Expression Using the Given Values
  • Multiplying Polynomials Using FOIL
  • Identifying Degree
  • Operations on Polynomials
  • Negative Exponents
  • Evaluating Radicals
  • Solving by Adding/Subtracting
  • Solving by Multiplying/Dividing
  • Solving Containing Decimals
  • Solving for a Variable
  • Solving Linear Equations
  • Solving Linear Inequalities
  • Finding the Quadratic Constant of Variation
  • Converting the Percent Grade to Slope
  • Converting the Slope to Percent Grade
  • Finding Equations Using Slope-Intercept
  • Finding the Slope
  • Finding the y Intercept
  • Calculating Slope and y-Intercept
  • Rewriting in Slope-Intercept Form
  • Finding Equations Using the Slope-Intercept Formula
  • Finding Equations Using Two Points
  • Finding a Perpendicular Line Containing a Given Point
  • Finding a Parallel Line Containing a Given Point
  • Finding a Parallel Line to the Given Line
  • Finding a Perpendicular Line to the Given Line
  • Finding Ordered Pair Solutions
  • Using a Table of Values to Graph an Equation
  • Finding the Equation Using Point-Slope Form
  • Finding the Surface Area of a Sphere
  • Solving by Graphing
  • Finding the LCM of a List of Expressions
  • Finding the LCD of a List of Expressions
  • Determining if the Number is a Perfect Square
  • Finding the Domain
  • Evaluating the Difference Quotient
  • Solving Using the Square Root Property
  • Determining if True
  • Finding the Holes in a Graph
  • Finding the Common Factors
  • Expand a Trinomial with the Trinomial Theorem
  • Finding the Start Point Given the Mid and End Points
  • Finding the End Point Given the Start and Mid Points
  • Finding the Slope and y-Intercept
  • Finding the Equation of the Parabola
  • Finding the Average Rate of Change
  • Finding the Slope of the Perpendicular Line to the Line Through the Two Points
  • Rewriting Using Negative Exponents
  • Synthetic Division
  • Maximum Number of Real Roots/Zeros
  • Finding All Possible Roots/Zeros (RRT)
  • Finding All Roots with Rational Root Test (RRT)
  • Finding the Remainder
  • Finding the Remainder Using Long Polynomial Division
  • Reordering the Polynomial in Ascending Order
  • Reordering the Polynomial in Descending Order
  • Finding the Leading Term
  • Finding the Leading Coefficient
  • Finding the Degree, Leading Term, and Leading Coefficient
  • Finding the GCF of a Polynomial
  • Factoring Out Greatest Common Factor (GCF)
  • Identifying the Common Factors
  • Cancelling the Common Factors
  • Finding the LCM using GCF
  • Finding the GCF
  • Factoring Trinomials
  • Trinomial Squares
  • Factoring Using Any Method
  • Factoring a Difference of Squares
  • Factoring a Sum of Cubes
  • Factoring by Grouping
  • Factoring a Difference of Cubes
  • Determine if an Expression is a Factor
  • Determining if Factor Using Synthetic Division
  • Find the Factors Using the Factor Theorem
  • Determining if Polynomial is Prime
  • Determining if the Polynomial is a Perfect Square
  • Expand using the Binomial Theorem
  • Factoring over the Complex Numbers
  • Finding All Integers k Such That the Trinomial Can Be Factored
  • Determining if Linear
  • Rewriting in Standard Form
  • Finding x and y Intercepts
  • Finding Equations Using the Point Slope Formula
  • Finding Equations Given Point and y-Intercept
  • Finding the Constant Using Slope
  • Finding the Slope of a Parallel Line
  • Finding the Slope of a Perpendicular Line
  • Simplifying Absolute Value Expressions
  • Solving with Absolute Values
  • Finding the Vertex for the Absolute Value
  • Rewriting the Absolute Value as Piecewise
  • Calculating the Square Root
  • Simplifying Radical Expressions
  • Rationalizing Radical Expressions
  • Solving Radical Equations
  • Rewriting with Rational (Fractional) Exponents
  • Finding the Square Root End Point
  • Operations on Rational Expressions
  • Determining if the Point is a Solution
  • Solving over the Interval
  • Finding the Range
  • Finding the Domain and Range
  • Solving Rational Equations
  • Adding Rational Expressions
  • Subtracting Rational Expressions
  • Multiplying Rational Expressions
  • Finding the Equation Given the Roots
  • Finding the Asymptotes
  • Finding the Constant of Variation
  • Finding the Equation of Variation
  • Substitution Method
  • Addition/Elimination Method
  • Graphing Method
  • Determining Parallel Lines
  • Determining Perpendicular Lines
  • Dependent, Independent, and Inconsistent Systems
  • Finding the Intersection (and)
  • Using the Simplex Method for Constraint Maximization
  • Using the Simplex Method for Constraint Minimization
  • Finding the Union (or)
  • Finding the Equation with Real Coefficients
  • Solving in Terms of the Arbitrary Variable
  • Finding a Direct Variation Equation
  • Finding the Slope for Every Equation
  • Finding a Variable Using the Constant of Variation
  • Quadratic Formula
  • Solving by Factoring
  • Solve by Completing the Square
  • Finding the Perfect Square Trinomial
  • Finding the Quadratic Equation Given the Solution Set
  • Finding a,b, and c in the Standard Form
  • Finding the Discriminant
  • Finding the Zeros by Completing the Square
  • Quadratic Inequalities
  • Rational Inequalities
  • Converting from Interval to Inequality
  • Converting to Interval Notation
  • Rewriting as a Single Interval
  • Determining if the Relation is a Function
  • Finding the Domain and Range of the Relation
  • Finding the Inverse of the Relation
  • Finding the Inverse
  • Determining if One Relation is the Inverse of Another
  • Determining if Surjective (Onto)
  • Determining if Bijective (One-to-One)
  • Determining if Injective (One to One)
  • Rewriting as an Equation
  • Rewriting as y=mx+b
  • Solving Function Systems
  • Find the Behavior (Leading Coefficient Test)
  • Determining Odd and Even Functions
  • Describing the Transformation
  • Finding the Symmetry
  • Arithmetic of Functions
  • Domain of Composite Functions
  • Finding Roots Using the Factor Theorem
  • Determine if Injective (One to One)
  • Determine if Surjective (Onto)
  • Finding the Vertex
  • Finding the Sum
  • Finding the Difference
  • Finding the Product
  • Finding the Quotient
  • Finding the Domain of the Sum of the Functions
  • Finding the Domain of the Difference of the Functions
  • Finding the Domain of the Product of the Functions
  • Finding the Domain of the Quotient of the Functions
  • Finding Roots (Zeros)
  • Identifying Zeros and Their Multiplicities
  • Finding the Bounds of the Zeros
  • Proving a Root is on the Interval
  • Finding Maximum Number of Real Roots
  • Function Composition
  • Rewriting as a Function
  • Determining if a Function is Rational
  • Determining if a Function is Proper or Improper
  • Maximum/Minimum of Quadratic Functions
  • Finding All Complex Number Solutions
  • Rationalizing with Complex Conjugates
  • Vector Arithmetic
  • Finding the Complex Conjugate
  • Finding the Magnitude of a Complex Number
  • Simplifying Logarithmic Expressions
  • Expanding Logarithmic Expressions
  • Evaluating Logarithms
  • Rewriting in Exponential Form
  • Converting to Logarithmic Form
  • Exponential Expressions
  • Exponential Equations
  • Converting to Radical Form
  • Find the Nth Root of the Given Value
  • Simplifying Matrices
  • Finding the Variables
  • Solving the System of Equations Using an Inverse Matrix
  • Finding the Dimensions
  • Multiplication by a Scalar
  • Subtraction
  • Finding the Determinant of the Resulting Matrix
  • Finding the Inverse of the Resulting Matrix
  • Finding the Identity Matrix
  • Finding the Scalar multiplied by the Identity Matrix
  • Simplifying the Matrix Operation
  • Finding the Determinant of a 2x2 Matrix
  • Finding the Determinant of a 3x3 Matrix
  • Finding the Determinant of Large Matrices
  • Inverse of a 2x2 Matrix
  • Inverse of an nxn Matrix
  • Finding Reduced Row Echelon Form
  • Finding the Transpose
  • Finding the Adjoint
  • Finding the Cofactor Matrix
  • Finding the Pivot Positions and Pivot Columns
  • Finding the Basis and Dimension for the Row Space of the Matrix
  • Finding the Basis and Dimension for the Column Space of the Matrix
  • Finding the LU Decomposition of a Matrix
  • Identifying Conic Sections
  • Identifying Circles
  • Finding a Circle Using the Center and Another Point
  • Finding a Circle by the Diameter End Points
  • Finding the Parabola Equation Using the Vertex and Another Point
  • Finding the Properties of the Parabola
  • Finding the Vertex Form of the Parabola
  • Finding the Vertex Form of an Ellipse
  • Finding the Vertex Form of a Circle
  • Finding the Vertex Form of a Hyperbola
  • Finding the Standard Form of a Parabola
  • Finding the Expanded Form of an Ellipse
  • Finding the Expanded Form of a Circle
  • Finding the Expanded Form of a Hyperbola
  • Vector Addition
  • Vector Subtraction
  • Vector Multiplication by a Scalar
  • Finding the Length
  • Finding the Position Vector
  • Determining Column Spaces
  • Finding an Orthonormal Basis by Gram-Schmidt Method
  • Rewrite the System as a Vector Equality
  • Finding the Rank
  • Finding the Nullity
  • Finding the Distance
  • Finding the Plane Parallel to a Line Given four 3d Points
  • Finding the Intersection of the Line Perpendicular to Plane 1 Through the Origin and Plane 2
  • Finding the Eigenvalues
  • Finding the Characteristic Equation
  • Finding the Eigenvectors/Eigenspace of a Matrix
  • Proving a Transformation is Linear
  • Finding the Kernel of a Transformation
  • Projecting Using a Transformation
  • Finding the Pre-Image
  • Finding the Intersection of Sets
  • Finding the Union of Number Sets
  • Determining if a Set is a Subset of Another Set
  • Determining if Two Sets are Mutually Exclusive
  • Finding the Set Complement of Two Sets
  • Finding the Power Set
  • Finding the Cardinality
  • Finding the Cartesian Product of Two Sets
  • Determining if a Set is a Proper Subset of Another Set
  • Finding the Function Rule
  • Finding the Square or Rectangle Area Given Four Points
  • Finding the Square or Rectangle Perimeter Given Four Points
  • Finding the Square or Rectangle Area Given Three Points
  • Finding the Square or Rectangle Perimeter Given Three Points
  • Finding the Equation of a Circle
  • Finding the Equation of a Hyperbola
  • Finding the Equation of an Ellipse
  • Partial Fraction Decomposition
  • Finding an Angle Using another Angle
  • Pythagorean Theorem
  • Finding the Sine
  • Finding the Cosine
  • Finding the Tangent
  • Finding the Trig Value
  • Converting to Degrees, Minutes, and Seconds
  • Finding Trig Functions Using Identities
  • Finding Trig Functions Using the Right Triangle
  • Converting Radians to Degrees
  • Converting Degrees to Radians
  • Finding a Reference Angle
  • Finding a Supplement
  • Finding a Complement
  • Converting RPM to Radians per Second
  • Finding the Quadrant of the Angle
  • Graphing Sine & Cosine Functions
  • Graphing Other Trigonometric Functions
  • Amplitude, Period, and Phase Shift
  • Finding the Other Trig Values in a Quadrant
  • Finding the Exact Value
  • Finding the Value Using the Unit Circle
  • Expanding Trigonometric Expressions
  • Expanding Using Double-Angle Formulas
  • Expanding Using Triple-Angle Formulas
  • Expanding Using Sum/Difference Formulas
  • Simplify Using Pythagorean Identities
  • Simplify by Converting to Sine/Cosine
  • Inverting Trigonometric Expressions
  • Finding the Trig Value of an Angle
  • Expanding Using De Moivre's Theorem
  • Verifying Trigonometric Identities
  • Using Fundamental Identities
  • Solving Standard Angle Equations
  • Complex Trigonometric Equations
  • Solving the Triangle
  • Find the Roots of a Complex Number
  • Complex Operations
  • Trigonometric Form of a Complex Number
  • Converting to Polar Coordinates
  • Identifying and Graphing Circles
  • Identifying and Graphing Limacons
  • Identifying and Graphing Roses
  • Identifying and Graphing Cardioids
  • Difference Quotient
  • Finding Upper and Lower Bounds
  • Evaluating Functions

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Examples of problem-solving strategies in mathematics education supporting the sustainability of 21st-century skills.

examples of problem solving mathematics

1. Introduction

2. scope of 21st-century skills, 3. a short overview of mathematical problem solving.

  • Since additional mathematics courses are not an optimal solution, it is more useful to implement the teaching of problem-solving strategies in the existing mathematics education.
  • Specific noncognitive and general skills (that are typically underpromoted in education) are highly expected in work. Many of them belong to a high cognitive level, so it is worth paying attention to their improvement during mathematics lessons.
  • It is essential to study different facets of some mathematical notions, since they help to understand and design conceptual models that represent the basis of processes and systems in IT fields.
  • Mathematics should not be an isolated discipline. Students have to be able to connect knowledge from different mathematical disciplines; for example, to connect algebra and geometry to other knowledge.
  • Employers highly favor the ability to apply one’s knowledge and experience to novel, unfamiliar situations. This is presumed to be most effectively fostered when learning occurs in work-based contexts or when replicated in schools. International studies such as the TIMSS (Trends in International Mathematics and Science Study) and PISA (PISA is the OECD’s Program for International Student Assessment) emphasize this dimension in mathematics education using nonroutine tasks from real life.

4. Problem-Solving Activities and Strategies to Develop 21st-Century Skills

4.1. examples and discussions. how pólya’s heuristic principles work in the case of a special problem.

  • Step 1. Understanding the Problem
  • If the weighing result is that the scales do balance, it means that all coins on the scales are good, and the other coins not used for the given weighing remain suspect.
  • If the scales do not balance, it means that all other coins that were not weighted are good, while those weighted are suspect.
  • In this latter case, the students need to formulate an additional idea and name this key idea.
  • If the scales do not balance, it is needed to distinguish the suspect coins on the two scales and separate them as suspected of being heavier and suspected of being lighter.
  • Step 2. Making a Plan
  • Planning the First Weighing
  • Planning the Second Weighing
  • There is no use in measuring suspect coins three by three; they will surely not balance, and the last weighing has to be used for three coins suspected of being lighter and three coins suspected of being heavier.
  • There is no use in measuring suspect coins two by two; e.g., in case they balance, one remains with two suspect coins, but one does not know if they are heavier or lighter.
  • There is also no use in measuring suspect coins one by one.
  • If one tries to analyze other cases, they will get stuck as well. Possible cases are: three suspect against three good coins, or four suspect against four good coins.
  • The Second Weighing in Case 1-4-2
  • Planning the Third Weighing
  • One can separate S 4
  • One can separate L 2 , L 3 , and L 4
  • One can separate H 1 , H 2 , and H 3
  • One can separate L 1 and H 4
  • Step 3. Executing the Plan
  • Step 4. Feedback

4.2. Examples and Discussions. Problems for Training Pre-Service and In-Service Teachers

4.2.1. multiplication of two natural numbers.

  • Step 2. Devising the Plan
  • Step 3. Carrying Out the Plan
  • Step 4. Looking Back

4.2.2. Introduction of the Binary Number System

  • Step 1. Understanding of the Problem
10001001001010101111
FEDCBA
AAAAAAAAAA
BBBBB
CCB
DB
DCBABinary Island gulden representation
1010Binary number system representation
DC A
D BA
DCB  
D B  
DC    
DC    
D
D      
D      
ED
11000

5. Discussion and Conclusions

  • The rapidly changing environment due to technological disruption, globalization, and climate change, which requires the development of new transversal skills through education.
  • Cross-curricular integration helps students and learners to remember math knowledge better and to link it to real-life situations, allowing them to connect different subject areas.

Author Contributions

Acknowledgments, conflicts of interest.

Click here to enlarge figure

  • − problem tasks;
  • − historical notes;
  • − various small projects supporting interdisciplinary relationships, e.g., mathematics and art, Euclid, mathematics and space, mathematics and center of gravity, mathematics and the game billiards;
  • − information documenting the current and historical use of mathematics.
  • Davis, J.P. Applied Mathematics as Social Contract. Math. Mag. 1988 , 61 , 139–147. [ Google Scholar ] [ CrossRef ]
  • Brynjolfsson, E.; McAfee, A. Race against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and The Economy ; Digital Frontier Press: Lexington, MA, USA, 2011; Available online: http://b1ca250e5ed661ccf2f1-da4c182123f5956a3d22aa43eb816232.r10.cf1.rackcdn.com/contentItem-5422867-40675649-ew37tmdujwhnj-or.pdf (accessed on 12 September 2020).
  • English, D.; Gainsburg, J. Problem Solving for the 21st Century Mathematics Curriculum. Available online: https://www.researchgate.net/publication/42424489_Problem_Solving_for_the_21st_Century (accessed on 23 September 2020).
  • OECD. Education Policy Analysis ; OECD Publishing: Paris, France, 2001. [ Google Scholar ] [ CrossRef ]
  • Ananiadoui, K.; Claro, M. 21st Century Skills and Competences for New Millennium Learners in OECD Countries ; OECD Education Working Papers, EDU/WKP(2009)20: Paris, France, 2009; p. 41. [ Google Scholar ] [ CrossRef ]
  • EC. COM (2016) 381 Final. A New Skills Agenda for Europe. Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016DC0381&from=EN (accessed on 25 September 2020).
  • EC. European Skills Agenda for Sustainable Competitiveness, Social Fainess and Resilience. Available online: https://ec.europa.eu/social/main.jsp?langId=en&catId=89&furtherNews=yes&newsId=9723 (accessed on 25 September 2020).
  • EC. European Skills Competencies and Occupation. 2020. Available online: https://ec.europa.eu/esco/portal/skill?uri=http%3A%2F%2Fdata.europa.eu%2Fesco%2Fskill%2F30d49832-84bd-4d97-9441-aef97a76a8d0&conceptLanguage=en&full=true#&uri=http://data.europa.eu/esco/skill/30d49832-84bd-4d97-9441-aef97a76a8d0 (accessed on 30 September 2020).
  • BattelleforKids (Ed.) A Network of Battelle for Kids. Available online: https://www.battelleforkids.org/networks/p21 (accessed on 28 September 2020).
  • NRC. Exploring the Intersection of Science Education and 21st Century Skills: A Workshop Summary. Available online: https://www.nap.edu/read/12771/chapter/8#p2001a08c9970070001 (accessed on 27 August 2020).
  • ATC21S. 2012. Available online: http://www.atc21s.org/ (accessed on 27 August 2020).
  • AES. What Are 21st Century Skills? Available online: https://www.aeseducation.com/blog/what-are-21st-century-skills (accessed on 9 September 2020).
  • Binkley, M.; Erstad, O.; Herman, J.; Raizen, S.; Ripley, M.; Miller-Rici, M.; Rumble, M. Defining Twenty-First Century Skills ; Springer: Dordrecht, The Netherlands, 2012. [ Google Scholar ] [ CrossRef ]
  • Generation Ready. 2020. Available online: https://www.generationready.com/mathematics-as-a-complex-problem-solving-activity/ (accessed on 12 September 2020).
  • Ouedraogo, N.; Ouakouak, L.M.; Salem, T. Effects of Employee Creative Problem-solving on innovation outcomes and non-financial performance the Moderating Role of Culture and Communication. Int. J. Innov. Manag. 2020 , 24 , 28. [ Google Scholar ] [ CrossRef ]
  • NSTA. Quality Science Education and 21st Century Skills ; Association, N.S., Ed.; NSTA: Arlington, VA, USA, 2020; Available online: https://www.nsta.org/nstas-official-positions/quality-science-education-and-21st-century-skills (accessed on 27 September 2020).
  • Designed in Cooperation with the Nation’s Math Educators. Available online: https://files.eric.ed.gov/fulltext/ED543032.pdf (accessed on 28 September 2020).
  • Jang, H. Identifying 21st century STEM competencies using workplace data. J. Sci. Educ. Technol. 2016 , 25 , 284–301. [ Google Scholar ] [ CrossRef ]
  • Koenig, A.J. Assessing 21st Century Skills: Summary of a Workshop ; Council, N.R., Ed.; The National Academies Press: Washington, DC, USA, 2011. [ Google Scholar ] [ CrossRef ]
  • Pehkonen, E. Teaching Mathematics via Problem Solving. In A Life’s Time for Mathematics Education and Problem Solving. Festschrift on the Occasion of András Ambrus’ 75th Birthday ; Stein, M., Ed.; WTM-Verlag: Münster, Germany, 2017; pp. 344–354. [ Google Scholar ]
  • NBE. Perusopetuksen Opetussuunnitelman Perusteet 2014. Available online: https://www.oph.fi/sites/default/files/documents/perusopetuksen_opetussuunnitelman_perusteet_2014.pdf (accessed on 28 September 2020).
  • NCTM. Principles and Standards for School Mathematics. Available online: https://www.nctm.org/Standards-and-Positions/Principles-and-Standards/ (accessed on 7 September 2020).
  • Rosli, R.; Goldsby, D.; Capraro, M.M. Assessing Students’ Mathematical Problem-Solving and Problem-Posing Skills. Asian Soc. Sci. 2013 , 9 , 54–60. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Hejný, M. The process of discovery in teaching focusing on building schemes. In International Symposium Elementary Mathematics Teaching-Semt ; Novotná, J., Moraová, H., Eds.; Charles University, Faculty of Education: Prague, Czech Republic, 2011; pp. 150–157. [ Google Scholar ]
  • Mason, J. Generating Worthwhile Mathematical Tasks in Order to Sustain and Develop Mathematical Thinking. Sustainability 2020 , 12 , 5727. [ Google Scholar ] [ CrossRef ]
  • Pólya, G. How to Solve It ; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 1945. [ Google Scholar ]
  • Schoenfeld, H.A. Mathematical Problem Solving ; Academic Press INC. (London) Ltd.: London, UK, 1985. [ Google Scholar ] [ CrossRef ]
  • Voskoglou, G.M. Problem Solving in Mathematics Education: Recent Trends and Development. Quaderni di Ricerca in Didattica” (Scienze Matematiche), 2008. pp. 22–28. Available online: https://www.researchgate.net/publication/228489790_Problem_Solving_in_Mathematics_Education_Recent_Trends_and_Development (accessed on 7 September 2020).
  • Voskoglou, G.M. Ch 4. Problem-solving from Polya to nowadays: A review and future perspectives. In Progress in Education ; Nova Publishers: Hauppauge, NY, USA, 2011; Volume 12, pp. 65–82. [ Google Scholar ]
  • Kalmykova, Z. Processes of Analysis and synthesis in the solution of arithmetic problems. In Analysis and Synthesis as Problem Solving Methods ; Kilpatrick, J., Wirszup, I., Kantowski, M., Eds.; School Mathematics Study Group Stanford University and Survey of Recent East Europe Mathematical Literature, University of Chicago: Chicago, IL, USA, 1975; Volume XI. [ Google Scholar ]
  • Walle, V.D. Teaching Mathematics through Problem Solving, Chapter 2. 2014. Available online: https://www.pearsonhighered.com/assets/preface/0/1/3/4/013480208X.pdf (accessed on 26 August 2020).
  • Klerlein, J.; Hervey, S. Mathematics as a Complex Problem-Solving Activity: Promoting Students’ Thinking through Problem-Solving. Generation Ready White Paper. 2019. Available online: https://36kf1rfh5v23ru41h2gm84pz-wpengine.netdna-ssl.com/wp-content/uploads/2019/02/Mathematics-as-a-Complex-Problem-Solving-Activity.pdf (accessed on 26 August 2020).
  • Rahman, M. 21st Century Skill “Problem Solving”: Defining the Concept. Asian J. Interdiscip. Res. 2019 , 2 , 64–74. [ Google Scholar ]
  • Evans, S.; Swan, M. Developing Students’ Strategies for Problem Solving in Mathematics: The Role of Pre-Designed. Available online: https://www.educationaldesigner.org/ed/volume2/issue7/article25/index.htm (accessed on 8 September 2020).
  • Lester, K.F.; Cai, J. Can Mathematical Problem Solving Be Taught? Preliminary Answers from 30 Years of Research. In Posing and Solving Mathematical Problems ; Felmer, P., Pehkonen, E., Kilpatrick, J., Eds.; Springer International Publishing AG Switzerland: Berlin/Heidelberg, Germany, 2016; pp. 117–136. [ Google Scholar ] [ CrossRef ]
  • Schoenfeld, H.A. Problem Solving, Teaching and More toward a Theory of Goal-Directed Behavior. Available online: http://math.unipa.it/~grim/cieaem/cieaem59/cikkek_pdf/plenary_pdf/p%2004.pdf (accessed on 19 September 2020).
  • Hung, L.P.; Seokhee, C. Nurturing Mathematical Creativity in Schools. Turk. J. Gift. Educ. 2018 , 8 , 65–82. [ Google Scholar ]
  • Susilo, H.; Kristiani, N.; Sudrajat, K.A. Development of 21st century skills at the senior high school: Teachers’ perspective. In AIP Conference Proceedings ; Habiddin, H., Majid, S., Suhadi, I., Farida, N., Dasna, I., Eds.; AIP Publishing: Baltimore, MD, USA, 2020; Volume 2215, Article number 030018. [ Google Scholar ] [ CrossRef ]
  • Sudrajat, A.K.; Susilo, H.; Rohman, F. Student perspective on the importance of developing critical thinking and collaboration skills for prospective teacher students. AIP Conf. Proc. 2020 , 2215 , 030015. [ Google Scholar ] [ CrossRef ]
  • Chu, S.; Reynolds, R.; Tavares, N.; Notari, M.; Lee, C. 21st Century Skills Development through Inquiry-Based Learning, from Theory to Practice ; Springer: Singapore, 2017. [ Google Scholar ] [ CrossRef ]
  • Bai, B.; Song, H. 21st century skills development through inquiry-based learning from theory to practice. Asia Pac. J. Educ. 2018 , 38 . [ Google Scholar ] [ CrossRef ]
  • Dishon, G.; Gilead, T. Adaptability And Its Discontents: 21st-Century Skills and the Preparation for an Unpredictable Future. Br. J. Educ. Stud. 2020 , 1–21. [ Google Scholar ] [ CrossRef ]
  • NCTM. The Math Forum. Available online: http://mathforum.org/library/drmath/view/55618.html (accessed on 8 September 2020).
  • Antonick, G. The Twelve-Coin Problem. Available online: https://wordplay.blogs.nytimes.com/2014/07/21/12coin/ (accessed on 14 November 2020).
  • GeekForGeeks. Available online: https://www.geeksforgeeks.org/decision-trees-fake-coin-puzzle/ (accessed on 14 November 2020).
  • Coldwell, N. A Collection of Quant Riddles with Answers. Available online: http://puzzles.nigelcoldwell.co.uk/one.htm# (accessed on 14 November 2020).
  • Tuska, A. George Polya’s Influence on Mathematics Competitions in the USA. Available online: https://www.uni-miskolc.hu/~matsefi/HMTM_2020/papers/HMTM_2020_Tuska_Polya.pdf (accessed on 14 November 2020).
  • Back, A.; Kovács, L.; Marton, R.; Ruszt, B.; Debrenti, E. Problem Solving in Elementary Mathematics Education. Available online: https://www.uni-miskolc.hu/~matsefi/Summer_University_2020/annexes/ (accessed on 14 November 2020).
  • Lein, A.E.; Jitendra, A.K.; Harwell, M.R. Effectiveness of Mathematical Word Problem Solving Interventions for Students With Learning Disabilities and/or Mathematics Difficulties: A Meta-Analysis. J. Educ. Psychol. 2020 , 112 , 1388–1408. [ Google Scholar ] [ CrossRef ]
  • Dagiene, V.; Sentance, S.; Stupuriene, G. Developing a Two-Dimensional Categorization System for Educational Tasks in Informatics. Informatica 2017 , 28 , 23–44. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Menchinskaya, A.M.; Moro, I.N. Questions in the Method and Psychology of Teaching Arithmetic in the Elementary Grades. Moscow 1965. Available online: http://files.eric.ed.gov/fulltext/ED184842.pdf (accessed on 13 November 2020).
  • Cajori, F. A History of Mathematics ; Macmillan: New York, NY, USA, 1919. [ Google Scholar ]
  • Benediktová, M. Philosophical Aspects of Al-Khwarizmi’s Arithmetical and Algebraic Tractatus. Acta Fak. Filoz. Západočeské Univerzity V Plzni 2010 , 3 , 77–97. (In Czech) [ Google Scholar ]
  • Al-Khwarizmi. Aritmetický a algebraický traktát komentované Petrem Vopěnkou ; OPS: Kenosha, WI, USA, 2009. [ Google Scholar ]
  • Vajkovics, I. Elementa Arithmeticae Numericae et Literalis Practicae et Theoricae in Usum Discentium Proposita. Available online: https://www.uni-miskolc.hu/~matsefi/HMTM_2020/annexes/HMTM_2020_K%C3%B6rtesi_Imre_Vajkovics.pptx (accessed on 14 October 2020).
  • UNESCO & UNEVOC. Transversal Skills-UNESCO TVETipedia Glossary. (U.-U. I. Training, Producer) 2020. Available online: https://unevoc.unesco.org/home/TVETipedia+Glossary/filt=all/id=577 (accessed on 14 November 2020).
  • ECB. European Central Bank. Available online: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html (accessed on 14 November 2020).
  • Sriraman, B.; English, L. Problem solving for the 21st century. In Theories of Mathematics Education ; English, L., Sriraman, B., Eds.; Springer: Heidelberg, Germany, 2010; pp. 263–290. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Atance, M.C.; O’Neill, K. Episodic future thinking. Trends Cogn. Sci. 2001 , 5 , 533–539. [ Google Scholar ] [ CrossRef ]
  • Maciejewski, W. Future-Oriented Thinking and Activity in MAthematical Problem Solving. In Mathematical Problem Solving ; Liljedahl, P., Santos-Trigo, M., Eds.; ICME-13 Monographs ed.; Springer: Cham, Switzerland, 2019. [ Google Scholar ] [ CrossRef ]
  • Math Kangaroo in USA. Available online: http://www.mathkangaroo.us/mk/default.html (accessed on 28 September 2020).
  • Bebras International Challenge on Informatics and Computational Thinking. Available online: http://www.bebras.org/ (accessed on 28 September 2020).
  • Mathematical Duels. Available online: https://jcmf.cz/?q=cz/node/584 (accessed on 28 September 2020).
  • Hill, F.; Mammarella, I.C.; Devine, A.; Caviola, S.; Passolunghi, M.C.; Szűcs, D. Maths anxiety in primary and secondary school students: Gender differences, developmental changes and anxiety specificity. Learn. Individ. Differ. 2016 , 48 , 45–53. [ Google Scholar ] [ CrossRef ]
  • Osaďan, R.; Severini, E.; Valkóová, V. Applying of teaching materials in teaching maths at primary school-gender aspect. Online J. Prim. Presch. Educ. 2019 , 3 , 27–36. [ Google Scholar ] [ CrossRef ]
CaseOutcome of the WeighingInformationHow Can One Use It?
1-3-1They balanceThe six coins on the scales of the balance are all good, and the other six are suspect.One can separate them, and denote them if needed by G , G , …, G and S , S , …, S .
1-3-2They do not balanceThe six coins on the balance will be suspect—three of them suspected of being heavier and three of them suspected of being lighter—and the other six are good.One will introduce the notations: H , H , and H for those suspected of being heavier, or L , L , and L for those suspected of being lighter, and G , G , …, G for the good ones.
CaseOutcome of the WeighingInformationHow Can One Use It?
1-4-1They balanceThe eight coins on the scales of the balance are all good, and the other four are suspect.One can separate them and denote them if needed by G , G , …, G and S , S , …, S .
1-4-2They do not balanceThe eight coins on the balance will be suspect—four of them suspected of being heavier, and four of them suspected of being lighter—the other four that were not measured are good.One will use the notations: H , H , H , and H for those suspected of being heavier, or L , L , L , and L for those suspected of being lighter, while G , G , …, G will denote the good ones.
CaseOutcome of the WeighingInformationHow Can One Use It?
2-3-1They balanceThe six coins on the scales of the balance are all good, the last suspect, and S remains suspect.One can separate S .
2-3-2They do not balanceThe three suspect coins on the balance will remain suspect, but extra information is obtained if they are suspected of being heavier or lighter.One will change the notations, according to the result of the weighing, to H , H , and H or L , L , and L
CaseOutcome of the WeighingInformationHow Can One Use It?
2-4-1They balanceThe five suspect coins on the scales of the balance are all good, and the last suspect ones are L , L , and L One can separate L , L , and L
2-4-2They do not balance, and the scale with H , H , H , and L goes downThe three suspect coins are H , H , and H One can separate H , H , and H
2-4-3They do not balance, and the scale with H , H , H , and L goes upThe two suspect coins are L and H One can separate L and H
CaseOutcome of the WeighingInformation, Result
A3-1-1They do not balance, and the scale with S moves upThe last suspect coin S on the scale is lighter
A3-1-2They do not balance, and the scale with S moves downThe last suspect coin S on the scale is heavier
CaseOutcome of the WeighingInformation, Result
B3-1-1They do balanceThe suspect coin L is lighter
B3-1-2They do not balance; the scale with L moves up, and L moves downThe suspect coin L is lighter
B3-1-3They do not balance; the scale with L moves down, and L moves upThe suspect coin L is lighter
CaseOutcome of the WeighingInformation, Result
C3-1-1They do balanceThe suspect coin H is heavier
C3-1-2They do not balance; the scale with H moves down, and H moves upThe suspect coin H is heavier
C3-1-3They do not balance; the scale with H moves up, and H moves downThe suspect coin H is heavier
CaseOutcome of the WeighingInformation, Result
D3-1-1They do balanceThe suspect coin H is heavier
D3-1-2They do not balance, and the scale with L moves upThe suspect coin L is lighter
MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

Szabo, Z.K.; Körtesi, P.; Guncaga, J.; Szabo, D.; Neag, R. Examples of Problem-Solving Strategies in Mathematics Education Supporting the Sustainability of 21st-Century Skills. Sustainability 2020 , 12 , 10113. https://doi.org/10.3390/su122310113

Szabo ZK, Körtesi P, Guncaga J, Szabo D, Neag R. Examples of Problem-Solving Strategies in Mathematics Education Supporting the Sustainability of 21st-Century Skills. Sustainability . 2020; 12(23):10113. https://doi.org/10.3390/su122310113

Szabo, Zsuzsanna Katalin, Péter Körtesi, Jan Guncaga, Dalma Szabo, and Ramona Neag. 2020. "Examples of Problem-Solving Strategies in Mathematics Education Supporting the Sustainability of 21st-Century Skills" Sustainability 12, no. 23: 10113. https://doi.org/10.3390/su122310113

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

30 8th Grade Math Problems: Answers With Worked Examples

Erin Schumacher

8th Grade math problems build upon the basic algebraic reasoning and number system knowledge formed in prior grades. They help prepare students for more challenging math concepts that lay ahead of them in high school. 

In this blog, middle school math teacher, Erin, provides educators with 30 8th grade math problems to use in the classroom to strengthen learners’ math skills. Teachers can use these 8th grade math problems as warm-ups, competitive partner games, individual practice, or review before a test.

What are 8th grade math problems?

8th grade math problems are math problems specifically for 8th grade students focusing on the math skills and concepts learned in 8th grade. 

Many 8th grade math problems typically focus on algebraic reasoning to strengthen the foundations of solving for an unknown variable early on in the year. The majority of 8th grade math builds upon this skill. 

For example, when learning geometric concepts such as angle measures, surface area, volume, arc length, and sector area, formulas with an unknown variable are used to solve for measurement quantities.

Math Games For 8th Grade

Math Games For 8th Grade

15 fun math games and activities for 8th grade students to complete independently or with a partner.

8th grade math problems: Math curriculum

6th grade math problems and 7th grade math problems build the foundations for the 8th grade math curriculum. In 7th grade, students work with rational numbers and are introduced to simplifying algebraic expressions and solving algebraic equations. 

As students progress to 8th grade, a quick review of 7th grade material leads to a deeper dive into Algebra at a much faster pace.

The math curriculum in 8th grade hones in on linear functions and systems of equations where there are two variables rather than one. 

Perhaps, one of the biggest reasons 8th grade students struggle with the Common Core Math Standards is that they don’t have strong algebraic knowledge before introducing more than one variable.

30 8th grade math problems 

Here are 30 8th grade middle school math problems to help students practice and secure their knowledge of the core math concepts needed to succeed in high school and beyond. 

8th grade math problems: Rational number operations

Question 1 .

Add the values, then keep the negative sign when adding two negative numbers .

Question 2 

Answer:   -1\frac{11}{72} \text{ or } -\frac{83}{72}

This is another example of adding two negative numbers. Students must add the two fractions and then keep the negative sign.

Question 3 

Answer: \frac{53}{320}

Squaring a fraction means both the numerator and denominator are squared. Therefore: 

Show students how to enter fractions and exponents on their calculators. Calculators automatically reduce answers to the lowest terms and can help save students time.

READ MORE : What Is A Square Number?

8th grade math problems: Quotients of exponents, decimals, roots, and scientific notation

Question 4 .

Approximate the non-perfect root \sqrt{10} to the nearest tenth without using a calculator.

Answer: 3.2

The non-perfect root of 10 falls between the two perfect roots of 9 and 16.

Question 5 

Write the product of   \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} using the exponential form.

Answer: (\frac{2}{3})^{4}

Question 6 

Apply the Product of Powers Rule to simplify 4^{2} \times 4^{6} without using a calculator.

Answer: 4^{8}

The Produce of Powers Rule states that when the operation between to like bases raised to different powers is multiplication, keep the base and add the exponents.

8th grade math problems: Combining like terms and distributive property

Question 7 .

Answer: -4x-3

For struggling learners, circling one term and boxing the other works well. Additionally, using color to separate the terms is effective when several terms are used.

8th grade math problems combining like terms and distributive property answer

Answer: x+13

8th grade math problems visual answer

Explain to students that answers should often be reported with the variable listed before the constant.

Answer: -9x+27

8th grade math problems worked example

Drawing arrows to visualize which terms are multiplied together can be very effective.

Teach students they can use negative signs and subtraction signs interchangeably in algebra. 

For example, 14-2 x means the 14 is positive and the 2 x is negative, even though the operation before the 2 x is a subtraction sign.

8th grade math problems: Solving one-step and two-step equations

Question 10 .

-4 + x = 10

Answer: x =14 

Visual aids and drawings of a vertical line through the equal sign improve some students’ understanding. This clearly indicates the “left” and “right” sides and the need to balance them. 

Other students do not like the vertical line, and I typically leave it off when showing my work.

8th grade math problems multi-step problem

Question 11

\frac{x}{120} =3

Answer: x= 360

8th grade math problems multi-step problem answer

Question 12 

Answer: x=\frac{1}{2}

8th grade math problems two-step problem

8th grade math problems: Solving multi-step equations with the variable on both sides

Question 13 .

Answer: x = -6 

8th grade math problems multi-step equations with the variable on both sides

Question 14 

Answer: x= -4

Choose a side to move the x term to. I often told students to try and avoid working with negative numbers if they can, but it’s not necessary.

8th grade math problem and answer for a multi-step equations with the variable on both sides

Question  15 

Answer: x = 44

Problem and answer for a multi-step equations with the variable on both sides

When starting, it is helpful if all answers result in an integer. Students can then determine that something has gone wrong if they receive a fraction or decimal answer. 

For high-level learners, incorporate square roots of perfect squares and cube roots where applicable.

8th grade math problems: Special cases and determining the number of solutions

Question 16 .

Answer: All real numbers; infinite solutions

When the resulting statement is true (24=24) , any number can be used for x .

8th grade math problems determining the solution

Question 17 

Answer: Undefined; no solution

When the resulting statement is false (-12=2) , this means no number can be used for x

8th grade math problems no solution

Question 18 

-3(x+5)= -(3x+15) Answer: All real numbers; infinite solutions

8th grade math problems infinite solutions

Explain to students they should treat a negative sign (sometimes a subtraction sign) outside parentheses as a negative value that needs to be distributed.

8th grade math problems: Applying linear equations to word problems and real-world application

Question 19 .

Susie spent 2.75 hours on homework last night. She spent \frac{1}{4} hour longer on math than she did on reading. How much time did she spend studying both subjects?

Answer: Susie spent 1.25 hours reading and 1.5 hours on math.

8th grade math problems linear equations

Question 20 

In 5 years, Johnny will be twice as old as he is now. How old is Johnny now? Answer: Johnny is 5 years old.

8th grade math problems linear equations worked example

Challenge students to read simpler word problems and write their own equations to represent the scenarios.

8th grade math problems: Linear functions

Question 21.

Is there a proportional relationship in this table of values? If so, find slope.  

Answer: Yes; slope = -1

8th grade math problems linear functions problem

The definition of slope is the change in y (dependent variable) divided by the change in x (independent variable).

Question 22

Graph the function y=3x+4

8th grade math problems linear functions graph problem

Have students use a t-chart to help identify coordinates before graphing. Later on, show students how to graph simply using the rules of y-intercepts and slopes.

Question 23

Write the equation of the line that passes through (1, -19) and (-2, -7)  in slope-intercept form.

Answer: y= -4x-15

8th grade math problems slope intercept

8th grade math problems: Scatter plots

Question 24.

Give a possible scenario to relate the data in the graph provided.

8th grade math problems scatter plots

Answer: There are many possible solutions to this question. Here is one possible answer: 

8th grade math problems scatter plots answer

Question 25

Make a scatter plot from the data chart provided. Then, describe the correlation, if any.

8th grade math problems scatter plots information

The correlation shows a positive linear relationship between the x and y axis as both variables increase.

Question 26

Both graphs display the same data points. Write the equation of the trend line in the graph on the left, as it fits the data better than the trend line in the graph on the right.

8th grade math problems scatter plots comparison

Answer: y= -0.37x+7.46 

Extension: After students write the equation of the line of best fit on paper, challenge the students to plot the points on an online graphing calculator . 

Then, have students type y_{1} \sim mx_{1}+b  to see how close their equation matches the true linear regression.

8th grade math problems: Pythagorean Theorem, angles of triangles, surface area, volume

Question 27 .

Solve for the missing dimension in the right triangle.

8th grade math problems right angle triangle problem

Answer: x=8.1 \text{ feet} 

Question 28 

Calculate the measure of exterior angle A by solving for x . Use algebraic reasoning and apply the Exterior Angle Theorem.

8th grade math problems finding the exterior angle

Answer: A=108^{\circ}

Question  29

Calculate the surface area and volume for the given triangular prism .

8th grade math problems finding the area

Answer: \text{Surface area } = 68cm^2 ; \text{ Volume } = 30cm^3

Question 30 

Calculate the surface area and volume for the given cone. Round to the nearest hundredth.

8th grade math problems finding the surface area of a cone

Answer: \text{Surface area } = 75.40cm^2 ; \text{ Volume } = 37.70cm^3  

Top Tips for Teaching 8th Grade Math Problems

For success in teaching 8th grade math problems, educators should incorporate:  

  • Rote skills
  • Real-world application

Combining these teaching strategies is crucial for young learners. In my 15 years of experience as a math educator, students are more motivated to pay attention and power through lectures, note-taking, assignments, projects, and assessments if the educator figures out how to make the learning relevant and special to individuals. 

Simple things such as having students hand-write notes made a huge impact. Switching assignments between digital and paper frequently helped reduce groaning about the mundane. Incorporating art into math projects brought joy and opened students’ eyes to all the ways and places math is used in everyday life.

How can Third Space Learning help with 8th grade math?

STEM-specialist tutors help close learning gaps and address misconceptions for struggling 8th grade math students.

One-on-one online math tutoring sessions help students deepen their understanding of the 8th grade math curriculum and keep up with difficult math concepts before transitioning to high school.

Each student works with a private tutor who adapts instruction and math lesson content in real-time according to the student’s needs to accelerate learning.

8th grade middle school math tutor preparing for high school

8th grade math worksheets

Looking for more resources? Please see our selection of eighth grade math worksheets covering grade 8 key math topics and more:

  • Solve Equations With Fractions Worksheet
  • Adding and Subtracting Scientific Notation Worksheet
  • Solving Inequalities Worksheet
  • Ratios Problem Solving Worksheet
  • Negative Exponents Worksheet

READ MORE :

  • 2nd Grade Math Problems  
  • Math Problems For 3rd Graders
  • 4th Grade Math Problems
  • Math Questions for 5th Graders
  • Pythagorean theorem practice problems

Frequently asked questions

What math should an 8th grader know?

Upon completing the 8th grade, students should be well-prepared to enter Algebra 1. They should have a strong understanding of rational and irrational numbers, graphing, solving, and writing linear equations in standard form, slope-intercept form, point-slope form, inequalities, and functions including scatter plots, and geometry.

What grade is Algebra 1?

Algebra 1 typically starts in high school with 9th grade students.It is a high school math course that uses letters and mathematical symbols to solve math problems.

Do 8th grade students use a calculator?

8th grade students typically use calculators to help them solve most problems. Sometimes, an educator will ask students to think critically about an answer rather than relying on a device. However, many current educators understand that technology (including calculators) is readily available at any moment, and embrace using technology in everyday life.

Is 8th grade math hard?

8th grade math presents its challenges to many students. However, all students can succeed if using the tools accessible at their fingertips.

Do you have students who need extra support in math? Give your students more opportunities to consolidate learning and practice skills through personalized math tutoring with their own dedicated online math tutor. Each student receives differentiated instruction designed to close their individual learning gaps, and scaffolded learning ensures every student learns at the right pace. Lessons are aligned with your state’s standards and assessments, plus you’ll receive regular reports every step of the way. Personalized one-on-one math tutoring programs are available for: – 2nd grade tutoring – 3rd grade tutoring – 4th grade tutoring – 5th grade tutoring – 6th grade tutoring – 7th grade tutoring – 8th grade tutoring Why not learn more about how it works ?

Related articles

28 Math Problems For 2nd Graders With Answers & Teaching Ideas

28 Math Problems For 2nd Graders With Answers & Teaching Ideas

37 Math Problems For 3rd Graders: Answers With Worked Examples

37 Math Problems For 3rd Graders: Answers With Worked Examples

34 6th Grade Math Problems: Answers With Worked Examples

34 6th Grade Math Problems: Answers With Worked Examples

4th Grade Math Problems: 18 Guided Problems With Answers & Tips For Teachers

4th Grade Math Problems: 18 Guided Problems With Answers & Tips For Teachers

[FREE] Ultimate Math Vocabulary Lists (K-5)

An essential guide for your Kindergarten to Grade 5 students to develop their knowledge of important terminology in math.

Use as a prompt to get students started with new concepts, or hand it out in full and encourage use throughout the year.

Privacy Overview

Math Problems, Tests, Forums

  • Math Forum/Help
  • Problem Solver
  • College Math

Math Practice

Problems for 1st grade, problems for 2nd grade, problems for 3rd grade, problems for 4th grade, problems for 5th grade, problems for 6th grade, problems for 7th grade, problems for 8th grade, problems for 9-12 grade:, quadratic equations.

Views of a function Domain of a function Domain and range Range of a function Inverses of functions Shifting and reflecting functions Positive and negative parts of functions

Line graph intuition Slope of a line Slope intercept form Recognizing slope

Trygonometry

Probabilities, complex numbers.

  • AI Math Solver Graphing Calculator Popular Problems Worksheets Study Guides Cheat Sheets Calculators Verify Solution
  • Solutions Integral Calculator Derivative Calculator Algebra Calculator Matrix Calculator More...
  • Graphing Line Graph Exponential Graph Quadratic Graph Sine Graph More...
  • Calculators BMI Calculator Compound Interest Calculator Percentage Calculator Acceleration Calculator More...
  • Geometry Pythagorean Theorem Calculator Circle Area Calculator Isosceles Triangle Calculator Triangles Calculator More...
  • Tools Notebook Groups Cheat Sheets Worksheets Study Guides Practice Verify Solution

Practice

x^{\msquare} \log_{\msquare} \sqrt{\square} \nthroot[\msquare]{\square} \le \ge \frac{\msquare}{\msquare} \cdot \div x^{\circ} \pi
\left(\square\right)^{'} \frac{d}{dx} \frac{\partial}{\partial x} \int \int_{\msquare}^{\msquare} \lim \sum \infty \theta (f\:\circ\:g) f(x)
▭\:\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \left( \right) \times \square\frac{\square}{\square}
  • Pre Algebra Order of Operations Factors & Primes Fractions Long Arithmetic Decimals Exponents & Radicals Ratios & Proportions Percent Modulo Number Line Expanded Form Mean, Median & Mode
  • Algebra Equations Inequalities System of Equations System of Inequalities Basic Operations Algebraic Properties Partial Fractions Polynomials Rational Expressions Sequences Power Sums Interval Notation Pi (Product) Notation Induction Prove That Logical Sets Word Problems
  • Pre Calculus Equations Inequalities Scientific Calculator Scientific Notation Arithmetics Complex Numbers Coterminal Angle Polar/Cartesian Simultaneous Equations System of Inequalities Polynomials Rationales Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry
  • Calculus Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series Fourier Transform
  • Functions Line Equations Functions Arithmetic & Comp. Conic Sections Transformation
  • Linear Algebra Matrices Vectors
  • Trigonometry Identities Proving Identities Trig Equations Trig Inequalities Evaluate Functions Simplify
  • Statistics Mean Geometric Mean Quadratic Mean Average Median Mode Order Minimum Maximum Probability Mid-Range Range Standard Deviation Variance Lower Quartile Upper Quartile Interquartile Range Midhinge Standard Normal Distribution
  • Physics Mechanics
  • Chemistry Chemical Reactions Chemical Properties
  • Finance Simple Interest Compound Interest Present Value Future Value
  • Economics Point of Diminishing Return
  • Conversions Roman Numerals Radical to Exponent Exponent to Radical To Fraction To Decimal To Mixed Number To Improper Fraction Radians to Degrees Degrees to Radians Hexadecimal Scientific Notation Distance Weight Time Volume
  • Pre Algebra
  • Pre Calculus
  • Linear Algebra
  • Trigonometry
  • Conversions
x^{\msquare} \log_{\msquare} \sqrt{\square} \nthroot[\msquare]{\square} \le \ge \frac{\msquare}{\msquare} \cdot \div x^{\circ} \pi
\left(\square\right)^{'} \frac{d}{dx} \frac{\partial}{\partial x} \int \int_{\msquare}^{\msquare} \lim \sum \infty \theta (f\:\circ\:g) f(x)
- \twostack{▭}{▭} \lt 7 8 9 \div AC
+ \twostack{▭}{▭} \gt 4 5 6 \times \square\frac{\square}{\square}
\times \twostack{▭}{▭} \left( 1 2 3 - x
▭\:\longdivision{▭} \right) . 0 = + y

Number Line

  • x^{2}-x-6=0
  • -x+3\gt 2x+1
  • line\:(1,\:2),\:(3,\:1)
  • prove\:\tan^2(x)-\sin^2(x)=\tan^2(x)\sin^2(x)
  • \frac{d}{dx}(\frac{3x+9}{2-x})
  • (\sin^2(\theta))'
  • \lim _{x\to 0}(x\ln (x))
  • \int e^x\cos (x)dx
  • \int_{0}^{\pi}\sin(x)dx
  • \sum_{n=0}^{\infty}\frac{3}{2^n}
  • Is there a step by step calculator for math?
  • Symbolab is the best step by step calculator for a wide range of math problems, from basic arithmetic to advanced calculus and linear algebra. It shows you the solution, graph, detailed steps and explanations for each problem.
  • Is there a step by step calculator for physics?
  • Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. It shows you the steps and explanations for each problem, so you can learn as you go.
  • How to solve math problems step-by-step?
  • To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.
  • Practice Makes Perfect Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want...

We want your feedback

Please add a message.

Message received. Thanks for the feedback.

Microsoft

Game Central

Similar problems from web search.

IMAGES

  1. What IS Problem-Solving?

    examples of problem solving mathematics

  2. What IS Problem-Solving?

    examples of problem solving mathematics

  3. Math Problem Solving 101

    examples of problem solving mathematics

  4. Math Problem Solving Posters [Video]

    examples of problem solving mathematics

  5. Sample Problem Solving In Math For Grade 4

    examples of problem solving mathematics

  6. Sample Problem Solving In Math

    examples of problem solving mathematics

COMMENTS

  1. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  2. Math Problem Solving Strategies (video lessons, examples and solutions)

    The following video shows more examples of using problem solving strategies and models. Question 1: Approximate your average speed given some information. Question 2: The table shows the number of seats in each of the first four rows in an auditorium. The remaining ten rows follow the same pattern.

  3. Module 1: Problem Solving Strategies

    We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems! Problem Solving Strategy 1 (Guess and Test)

  4. 1.3: Problem Solving Strategies

    Problem Solving Strategy 3 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric, like this one, thinking visually can help!

  5. 1.1: Introduction to Problem Solving

    The very first Mathematical Practice is: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of ...

  6. 10 Strategies for Problem Solving in Math

    The most remarkable technique for problem solving in mathematics is to help students see patterns in math problems by instructing them how to extract and list relevant details. This method may be used by students when learning shapes and other topics that need repetition. Students may use this strategy to spot patterns and fill in the blanks.

  7. Solving equations & inequalities

    Unit test. Level up on all the skills in this unit and collect up to 1,100 Mastery points! There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions.

  8. Problem solving with arithmetic

    Select amount. $10. $20. $30. $40. Operations and Algebraic Thinking 201-210 2 units · 15 skills. Unit 1 Problem solving with arithmetic. Unit 2 Factors, multiples, and patterns. Course challenge.

  9. Problem Solving in Mathematics

    Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

  10. Problem Solving, Using and Applying and Functional Mathematics

    During problem solving, solvers need to communicate their mathematics for example by: discussing their work and explaining their reasoning using a range of mathematical language and notation; using a variety of strategies and diagrams for establishing algebraic or graphical representations of a problem and its solution

  11. Math Problem Solving Strategies That Make Students Say "I Get It!"

    Schema approach. This is a math intervention strategy that can make problem solving easier for all students, regardless of ability. Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

  12. Algebraic word problems

    Solving algebraic word problems requires us to combine our ability to create equations and solve them. To solve an algebraic word problem: Define a variable. Write an equation using the variable. Solve the equation. If the variable is not the answer to the word problem, use the variable to calculate the answer.

  13. Problem-Solving Strategies

    1. Create a Diagram/draw a picture. Creating a diagram helps students visualize the problem and reach the solution. A diagram can be a picture with labels, or a representation of the problem with objects that can be manipulated. Role-playing and acting out the problem like a story can help get to the solution. Example.

  14. Free Mathematics Tutorials, Problems and Worksheets

    Thousands of math problems and questions with solutions and detailed explanations are included. Free math tutorials and problems to help you explore and gain deep understanding of math topics such as: Algebra and graphing , Precalculus , Practice tests and worksheets , Calculus , Linear Algebra , Geometry , Trigonometry , Math Videos , Math ...

  15. 120 Math Word Problems To Challenge Students Grades 1 to 8

    It provides examples and templates of math word problems for 1st to 8th grade classes. (See our entire list of back to school resources for teachers here.) There are 120 examples in total. The list of examples is supplemented by tips to create engaging and challenging math word problems. 120 Math word problems, categorized by skill

  16. Ratio Problem Solving

    Ratio problem solving is a collection of ratio and proportion word problems that link together aspects of ratio and proportion into more real life ... Use ratio and rate reasoning to solve real-world and mathematical problems, for example, by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations ...

  17. 3.1: Use a Problem-Solving Strategy

    Step 3. Name what we are looking for. Choose a variable to represent that quantity. We can use any letter for the variable, but choose one that makes it easy to remember what it represents. Step 4. Translate into an equation. It may be helpful to restate the problem in one sentence with all the important information.

  18. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  19. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  20. Mathway

    Free math problem solver answers your algebra, geometry, trigonometry, calculus, and statistics homework questions with step-by-step explanations, just like a math tutor. ... Step-by-Step Examples. Basic Math. Long Arithmetic. Adding Using Long Addition. Long Subtraction. Long Multiplication. ... Mathematics of Finance. Finding the Simple ...

  21. Examples of Problem-Solving Strategies in Mathematics Education ...

    Teaching mathematical problem-solving is an efficient way to develop 21st-century skills and to give cross-curricular experiences with real-world meaning to learners. Concrete examples were presented to prove that Pólya's heuristic could be used in a broader context to help learners acquire the modern skills needed to succeed in their ...

  22. 30 8th Grade Math Problems: Answers With Worked Examples

    8th grade math problems are math problems specifically for 8th grade students focusing on the math skills and concepts learned in 8th grade. Many 8th grade math problems typically focus on algebraic reasoning to strengthen the foundations of solving for an unknown variable early on in the year. The majority of 8th grade math builds upon this skill.

  23. Math Word Problems and Solutions

    Click to see solution. Problem 17. A biker covered half the distance between two towns in 2 hr 30 min. After that he increased his speed by 2 km/hr. He covered the second half of the distance in 2 hr 20 min. Find the distance between the two towns and the initial speed of the biker. Click to see solution. Problem 18.

  24. Math Practice

    Problems for 5th Grade. Multi-digit multiplication. Dividing completely. Writing expressions. Rounding whole numbers. Inequalities on a number line. Linear equation and inequality word problems. Linear equation word problems. Linear equation word problems.

  25. Step-by-Step Calculator

    Symbolab is the best step by step calculator for a wide range of math problems, from basic arithmetic to advanced calculus and linear algebra. It shows you the solution, graph, detailed steps and explanations for each problem. Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and ...

  26. Solve 300-47465

    Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more.