Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper
  • How to Write a Discussion Section | Tips & Examples

How to Write a Discussion Section | Tips & Examples

Published on August 21, 2022 by Shona McCombes . Revised on July 18, 2023.

Discussion section flow chart

The discussion section is where you delve into the meaning, importance, and relevance of your results .

It should focus on explaining and evaluating what you found, showing how it relates to your literature review and paper or dissertation topic , and making an argument in support of your overall conclusion. It should not be a second results section.

There are different ways to write this section, but you can focus your writing around these key elements:

  • Summary : A brief recap of your key results
  • Interpretations: What do your results mean?
  • Implications: Why do your results matter?
  • Limitations: What can’t your results tell us?
  • Recommendations: Avenues for further studies or analyses

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

What not to include in your discussion section, step 1: summarize your key findings, step 2: give your interpretations, step 3: discuss the implications, step 4: acknowledge the limitations, step 5: share your recommendations, discussion section example, other interesting articles, frequently asked questions about discussion sections.

There are a few common mistakes to avoid when writing the discussion section of your paper.

  • Don’t introduce new results: You should only discuss the data that you have already reported in your results section .
  • Don’t make inflated claims: Avoid overinterpretation and speculation that isn’t directly supported by your data.
  • Don’t undermine your research: The discussion of limitations should aim to strengthen your credibility, not emphasize weaknesses or failures.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

sample discussion section of a research paper

Try for free

Start this section by reiterating your research problem and concisely summarizing your major findings. To speed up the process you can use a summarizer to quickly get an overview of all important findings. Don’t just repeat all the data you have already reported—aim for a clear statement of the overall result that directly answers your main research question . This should be no more than one paragraph.

Many students struggle with the differences between a discussion section and a results section . The crux of the matter is that your results sections should present your results, and your discussion section should subjectively evaluate them. Try not to blend elements of these two sections, in order to keep your paper sharp.

  • The results indicate that…
  • The study demonstrates a correlation between…
  • This analysis supports the theory that…
  • The data suggest that…

The meaning of your results may seem obvious to you, but it’s important to spell out their significance for your reader, showing exactly how they answer your research question.

The form of your interpretations will depend on the type of research, but some typical approaches to interpreting the data include:

  • Identifying correlations , patterns, and relationships among the data
  • Discussing whether the results met your expectations or supported your hypotheses
  • Contextualizing your findings within previous research and theory
  • Explaining unexpected results and evaluating their significance
  • Considering possible alternative explanations and making an argument for your position

You can organize your discussion around key themes, hypotheses, or research questions, following the same structure as your results section. Alternatively, you can also begin by highlighting the most significant or unexpected results.

  • In line with the hypothesis…
  • Contrary to the hypothesized association…
  • The results contradict the claims of Smith (2022) that…
  • The results might suggest that x . However, based on the findings of similar studies, a more plausible explanation is y .

As well as giving your own interpretations, make sure to relate your results back to the scholarly work that you surveyed in the literature review . The discussion should show how your findings fit with existing knowledge, what new insights they contribute, and what consequences they have for theory or practice.

Ask yourself these questions:

  • Do your results support or challenge existing theories? If they support existing theories, what new information do they contribute? If they challenge existing theories, why do you think that is?
  • Are there any practical implications?

Your overall aim is to show the reader exactly what your research has contributed, and why they should care.

  • These results build on existing evidence of…
  • The results do not fit with the theory that…
  • The experiment provides a new insight into the relationship between…
  • These results should be taken into account when considering how to…
  • The data contribute a clearer understanding of…
  • While previous research has focused on  x , these results demonstrate that y .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Even the best research has its limitations. Acknowledging these is important to demonstrate your credibility. Limitations aren’t about listing your errors, but about providing an accurate picture of what can and cannot be concluded from your study.

Limitations might be due to your overall research design, specific methodological choices , or unanticipated obstacles that emerged during your research process.

Here are a few common possibilities:

  • If your sample size was small or limited to a specific group of people, explain how generalizability is limited.
  • If you encountered problems when gathering or analyzing data, explain how these influenced the results.
  • If there are potential confounding variables that you were unable to control, acknowledge the effect these may have had.

After noting the limitations, you can reiterate why the results are nonetheless valid for the purpose of answering your research question.

  • The generalizability of the results is limited by…
  • The reliability of these data is impacted by…
  • Due to the lack of data on x , the results cannot confirm…
  • The methodological choices were constrained by…
  • It is beyond the scope of this study to…

Based on the discussion of your results, you can make recommendations for practical implementation or further research. Sometimes, the recommendations are saved for the conclusion .

Suggestions for further research can lead directly from the limitations. Don’t just state that more studies should be done—give concrete ideas for how future work can build on areas that your own research was unable to address.

  • Further research is needed to establish…
  • Future studies should take into account…
  • Avenues for future research include…

Discussion section example

If you want to know more about AI for academic writing, AI tools, or research bias, make sure to check out some of our other articles with explanations and examples or go directly to our tools!

Research bias

  • Anchoring bias
  • Halo effect
  • The Baader–Meinhof phenomenon
  • The placebo effect
  • Nonresponse bias
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

In the discussion , you explore the meaning and relevance of your research results , explaining how they fit with existing research and theory. Discuss:

  • Your  interpretations : what do the results tell us?
  • The  implications : why do the results matter?
  • The  limitation s : what can’t the results tell us?

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

In a thesis or dissertation, the discussion is an in-depth exploration of the results, going into detail about the meaning of your findings and citing relevant sources to put them in context.

The conclusion is more shorter and more general: it concisely answers your main research question and makes recommendations based on your overall findings.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, July 18). How to Write a Discussion Section | Tips & Examples. Scribbr. Retrieved June 26, 2024, from https://www.scribbr.com/dissertation/discussion/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a literature review | guide, examples, & templates, what is a research methodology | steps & tips, how to write a results section | tips & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write Discussions and Conclusions

How to Write Discussions and Conclusions

The discussion section contains the results and outcomes of a study. An effective discussion informs readers what can be learned from your experiment and provides context for the results.

What makes an effective discussion?

When you’re ready to write your discussion, you’ve already introduced the purpose of your study and provided an in-depth description of the methodology. The discussion informs readers about the larger implications of your study based on the results. Highlighting these implications while not overstating the findings can be challenging, especially when you’re submitting to a journal that selects articles based on novelty or potential impact. Regardless of what journal you are submitting to, the discussion section always serves the same purpose: concluding what your study results actually mean.

A successful discussion section puts your findings in context. It should include:

  • the results of your research,
  • a discussion of related research, and
  • a comparison between your results and initial hypothesis.

Tip: Not all journals share the same naming conventions.

You can apply the advice in this article to the conclusion, results or discussion sections of your manuscript.

Our Early Career Researcher community tells us that the conclusion is often considered the most difficult aspect of a manuscript to write. To help, this guide provides questions to ask yourself, a basic structure to model your discussion off of and examples from published manuscripts. 

sample discussion section of a research paper

Questions to ask yourself:

  • Was my hypothesis correct?
  • If my hypothesis is partially correct or entirely different, what can be learned from the results? 
  • How do the conclusions reshape or add onto the existing knowledge in the field? What does previous research say about the topic? 
  • Why are the results important or relevant to your audience? Do they add further evidence to a scientific consensus or disprove prior studies? 
  • How can future research build on these observations? What are the key experiments that must be done? 
  • What is the “take-home” message you want your reader to leave with?

How to structure a discussion

Trying to fit a complete discussion into a single paragraph can add unnecessary stress to the writing process. If possible, you’ll want to give yourself two or three paragraphs to give the reader a comprehensive understanding of your study as a whole. Here’s one way to structure an effective discussion:

sample discussion section of a research paper

Writing Tips

While the above sections can help you brainstorm and structure your discussion, there are many common mistakes that writers revert to when having difficulties with their paper. Writing a discussion can be a delicate balance between summarizing your results, providing proper context for your research and avoiding introducing new information. Remember that your paper should be both confident and honest about the results! 

What to do

  • Read the journal’s guidelines on the discussion and conclusion sections. If possible, learn about the guidelines before writing the discussion to ensure you’re writing to meet their expectations. 
  • Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. 
  • Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and limitations of the research. 
  • State whether the results prove or disprove your hypothesis. If your hypothesis was disproved, what might be the reasons? 
  • Introduce new or expanded ways to think about the research question. Indicate what next steps can be taken to further pursue any unresolved questions. 
  • If dealing with a contemporary or ongoing problem, such as climate change, discuss possible consequences if the problem is avoided. 
  • Be concise. Adding unnecessary detail can distract from the main findings. 

What not to do

Don’t

  • Rewrite your abstract. Statements with “we investigated” or “we studied” generally do not belong in the discussion. 
  • Include new arguments or evidence not previously discussed. Necessary information and evidence should be introduced in the main body of the paper. 
  • Apologize. Even if your research contains significant limitations, don’t undermine your authority by including statements that doubt your methodology or execution. 
  • Shy away from speaking on limitations or negative results. Including limitations and negative results will give readers a complete understanding of the presented research. Potential limitations include sources of potential bias, threats to internal or external validity, barriers to implementing an intervention and other issues inherent to the study design. 
  • Overstate the importance of your findings. Making grand statements about how a study will fully resolve large questions can lead readers to doubt the success of the research. 

Snippets of Effective Discussions:

Consumer-based actions to reduce plastic pollution in rivers: A multi-criteria decision analysis approach

Identifying reliable indicators of fitness in polar bears

  • How to Write a Great Title
  • How to Write an Abstract
  • How to Write Your Methods
  • How to Report Statistics
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

How to Write the Discussion Section of a Research Paper

The discussion section of a research paper analyzes and interprets the findings, provides context, compares them with previous studies, identifies limitations, and suggests future research directions.

Updated on September 15, 2023

researchers writing the discussion section of their research paper

Structure your discussion section right, and you’ll be cited more often while doing a greater service to the scientific community. So, what actually goes into the discussion section? And how do you write it?

The discussion section of your research paper is where you let the reader know how your study is positioned in the literature, what to take away from your paper, and how your work helps them. It can also include your conclusions and suggestions for future studies.

First, we’ll define all the parts of your discussion paper, and then look into how to write a strong, effective discussion section for your paper or manuscript.

Discussion section: what is it, what it does

The discussion section comes later in your paper, following the introduction, methods, and results. The discussion sets up your study’s conclusions. Its main goals are to present, interpret, and provide a context for your results.

What is it?

The discussion section provides an analysis and interpretation of the findings, compares them with previous studies, identifies limitations, and suggests future directions for research.

This section combines information from the preceding parts of your paper into a coherent story. By this point, the reader already knows why you did your study (introduction), how you did it (methods), and what happened (results). In the discussion, you’ll help the reader connect the ideas from these sections.

Why is it necessary?

The discussion provides context and interpretations for the results. It also answers the questions posed in the introduction. While the results section describes your findings, the discussion explains what they say. This is also where you can describe the impact or implications of your research.

Adds context for your results

Most research studies aim to answer a question, replicate a finding, or address limitations in the literature. These goals are first described in the introduction. However, in the discussion section, the author can refer back to them to explain how the study's objective was achieved. 

Shows what your results actually mean and real-world implications

The discussion can also describe the effect of your findings on research or practice. How are your results significant for readers, other researchers, or policymakers?

What to include in your discussion (in the correct order)

A complete and effective discussion section should at least touch on the points described below.

Summary of key findings

The discussion should begin with a brief factual summary of the results. Concisely overview the main results you obtained.

Begin with key findings with supporting evidence

Your results section described a list of findings, but what message do they send when you look at them all together?

Your findings were detailed in the results section, so there’s no need to repeat them here, but do provide at least a few highlights. This will help refresh the reader’s memory and help them focus on the big picture.

Read the first paragraph of the discussion section in this article (PDF) for an example of how to start this part of your paper. Notice how the authors break down their results and follow each description sentence with an explanation of why each finding is relevant. 

State clearly and concisely

Following a clear and direct writing style is especially important in the discussion section. After all, this is where you will make some of the most impactful points in your paper. While the results section often contains technical vocabulary, such as statistical terms, the discussion section lets you describe your findings more clearly. 

Interpretation of results

Once you’ve given your reader an overview of your results, you need to interpret those results. In other words, what do your results mean? Discuss the findings’ implications and significance in relation to your research question or hypothesis.

Analyze and interpret your findings

Look into your findings and explore what’s behind them or what may have caused them. If your introduction cited theories or studies that could explain your findings, use these sources as a basis to discuss your results.

For example, look at the second paragraph in the discussion section of this article on waggling honey bees. Here, the authors explore their results based on information from the literature.

Unexpected or contradictory results

Sometimes, your findings are not what you expect. Here’s where you describe this and try to find a reason for it. Could it be because of the method you used? Does it have something to do with the variables analyzed? Comparing your methods with those of other similar studies can help with this task.

Context and comparison with previous work

Refer to related studies to place your research in a larger context and the literature. Compare and contrast your findings with existing literature, highlighting similarities, differences, and/or contradictions.

How your work compares or contrasts with previous work

Studies with similar findings to yours can be cited to show the strength of your findings. Information from these studies can also be used to help explain your results. Differences between your findings and others in the literature can also be discussed here. 

How to divide this section into subsections

If you have more than one objective in your study or many key findings, you can dedicate a separate section to each of these. Here’s an example of this approach. You can see that the discussion section is divided into topics and even has a separate heading for each of them. 

Limitations

Many journals require you to include the limitations of your study in the discussion. Even if they don’t, there are good reasons to mention these in your paper.

Why limitations don’t have a negative connotation

A study’s limitations are points to be improved upon in future research. While some of these may be flaws in your method, many may be due to factors you couldn’t predict.

Examples include time constraints or small sample sizes. Pointing this out will help future researchers avoid or address these issues. This part of the discussion can also include any attempts you have made to reduce the impact of these limitations, as in this study .

How limitations add to a researcher's credibility

Pointing out the limitations of your study demonstrates transparency. It also shows that you know your methods well and can conduct a critical assessment of them.  

Implications and significance

The final paragraph of the discussion section should contain the take-home messages for your study. It can also cite the “strong points” of your study, to contrast with the limitations section.

Restate your hypothesis

Remind the reader what your hypothesis was before you conducted the study. 

How was it proven or disproven?

Identify your main findings and describe how they relate to your hypothesis.

How your results contribute to the literature

Were you able to answer your research question? Or address a gap in the literature?

Future implications of your research

Describe the impact that your results may have on the topic of study. Your results may show, for instance, that there are still limitations in the literature for future studies to address. There may be a need for studies that extend your findings in a specific way. You also may need additional research to corroborate your findings. 

Sample discussion section

This fictitious example covers all the aspects discussed above. Your actual discussion section will probably be much longer, but you can read this to get an idea of everything your discussion should cover.

Our results showed that the presence of cats in a household is associated with higher levels of perceived happiness by its human occupants. These findings support our hypothesis and demonstrate the association between pet ownership and well-being. 

The present findings align with those of Bao and Schreer (2016) and Hardie et al. (2023), who observed greater life satisfaction in pet owners relative to non-owners. Although the present study did not directly evaluate life satisfaction, this factor may explain the association between happiness and cat ownership observed in our sample.

Our findings must be interpreted in light of some limitations, such as the focus on cat ownership only rather than pets as a whole. This may limit the generalizability of our results.

Nevertheless, this study had several strengths. These include its strict exclusion criteria and use of a standardized assessment instrument to investigate the relationships between pets and owners. These attributes bolster the accuracy of our results and reduce the influence of confounding factors, increasing the strength of our conclusions. Future studies may examine the factors that mediate the association between pet ownership and happiness to better comprehend this phenomenon.

This brief discussion begins with a quick summary of the results and hypothesis. The next paragraph cites previous research and compares its findings to those of this study. Information from previous studies is also used to help interpret the findings. After discussing the results of the study, some limitations are pointed out. The paper also explains why these limitations may influence the interpretation of results. Then, final conclusions are drawn based on the study, and directions for future research are suggested.

How to make your discussion flow naturally

If you find writing in scientific English challenging, the discussion and conclusions are often the hardest parts of the paper to write. That’s because you’re not just listing up studies, methods, and outcomes. You’re actually expressing your thoughts and interpretations in words.

  • How formal should it be?
  • What words should you use, or not use?
  • How do you meet strict word limits, or make it longer and more informative?

Always give it your best, but sometimes a helping hand can, well, help. Getting a professional edit can help clarify your work’s importance while improving the English used to explain it. When readers know the value of your work, they’ll cite it. We’ll assign your study to an expert editor knowledgeable in your area of research. Their work will clarify your discussion, helping it to tell your story. Find out more about AJE Editing.

Adam Goulston, Science Marketing Consultant, PsyD, Human and Organizational Behavior, Scize

Adam Goulston, PsyD, MS, MBA, MISD, ELS

Science Marketing Consultant

See our "Privacy Policy"

Ensure your structure and ideas are consistent and clearly communicated

Pair your Premium Editing with our add-on service Presubmission Review for an overall assessment of your manuscript.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 8. The Discussion
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The purpose of the discussion section is to interpret and describe the significance of your findings in relation to what was already known about the research problem being investigated and to explain any new understanding or insights that emerged as a result of your research. The discussion will always connect to the introduction by way of the research questions or hypotheses you posed and the literature you reviewed, but the discussion does not simply repeat or rearrange the first parts of your paper; the discussion clearly explains how your study advanced the reader's understanding of the research problem from where you left them at the end of your review of prior research.

Annesley, Thomas M. “The Discussion Section: Your Closing Argument.” Clinical Chemistry 56 (November 2010): 1671-1674; Peacock, Matthew. “Communicative Moves in the Discussion Section of Research Articles.” System 30 (December 2002): 479-497.

Importance of a Good Discussion

The discussion section is often considered the most important part of your research paper because it:

  • Most effectively demonstrates your ability as a researcher to think critically about an issue, to develop creative solutions to problems based upon a logical synthesis of the findings, and to formulate a deeper, more profound understanding of the research problem under investigation;
  • Presents the underlying meaning of your research, notes possible implications in other areas of study, and explores possible improvements that can be made in order to further develop the concerns of your research;
  • Highlights the importance of your study and how it can contribute to understanding the research problem within the field of study;
  • Presents how the findings from your study revealed and helped fill gaps in the literature that had not been previously exposed or adequately described; and,
  • Engages the reader in thinking critically about issues based on an evidence-based interpretation of findings; it is not governed strictly by objective reporting of information.

Annesley Thomas M. “The Discussion Section: Your Closing Argument.” Clinical Chemistry 56 (November 2010): 1671-1674; Bitchener, John and Helen Basturkmen. “Perceptions of the Difficulties of Postgraduate L2 Thesis Students Writing the Discussion Section.” Journal of English for Academic Purposes 5 (January 2006): 4-18; Kretchmer, Paul. Fourteen Steps to Writing an Effective Discussion Section. San Francisco Edit, 2003-2008.

Structure and Writing Style

I.  General Rules

These are the general rules you should adopt when composing your discussion of the results :

  • Do not be verbose or repetitive; be concise and make your points clearly
  • Avoid the use of jargon or undefined technical language
  • Follow a logical stream of thought; in general, interpret and discuss the significance of your findings in the same sequence you described them in your results section [a notable exception is to begin by highlighting an unexpected result or a finding that can grab the reader's attention]
  • Use the present verb tense, especially for established facts; however, refer to specific works or prior studies in the past tense
  • If needed, use subheadings to help organize your discussion or to categorize your interpretations into themes

II.  The Content

The content of the discussion section of your paper most often includes :

  • Explanation of results : Comment on whether or not the results were expected for each set of findings; go into greater depth to explain findings that were unexpected or especially profound. If appropriate, note any unusual or unanticipated patterns or trends that emerged from your results and explain their meaning in relation to the research problem.
  • References to previous research : Either compare your results with the findings from other studies or use the studies to support a claim. This can include re-visiting key sources already cited in your literature review section, or, save them to cite later in the discussion section if they are more important to compare with your results instead of being a part of the general literature review of prior research used to provide context and background information. Note that you can make this decision to highlight specific studies after you have begun writing the discussion section.
  • Deduction : A claim for how the results can be applied more generally. For example, describing lessons learned, proposing recommendations that can help improve a situation, or highlighting best practices.
  • Hypothesis : A more general claim or possible conclusion arising from the results [which may be proved or disproved in subsequent research]. This can be framed as new research questions that emerged as a consequence of your analysis.

III.  Organization and Structure

Keep the following sequential points in mind as you organize and write the discussion section of your paper:

  • Think of your discussion as an inverted pyramid. Organize the discussion from the general to the specific, linking your findings to the literature, then to theory, then to practice [if appropriate].
  • Use the same key terms, narrative style, and verb tense [present] that you used when describing the research problem in your introduction.
  • Begin by briefly re-stating the research problem you were investigating and answer all of the research questions underpinning the problem that you posed in the introduction.
  • Describe the patterns, principles, and relationships shown by each major findings and place them in proper perspective. The sequence of this information is important; first state the answer, then the relevant results, then cite the work of others. If appropriate, refer the reader to a figure or table to help enhance the interpretation of the data [either within the text or as an appendix].
  • Regardless of where it's mentioned, a good discussion section includes analysis of any unexpected findings. This part of the discussion should begin with a description of the unanticipated finding, followed by a brief interpretation as to why you believe it appeared and, if necessary, its possible significance in relation to the overall study. If more than one unexpected finding emerged during the study, describe each of them in the order they appeared as you gathered or analyzed the data. As noted, the exception to discussing findings in the same order you described them in the results section would be to begin by highlighting the implications of a particularly unexpected or significant finding that emerged from the study, followed by a discussion of the remaining findings.
  • Before concluding the discussion, identify potential limitations and weaknesses if you do not plan to do so in the conclusion of the paper. Comment on their relative importance in relation to your overall interpretation of the results and, if necessary, note how they may affect the validity of your findings. Avoid using an apologetic tone; however, be honest and self-critical [e.g., in retrospect, had you included a particular question in a survey instrument, additional data could have been revealed].
  • The discussion section should end with a concise summary of the principal implications of the findings regardless of their significance. Give a brief explanation about why you believe the findings and conclusions of your study are important and how they support broader knowledge or understanding of the research problem. This can be followed by any recommendations for further research. However, do not offer recommendations which could have been easily addressed within the study. This would demonstrate to the reader that you have inadequately examined and interpreted the data.

IV.  Overall Objectives

The objectives of your discussion section should include the following: I.  Reiterate the Research Problem/State the Major Findings

Briefly reiterate the research problem or problems you are investigating and the methods you used to investigate them, then move quickly to describe the major findings of the study. You should write a direct, declarative, and succinct proclamation of the study results, usually in one paragraph.

II.  Explain the Meaning of the Findings and Why They are Important

No one has thought as long and hard about your study as you have. Systematically explain the underlying meaning of your findings and state why you believe they are significant. After reading the discussion section, you want the reader to think critically about the results and why they are important. You don’t want to force the reader to go through the paper multiple times to figure out what it all means. If applicable, begin this part of the section by repeating what you consider to be your most significant or unanticipated finding first, then systematically review each finding. Otherwise, follow the general order you reported the findings presented in the results section.

III.  Relate the Findings to Similar Studies

No study in the social sciences is so novel or possesses such a restricted focus that it has absolutely no relation to previously published research. The discussion section should relate your results to those found in other studies, particularly if questions raised from prior studies served as the motivation for your research. This is important because comparing and contrasting the findings of other studies helps to support the overall importance of your results and it highlights how and in what ways your study differs from other research about the topic. Note that any significant or unanticipated finding is often because there was no prior research to indicate the finding could occur. If there is prior research to indicate this, you need to explain why it was significant or unanticipated. IV.  Consider Alternative Explanations of the Findings

It is important to remember that the purpose of research in the social sciences is to discover and not to prove . When writing the discussion section, you should carefully consider all possible explanations for the study results, rather than just those that fit your hypothesis or prior assumptions and biases. This is especially important when describing the discovery of significant or unanticipated findings.

V.  Acknowledge the Study’s Limitations

It is far better for you to identify and acknowledge your study’s limitations than to have them pointed out by your professor! Note any unanswered questions or issues your study could not address and describe the generalizability of your results to other situations. If a limitation is applicable to the method chosen to gather information, then describe in detail the problems you encountered and why. VI.  Make Suggestions for Further Research

You may choose to conclude the discussion section by making suggestions for further research [as opposed to offering suggestions in the conclusion of your paper]. Although your study can offer important insights about the research problem, this is where you can address other questions related to the problem that remain unanswered or highlight hidden issues that were revealed as a result of conducting your research. You should frame your suggestions by linking the need for further research to the limitations of your study [e.g., in future studies, the survey instrument should include more questions that ask..."] or linking to critical issues revealed from the data that were not considered initially in your research.

NOTE: Besides the literature review section, the preponderance of references to sources is usually found in the discussion section . A few historical references may be helpful for perspective, but most of the references should be relatively recent and included to aid in the interpretation of your results, to support the significance of a finding, and/or to place a finding within a particular context. If a study that you cited does not support your findings, don't ignore it--clearly explain why your research findings differ from theirs.

V.  Problems to Avoid

  • Do not waste time restating your results . Should you need to remind the reader of a finding to be discussed, use "bridge sentences" that relate the result to the interpretation. An example would be: “In the case of determining available housing to single women with children in rural areas of Texas, the findings suggest that access to good schools is important...," then move on to further explaining this finding and its implications.
  • As noted, recommendations for further research can be included in either the discussion or conclusion of your paper, but do not repeat your recommendations in the both sections. Think about the overall narrative flow of your paper to determine where best to locate this information. However, if your findings raise a lot of new questions or issues, consider including suggestions for further research in the discussion section.
  • Do not introduce new results in the discussion section. Be wary of mistaking the reiteration of a specific finding for an interpretation because it may confuse the reader. The description of findings [results section] and the interpretation of their significance [discussion section] should be distinct parts of your paper. If you choose to combine the results section and the discussion section into a single narrative, you must be clear in how you report the information discovered and your own interpretation of each finding. This approach is not recommended if you lack experience writing college-level research papers.
  • Use of the first person pronoun is generally acceptable. Using first person singular pronouns can help emphasize a point or illustrate a contrasting finding. However, keep in mind that too much use of the first person can actually distract the reader from the main points [i.e., I know you're telling me this--just tell me!].

Analyzing vs. Summarizing. Department of English Writing Guide. George Mason University; Discussion. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College; Hess, Dean R. "How to Write an Effective Discussion." Respiratory Care 49 (October 2004); Kretchmer, Paul. Fourteen Steps to Writing to Writing an Effective Discussion Section. San Francisco Edit, 2003-2008; The Lab Report. University College Writing Centre. University of Toronto; Sauaia, A. et al. "The Anatomy of an Article: The Discussion Section: "How Does the Article I Read Today Change What I Will Recommend to my Patients Tomorrow?” The Journal of Trauma and Acute Care Surgery 74 (June 2013): 1599-1602; Research Limitations & Future Research . Lund Research Ltd., 2012; Summary: Using it Wisely. The Writing Center. University of North Carolina; Schafer, Mickey S. Writing the Discussion. Writing in Psychology course syllabus. University of Florida; Yellin, Linda L. A Sociology Writer's Guide . Boston, MA: Allyn and Bacon, 2009.

Writing Tip

Don’t Over-Interpret the Results!

Interpretation is a subjective exercise. As such, you should always approach the selection and interpretation of your findings introspectively and to think critically about the possibility of judgmental biases unintentionally entering into discussions about the significance of your work. With this in mind, be careful that you do not read more into the findings than can be supported by the evidence you have gathered. Remember that the data are the data: nothing more, nothing less.

MacCoun, Robert J. "Biases in the Interpretation and Use of Research Results." Annual Review of Psychology 49 (February 1998): 259-287; Ward, Paulet al, editors. The Oxford Handbook of Expertise . Oxford, UK: Oxford University Press, 2018.

Another Writing Tip

Don't Write Two Results Sections!

One of the most common mistakes that you can make when discussing the results of your study is to present a superficial interpretation of the findings that more or less re-states the results section of your paper. Obviously, you must refer to your results when discussing them, but focus on the interpretation of those results and their significance in relation to the research problem, not the data itself.

Azar, Beth. "Discussing Your Findings."  American Psychological Association gradPSYCH Magazine (January 2006).

Yet Another Writing Tip

Avoid Unwarranted Speculation!

The discussion section should remain focused on the findings of your study. For example, if the purpose of your research was to measure the impact of foreign aid on increasing access to education among disadvantaged children in Bangladesh, it would not be appropriate to speculate about how your findings might apply to populations in other countries without drawing from existing studies to support your claim or if analysis of other countries was not a part of your original research design. If you feel compelled to speculate, do so in the form of describing possible implications or explaining possible impacts. Be certain that you clearly identify your comments as speculation or as a suggestion for where further research is needed. Sometimes your professor will encourage you to expand your discussion of the results in this way, while others don’t care what your opinion is beyond your effort to interpret the data in relation to the research problem.

  • << Previous: Using Non-Textual Elements
  • Next: Limitations of the Study >>
  • Last Updated: Jun 18, 2024 10:45 AM
  • URL: https://libguides.usc.edu/writingguide
  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

6 Steps to Write an Excellent Discussion in Your Manuscript

  • 4 minute read
  • 16.2K views

Table of Contents

The discussion section in scientific manuscripts might be the last few paragraphs, but its role goes far beyond wrapping up. It’s the part of an article where scientists talk about what they found and what it means, where raw data turns into meaningful insights. Therefore, discussion is a vital component of the article.  

An excellent discussion is well-organized. We bring to you authors a classic 6-step method for writing discussion sections, with examples to illustrate the functions and specific writing logic of each step. Take a look at how you can impress journal reviewers with a concise and focused discussion section!  

Discussion frame structure   

Conventionally, a discussion section has three parts: an introductory paragraph, a few intermediate paragraphs, and a conclusion¹.  Please follow the steps below:  

Steps to Write an Excellent Discussion in Your Manuscript

1.Introduction—mention gaps in previous research¹⁻ ²

Here, you orient the reader to your study. In the first paragraph, it is advisable to mention the research gap your paper addresses.  

Example: This study investigated the cognitive effects of a meat-only diet on adults. While earlier studies have explored the impact of a carnivorous diet on physical attributes and agility, they have not explicitly addressed its influence on cognitively intense tasks involving memory and reasoning.  

2. Summarizing key findings—let your data speak ¹⁻ ²

After you have laid out the context for your study, recapitulate some of its key findings. Also, highlight key data and evidence supporting these findings.  

Example: We found that risk-taking behavior among teenagers correlates with their tendency to invest in cryptocurrencies. Risk takers in this study, as measured by the Cambridge Gambling Task, tended to have an inordinately higher proportion of their savings invested as crypto coins.  

3. Interpreting results—compare with other papers¹⁻²    

Here, you must analyze and interpret any results concerning the research question or hypothesis. How do the key findings of your study help verify or disprove the hypothesis? What practical relevance does your discovery have?  

Example: Our study suggests that higher daily caffeine intake is not associated with poor performance in major sporting events. Athletes may benefit from the cardiovascular benefits of daily caffeine intake without adversely impacting performance.    

Remember, unlike the results section, the discussion ideally focuses on locating your findings in the larger body of existing research. Hence, compare your results with those of other peer-reviewed papers.  

Example: Although Miller et al. (2020) found evidence of such political bias in a multicultural population, our findings suggest that the bias is weak or virtually non-existent among politically active citizens.  

4. Addressing limitations—their potential impact on the results¹⁻²    

Discuss the potential impact of limitations on the results. Most studies have limitations, and it is crucial to acknowledge them in the intermediary paragraphs of the discussion section. Limitations may include low sample size, suspected interference or noise in data, low effect size, etc.  

Example: This study explored a comprehensive list of adverse effects associated with the novel drug ‘X’. However, long-term studies may be needed to confirm its safety, especially regarding major cardiac events.  

5. Implications for future research—how to explore further¹⁻²    

Locate areas of your research where more investigation is needed. Concluding paragraphs of the discussion can explain what research will likely confirm your results or identify knowledge gaps your study left unaddressed.  

Example: Our study demonstrates that roads paved with the plastic-infused compound ‘Y’ are more resilient than asphalt. Future studies may explore economically feasible ways of producing compound Y in bulk.  

6. Conclusion—summarize content¹⁻²    

A good way to wind up the discussion section is by revisiting the research question mentioned in your introduction. Sign off by expressing the main findings of your study.  

Example: Recent observations suggest that the fish ‘Z’ is moving upriver in many parts of the Amazon basin. Our findings provide conclusive evidence that this phenomenon is associated with rising sea levels and climate change, not due to elevated numbers of invasive predators.  

A rigorous and concise discussion section is one of the keys to achieving an excellent paper. It serves as a critical platform for researchers to interpret and connect their findings with the broader scientific context. By detailing the results, carefully comparing them with existing research, and explaining the limitations of this study, you can effectively help reviewers and readers understand the entire research article more comprehensively and deeply¹⁻² , thereby helping your manuscript to be successfully published and gain wider dissemination.  

In addition to keeping this writing guide, you can also use Elsevier Language Services to improve the quality of your paper more deeply and comprehensively. We have a professional editing team covering multiple disciplines. With our profound disciplinary background and rich polishing experience, we can significantly optimize all paper modules including the discussion, effectively improve the fluency and rigor of your articles, and make your scientific research results consistent, with its value reflected more clearly. We are always committed to ensuring the quality of papers according to the standards of top journals, improving the publishing efficiency of scientific researchers, and helping you on the road to academic success. Check us out here !  

Type in wordcount for Standard Total: USD EUR JPY Follow this link if your manuscript is longer than 12,000 words. Upload  

References:   

  • Masic, I. (2018). How to write an efficient discussion? Medical Archives , 72(3), 306. https://doi.org/10.5455/medarh.2018.72.306-307  
  • Şanlı, Ö., Erdem, S., & Tefik, T. (2014). How to write a discussion section? Urology Research & Practice , 39(1), 20–24. https://doi.org/10.5152/tud.2013.049  

Errors in Academic English Writing

Navigating “Chinglish” Errors in Academic English Writing

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

You may also like.

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Writing an Impactful Paper

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

Input your search keywords and press Enter.

Training videos   |   Faqs

Ref-n-Write: Scientific Research Paper Writing Software

Discussion Section Examples and Writing Tips

Abstract | Introduction | Literature Review | Research question | Materials & Methods | Results | Discussion | Conclusion

In this blog, we look at how to write the discussion section of a research paper. We will go through plenty of discussion examples and understand how to construct a great discussion section for your research paper.

1. What is the purpose of the discussion section?

Discussion example

The discussion section is one of the most important sections of your research paper. This is where you interpret your results, highlight your contributions, and explain the value of your work to your readers.  This is one of the challenging parts to write because the author must clearly explain the significance of their results and tie everything back to the research questions.

2. How should I structure my discussion section?

Generally, the discussion section of a research paper typically contains the following parts.

Research summary It is a good idea to start this section with an overall summary of your work and highlight the main findings of your research.

Interpretation of findings You must interpret your findings clearly to your readers one by one.

Comparison with literature You must talk about how your results fit into existing research in the literature.

Implications of your work You should talk about the implications and possible benefits of your research.

Limitations You should talk about the possible limitations and shortcomings of your research

Future work And finally, you can talk about the possible future directions of your work.

3. Discussion Examples

Let’s look at some examples of the discussion section.  We will be looking at discussion examples from different fields and of different formats. We have split this section into multiple components so that it is easy for you to digest and understand.

3.1. An example of research summary in discussion

It is a good idea to start your discussion section with the summary of your work. The best way to do this will be to restate your research question, and then reminding your readers about your methods, and finally providing an overall summary of your results.

Our aims were to compare the effectiveness and user-friendliness of different storm detection software for storm tracking. On the basis of these aims, we ran multiple experiments with the same conditions using different storm detection software. Our results showed that in both speed and accuracy of data, ‘software A’ performed better than ‘software B’. _  Aims summary  _  Methodology summary  _  Results summary

This discussion example is from an engineering research paper. The authors are restating their aims first, which is to compare different types of storm-tracking software. Then, they are providing a brief summary of the methods. Here, they are testing different storm-tracking software under different conditions to see which performs the best. Then, they are finally providing their main finding which is that they found ‘software A’ better than ‘software B’.  This is a very good example of how to start the discussion section by presenting a summary of your work.

3.2. An example of result interpretation in discussion

The next step is to interpret your results. You have to explain your results clearly to your readers. Here is a discussion example that shows how to interpret your results.

The results of this study indicate significant differences between classical music and pop music in terms of their effects on memory recall and cognition. This implies that as the complexity of the music increases, so does its ability to facilitate cognitive processing. This finding aligns with the well-known “Mozart effect,” which suggests that listening to classical music can enhance cognitive function. _  Result  _  Interpretation  _   Additional evidence

The authors are saying that their results show that there is a significant difference between pop music and classical music in terms of memory recall and cognition. Now they are providing their interpretation of the findings. They think it is because there is a link between the complexity of music and cognitive processing. They are also making a reference to a well-known theory called the ‘Mozart effect’ to back up their findings. It is a nicely written passage and the author’s interpretation sounds very convincing and credible.

3.3. An example of literature comparison in discussion

The next step is to compare your results to the literature. You have to explain clearly how your findings compare with similar findings made by other researchers. Here is a discussion example where authors are providing details of papers in the literature that both support and oppose their findings.

Our analysis predicts that climate change will have a significant impact on wheat yield. This finding undermines one of the central pieces of evidence in some previous simulation studies [1-3] that suggest a negative effect of climate change on wheat yield, but the result is entirely consistent with the predictions of other research [4-5] that suggests the overall change in climate could result in increases in wheat yield. _  Result  _  Comparison with literature

The authors are saying that their results show that climate change will have a significant effect on wheat production. Then, they are saying that there are some papers in the literature that are in agreement with their findings. However, there are also many papers in the literature that disagree with their findings. This is very important. Your discussion should be two-sided, not one-sided. You should not ignore the literature that doesn’t corroborate your findings.

3.4. An example of research implications in discussion

The next step is to explain to your readers how your findings will benefit society and the research community. You have to clearly explain the value of your work to your readers. Here is a discussion example where authors explain the implications of their research.

The results contribute insights with regard to the management of wildfire events using artificial intelligence. One could easily argue that the obvious practical implication of this study is that it proposes utilizing cloud-based machine vision to detect wildfires in real-time, even before the first responders receive emergency calls. _  Your finding  _  Implications of your finding

In this paper, the authors are saying that their findings indicate that Artificial intelligence can be used to effectively manage wildfire events. Then, they are talking about the practical implications of their study. They are saying that their work has proven that machine learning can be used to detect wildfires in real-time. This is a great practical application and can save thousands of lives. As you can see, after reading this passage, you can immediately understand the value and significance of the work.

3.5. An example of limitations in discussion

It is very important that you discuss the limitations of your study. Limitations are flaws and shortcomings of your study. You have to tell your readers how your limitations might influence the outcomes and conclusions of your research. Most studies will have some form of limitation. So be honest and don’t hide your limitations. In reality, your readers and reviewers will be impressed with your paper if you are upfront about your limitations. 

Study design and small sample size are important limitations. This could have led to an overestimation of the effect. Future research should reconfirm these findings by conducting larger-scale studies. _  Limitation  _  How it might affect the results?  _   How to fix the limitation?

Here is a discussion example where the author talks about study limitations. The authors are saying that the main limitations of the study are the small sample size and weak study design. Then they explain how this might have affected their results. They are saying that it is possible that they are overestimating the actual effect they are measuring. Then finally they are telling the readers that more studies with larger sample sizes should be conducted to reconfirm the findings.

As you can see, the authors are clearly explaining three things here:

3.6. An example of future work in discussion

It is important to remember not to end your paper with limitations. Finish your paper on a positive note by telling your readers about the benefits of your research and possible future directions. Here is a discussion example where the author talks about future work.

Our study highlights useful insights about the potential of biomass as a renewable energy source. Future research can extend this research in several ways, including research on how to tackle challenges that hinder the sustainability of renewable energy sources towards climate change mitigation, such as market failures, lack of information and access to raw materials.   _  Benefits of your work  _   Future work

The authors are starting the final paragraph of the discussion section by highlighting the benefit of their work which is the use of biomass as a renewable source of energy. Then they talk about future research. They are saying that future research can focus on how to improve the sustainability of biomass production. This is a very good example of how to finish the discussion section of your paper on a positive note.

4. Frequently Asked Questions

Sometimes you will have negative or unexpected results in your paper. You have to talk about it in your discussion section. A lot of students find it difficult to write this part. The best way to handle this situation is not to look at results as either positive or negative. A result is a result, and you will always have something important and interesting to say about your findings. Just spend some time investigating what might have caused this result and tell your readers about it.

You must talk about the limitations of your work in the discussion section of the paper. One of the important qualities that the scientific community expects from a researcher is honesty and admitting when they have made a mistake. The important trick you have to learn while presenting your limitations is to present them in a constructive way rather than being too negative about them.  You must try to use positive language even when you are talking about major limitations of your work. 

If you have something exciting to say about your results or found something new that nobody else has found before, then, don’t be modest and use flat language when presenting this in the discussion. Use words like ‘break through’, ‘indisputable evidence’, ‘exciting proposition’ to increase the impact of your findings.

Important thing to remember is not to overstate your findings. If you found something really interesting but are not 100% sure, you must not mislead your readers. The best way to do this will be to use words like ‘it appears’ and ‘it seems’. This will tell the readers that there is a slight possibility that you might be wrong.

Similar Posts

Figures and Tables in Research Papers – Tips and Examples

Figures and Tables in Research Papers – Tips and Examples

In this blog, we will look at best practices for presenting tables and figures in your research paper.

Critical Literature Review : How to Critique a Research Article?

Critical Literature Review : How to Critique a Research Article?

In this blog, we will look at how to use constructive language when critiquing other’s work in your research paper.

Introduction Paragraph Examples and Writing Tips

Introduction Paragraph Examples and Writing Tips

In this blog, we will go through a few introduction paragraph examples and understand how to construct a great introduction paragraph for your research paper.

Materials and Methods Examples and Writing Tips

Materials and Methods Examples and Writing Tips

In this blog, we will go through many materials and methods examples and understand how to write a clear and concise method section for your research paper.

3 Costly Mistakes to Avoid in the Research Introduction

3 Costly Mistakes to Avoid in the Research Introduction

In this blog, we will discuss three common mistakes that beginner writers make while writing the research paper introduction.

Technical Terms, Notations, and Scientific Jargon in Research Papers

Technical Terms, Notations, and Scientific Jargon in Research Papers

In this blog, we will teach you how to use specialized terminology in your research papers with some practical examples.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • 5 Share Facebook
  • 7 Share Twitter
  • 5 Share LinkedIn
  • 10 Share Email

sample discussion section of a research paper

Grad Coach

How To Write The Discussion Chapter

A Simple Explainer With Examples + Free Template

By: Jenna Crossley (PhD) | Reviewed By: Dr. Eunice Rautenbach | August 2021

If you’re reading this, chances are you’ve reached the discussion chapter of your thesis or dissertation and are looking for a bit of guidance. Well, you’ve come to the right place ! In this post, we’ll unpack and demystify the typical discussion chapter in straightforward, easy to understand language, with loads of examples .

Overview: The Discussion Chapter

  • What  the discussion chapter is
  • What to include in your discussion
  • How to write up your discussion
  • A few tips and tricks to help you along the way
  • Free discussion template

What (exactly) is the discussion chapter?

The discussion chapter is where you interpret and explain your results within your thesis or dissertation. This contrasts with the results chapter, where you merely present and describe the analysis findings (whether qualitative or quantitative ). In the discussion chapter, you elaborate on and evaluate your research findings, and discuss the significance and implications of your results .

In this chapter, you’ll situate your research findings in terms of your research questions or hypotheses and tie them back to previous studies and literature (which you would have covered in your literature review chapter). You’ll also have a look at how relevant and/or significant your findings are to your field of research, and you’ll argue for the conclusions that you draw from your analysis. Simply put, the discussion chapter is there for you to interact with and explain your research findings in a thorough and coherent manner.

Free template for discussion or thesis discussion section

What should I include in the discussion chapter?

First things first: in some studies, the results and discussion chapter are combined into one chapter .  This depends on the type of study you conducted (i.e., the nature of the study and methodology adopted), as well as the standards set by the university.  So, check in with your university regarding their norms and expectations before getting started. In this post, we’ll treat the two chapters as separate, as this is most common.

Basically, your discussion chapter should analyse , explore the meaning and identify the importance of the data you presented in your results chapter. In the discussion chapter, you’ll give your results some form of meaning by evaluating and interpreting them. This will help answer your research questions, achieve your research aims and support your overall conclusion (s). Therefore, you discussion chapter should focus on findings that are directly connected to your research aims and questions. Don’t waste precious time and word count on findings that are not central to the purpose of your research project.

As this chapter is a reflection of your results chapter, it’s vital that you don’t report any new findings . In other words, you can’t present claims here if you didn’t present the relevant data in the results chapter first.  So, make sure that for every discussion point you raise in this chapter, you’ve covered the respective data analysis in the results chapter. If you haven’t, you’ll need to go back and adjust your results chapter accordingly.

If you’re struggling to get started, try writing down a bullet point list everything you found in your results chapter. From this, you can make a list of everything you need to cover in your discussion chapter. Also, make sure you revisit your research questions or hypotheses and incorporate the relevant discussion to address these.  This will also help you to see how you can structure your chapter logically.

Need a helping hand?

sample discussion section of a research paper

How to write the discussion chapter

Now that you’ve got a clear idea of what the discussion chapter is and what it needs to include, let’s look at how you can go about structuring this critically important chapter. Broadly speaking, there are six core components that need to be included, and these can be treated as steps in the chapter writing process.

Step 1: Restate your research problem and research questions

The first step in writing up your discussion chapter is to remind your reader of your research problem , as well as your research aim(s) and research questions . If you have hypotheses, you can also briefly mention these. This “reminder” is very important because, after reading dozens of pages, the reader may have forgotten the original point of your research or been swayed in another direction. It’s also likely that some readers skip straight to your discussion chapter from the introduction chapter , so make sure that your research aims and research questions are clear.

Step 2: Summarise your key findings

Next, you’ll want to summarise your key findings from your results chapter. This may look different for qualitative and quantitative research , where qualitative research may report on themes and relationships, whereas quantitative research may touch on correlations and causal relationships. Regardless of the methodology, in this section you need to highlight the overall key findings in relation to your research questions.

Typically, this section only requires one or two paragraphs , depending on how many research questions you have. Aim to be concise here, as you will unpack these findings in more detail later in the chapter. For now, a few lines that directly address your research questions are all that you need.

Some examples of the kind of language you’d use here include:

  • The data suggest that…
  • The data support/oppose the theory that…
  • The analysis identifies…

These are purely examples. What you present here will be completely dependent on your original research questions, so make sure that you are led by them .

It depends

Step 3: Interpret your results

Once you’ve restated your research problem and research question(s) and briefly presented your key findings, you can unpack your findings by interpreting your results. Remember: only include what you reported in your results section – don’t introduce new information.

From a structural perspective, it can be a wise approach to follow a similar structure in this chapter as you did in your results chapter. This would help improve readability and make it easier for your reader to follow your arguments. For example, if you structured you results discussion by qualitative themes, it may make sense to do the same here.

Alternatively, you may structure this chapter by research questions, or based on an overarching theoretical framework that your study revolved around. Every study is different, so you’ll need to assess what structure works best for you.

When interpreting your results, you’ll want to assess how your findings compare to those of the existing research (from your literature review chapter). Even if your findings contrast with the existing research, you need to include these in your discussion. In fact, those contrasts are often the most interesting findings . In this case, you’d want to think about why you didn’t find what you were expecting in your data and what the significance of this contrast is.

Here are a few questions to help guide your discussion:

  • How do your results relate with those of previous studies ?
  • If you get results that differ from those of previous studies, why may this be the case?
  • What do your results contribute to your field of research?
  • What other explanations could there be for your findings?

When interpreting your findings, be careful not to draw conclusions that aren’t substantiated . Every claim you make needs to be backed up with evidence or findings from the data (and that data needs to be presented in the previous chapter – results). This can look different for different studies; qualitative data may require quotes as evidence, whereas quantitative data would use statistical methods and tests. Whatever the case, every claim you make needs to be strongly backed up.

Step 4: Acknowledge the limitations of your study

The fourth step in writing up your discussion chapter is to acknowledge the limitations of the study. These limitations can cover any part of your study , from the scope or theoretical basis to the analysis method(s) or sample. For example, you may find that you collected data from a very small sample with unique characteristics, which would mean that you are unable to generalise your results to the broader population.

For some students, discussing the limitations of their work can feel a little bit self-defeating . This is a misconception, as a core indicator of high-quality research is its ability to accurately identify its weaknesses. In other words, accurately stating the limitations of your work is a strength, not a weakness . All that said, be careful not to undermine your own research. Tell the reader what limitations exist and what improvements could be made, but also remind them of the value of your study despite its limitations.

Step 5: Make recommendations for implementation and future research

Now that you’ve unpacked your findings and acknowledge the limitations thereof, the next thing you’ll need to do is reflect on your study in terms of two factors:

  • The practical application of your findings
  • Suggestions for future research

The first thing to discuss is how your findings can be used in the real world – in other words, what contribution can they make to the field or industry? Where are these contributions applicable, how and why? For example, if your research is on communication in health settings, in what ways can your findings be applied to the context of a hospital or medical clinic? Make sure that you spell this out for your reader in practical terms, but also be realistic and make sure that any applications are feasible.

The next discussion point is the opportunity for future research . In other words, how can other studies build on what you’ve found and also improve the findings by overcoming some of the limitations in your study (which you discussed a little earlier). In doing this, you’ll want to investigate whether your results fit in with findings of previous research, and if not, why this may be the case. For example, are there any factors that you didn’t consider in your study? What future research can be done to remedy this? When you write up your suggestions, make sure that you don’t just say that more research is needed on the topic, also comment on how the research can build on your study.

Step 6: Provide a concluding summary

Finally, you’ve reached your final stretch. In this section, you’ll want to provide a brief recap of the key findings – in other words, the findings that directly address your research questions . Basically, your conclusion should tell the reader what your study has found, and what they need to take away from reading your report.

When writing up your concluding summary, bear in mind that some readers may skip straight to this section from the beginning of the chapter.  So, make sure that this section flows well from and has a strong connection to the opening section of the chapter.

Tips and tricks for an A-grade discussion chapter

Now that you know what the discussion chapter is , what to include and exclude , and how to structure it , here are some tips and suggestions to help you craft a quality discussion chapter.

  • When you write up your discussion chapter, make sure that you keep it consistent with your introduction chapter , as some readers will skip from the introduction chapter directly to the discussion chapter. Your discussion should use the same tense as your introduction, and it should also make use of the same key terms.
  • Don’t make assumptions about your readers. As a writer, you have hands-on experience with the data and so it can be easy to present it in an over-simplified manner. Make sure that you spell out your findings and interpretations for the intelligent layman.
  • Have a look at other theses and dissertations from your institution, especially the discussion sections. This will help you to understand the standards and conventions of your university, and you’ll also get a good idea of how others have structured their discussion chapters. You can also check out our chapter template .
  • Avoid using absolute terms such as “These results prove that…”, rather make use of terms such as “suggest” or “indicate”, where you could say, “These results suggest that…” or “These results indicate…”. It is highly unlikely that a dissertation or thesis will scientifically prove something (due to a variety of resource constraints), so be humble in your language.
  • Use well-structured and consistently formatted headings to ensure that your reader can easily navigate between sections, and so that your chapter flows logically and coherently.

If you have any questions or thoughts regarding this post, feel free to leave a comment below. Also, if you’re looking for one-on-one help with your discussion chapter (or thesis in general), consider booking a free consultation with one of our highly experienced Grad Coaches to discuss how we can help you.

sample discussion section of a research paper

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

How to write the conclusion chapter of a dissertation

36 Comments

Abbie

Thank you this is helpful!

Sai AKO

This is very helpful to me… Thanks a lot for sharing this with us 😊

Nts'eoane Sepanya-Molefi

This has been very helpful indeed. Thank you.

Cheryl

This is actually really helpful, I just stumbled upon it. Very happy that I found it, thank you.

Solomon

Me too! I was kinda lost on how to approach my discussion chapter. How helpful! Thanks a lot!

Wongibe Dieudonne

This is really good and explicit. Thanks

Robin MooreZaid

Thank you, this blog has been such a help.

John Amaka

Thank you. This is very helpful.

Syed Firoz Ahmad

Dear sir/madame

Thanks a lot for this helpful blog. Really, it supported me in writing my discussion chapter while I was totally unaware about its structure and method of writing.

With regards

Syed Firoz Ahmad PhD, Research Scholar

Kwasi Tonge

I agree so much. This blog was god sent. It assisted me so much while I was totally clueless about the context and the know-how. Now I am fully aware of what I am to do and how I am to do it.

Albert Mitugo

Thanks! This is helpful!

Abduljabbar Alsoudani

thanks alot for this informative website

Sudesh Chinthaka

Dear Sir/Madam,

Truly, your article was much benefited when i structured my discussion chapter.

Thank you very much!!!

Nann Yin Yin Moe

This is helpful for me in writing my research discussion component. I have to copy this text on Microsoft word cause of my weakness that I cannot be able to read the text on screen a long time. So many thanks for this articles.

Eunice Mulenga

This was helpful

Leo Simango

Thanks Jenna, well explained.

Poornima

Thank you! This is super helpful.

William M. Kapambwe

Thanks very much. I have appreciated the six steps on writing the Discussion chapter which are (i) Restating the research problem and questions (ii) Summarising the key findings (iii) Interpreting the results linked to relating to previous results in positive and negative ways; explaining whay different or same and contribution to field of research and expalnation of findings (iv) Acknowledgeing limitations (v) Recommendations for implementation and future resaerch and finally (vi) Providing a conscluding summary

My two questions are: 1. On step 1 and 2 can it be the overall or you restate and sumamrise on each findings based on the reaerch question? 2. On 4 and 5 do you do the acknowlledgement , recommendations on each research finding or overall. This is not clear from your expalanattion.

Please respond.

Ahmed

This post is very useful. I’m wondering whether practical implications must be introduced in the Discussion section or in the Conclusion section?

Lisha

Sigh, I never knew a 20 min video could have literally save my life like this. I found this at the right time!!!! Everything I need to know in one video thanks a mil ! OMGG and that 6 step!!!!!! was the cherry on top the cake!!!!!!!!!

Colbey mwenda

Thanks alot.., I have gained much

Obinna NJOKU

This piece is very helpful on how to go about my discussion section. I can always recommend GradCoach research guides for colleagues.

Mary Kulabako

Many thanks for this resource. It has been very helpful to me. I was finding it hard to even write the first sentence. Much appreciated.

vera

Thanks so much. Very helpful to know what is included in the discussion section

ahmad yassine

this was a very helpful and useful information

Md Moniruzzaman

This is very helpful. Very very helpful. Thanks for sharing this online!

Salma

it is very helpfull article, and i will recommend it to my fellow students. Thank you.

Mohammed Kwarah Tal

Superlative! More grease to your elbows.

Majani

Powerful, thank you for sharing.

Uno

Wow! Just wow! God bless the day I stumbled upon you guys’ YouTube videos! It’s been truly life changing and anxiety about my report that is due in less than a month has subsided significantly!

Joseph Nkitseng

Simplified explanation. Well done.

LE Sibeko

The presentation is enlightening. Thank you very much.

Angela

Thanks for the support and guidance

Beena

This has been a great help to me and thank you do much

Yiting W.

I second that “it is highly unlikely that a dissertation or thesis will scientifically prove something”; although, could you enlighten us on that comment and elaborate more please?

Derek Jansen

Sure, no problem.

Scientific proof is generally considered a very strong assertion that something is definitively and universally true. In most scientific disciplines, especially within the realms of natural and social sciences, absolute proof is very rare. Instead, researchers aim to provide evidence that supports or rejects hypotheses. This evidence increases or decreases the likelihood that a particular theory is correct, but it rarely proves something in the absolute sense.

Dissertations and theses, as substantial as they are, typically focus on exploring a specific question or problem within a larger field of study. They contribute to a broader conversation and body of knowledge. The aim is often to provide detailed insight, extend understanding, and suggest directions for further research rather than to offer definitive proof. These academic works are part of a cumulative process of knowledge building where each piece of research connects with others to gradually enhance our understanding of complex phenomena.

Furthermore, the rigorous nature of scientific inquiry involves continuous testing, validation, and potential refutation of ideas. What might be considered a “proof” at one point can later be challenged by new evidence or alternative interpretations. Therefore, the language of “proof” is cautiously used in academic circles to maintain scientific integrity and humility.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

UCI Libraries Mobile Site

  • Langson Library
  • Science Library
  • Grunigen Medical Library
  • Law Library
  • Connect From Off-Campus
  • Accessibility
  • Gateway Study Center

Libaries home page

Email this link

Writing a scientific paper.

  • Writing a lab report
  • INTRODUCTION

Writing a "good" discussion section

"discussion and conclusions checklist" from: how to write a good scientific paper. chris a. mack. spie. 2018., peer review.

  • LITERATURE CITED
  • Bibliography of guides to scientific writing and presenting
  • Presentations
  • Lab Report Writing Guides on the Web

This is is usually the hardest section to write. You are trying to bring out the true meaning of your data without being too long. Do not use words to conceal your facts or reasoning. Also do not repeat your results, this is a discussion.

  • Present principles, relationships and generalizations shown by the results
  • Point out exceptions or lack of correlations. Define why you think this is so.
  • Show how your results agree or disagree with previously published works
  • Discuss the theoretical implications of your work as well as practical applications
  • State your conclusions clearly. Summarize your evidence for each conclusion.
  • Discuss the significance of the results
  •  Evidence does not explain itself; the results must be presented and then explained.
  • Typical stages in the discussion: summarizing the results, discussing whether results are expected or unexpected, comparing these results to previous work, interpreting and explaining the results (often by comparison to a theory or model), and hypothesizing about their generality.
  • Discuss any problems or shortcomings encountered during the course of the work.
  • Discuss possible alternate explanations for the results.
  • Avoid: presenting results that are never discussed; presenting discussion that does not relate to any of the results; presenting results and discussion in chronological order rather than logical order; ignoring results that do not support the conclusions; drawing conclusions from results without logical arguments to back them up. 

CONCLUSIONS

  • Provide a very brief summary of the Results and Discussion.
  • Emphasize the implications of the findings, explaining how the work is significant and providing the key message(s) the author wishes to convey.
  • Provide the most general claims that can be supported by the evidence.
  • Provide a future perspective on the work.
  • Avoid: repeating the abstract; repeating background information from the Introduction; introducing new evidence or new arguments not found in the Results and Discussion; repeating the arguments made in the Results and Discussion; failing to address all of the research questions set out in the Introduction. 

WHAT HAPPENS AFTER I COMPLETE MY PAPER?

 The peer review process is the quality control step in the publication of ideas.  Papers that are submitted to a journal for publication are sent out to several scientists (peers) who look carefully at the paper to see if it is "good science".  These reviewers then recommend to the editor of a journal whether or not a paper should be published. Most journals have publication guidelines. Ask for them and follow them exactly.    Peer reviewers examine the soundness of the materials and methods section.  Are the materials and methods used written clearly enough for another scientist to reproduce the experiment?  Other areas they look at are: originality of research, significance of research question studied, soundness of the discussion and interpretation, correct spelling and use of technical terms, and length of the article.

  • << Previous: RESULTS
  • Next: LITERATURE CITED >>
  • Last Updated: Aug 4, 2023 9:33 AM
  • URL: https://guides.lib.uci.edu/scientificwriting

Off-campus? Please use the Software VPN and choose the group UCIFull to access licensed content. For more information, please Click here

Software VPN is not available for guests, so they may not have access to some content when connecting from off-campus.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • BMC Med Res Methodol

Logo of bmcmrm

Writing a discussion section: how to integrate substantive and statistical expertise

Michael höfler.

1 Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany

5 Chair of Clinical Psychology and Behavioural Neuroscience, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany

2 Behavioral Epidemiology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany

Sebastian Trautmann

Robert miller.

3 Faculty of Psychology, Technische Universität Dresden, Dresden, Germany

4 Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden

Associated Data

Not applicable.

When discussing results medical research articles often tear substantive and statistical (methodical) contributions apart, just as if both were independent. Consequently, reasoning on bias tends to be vague, unclear and superficial. This can lead to over-generalized, too narrow and misleading conclusions, especially for causal research questions.

To get the best possible conclusion, substantive and statistical expertise have to be integrated on the basis of reasonable assumptions. While statistics should raise questions on the mechanisms that have presumably created the data, substantive knowledge should answer them. Building on the related principle of Bayesian thinking, we make seven specific and four general proposals on writing a discussion section.

Misinterpretation could be reduced if authors explicitly discussed what can be concluded under which assumptions. Informed on the resulting conditional conclusions other researchers may, according to their knowledge and beliefs, follow a particular conclusion or, based on other conditions, arrive at another one. This could foster both an improved debate and a better understanding of the mechanisms behind the data and should therefore enable researchers to better address bias in future studies.

After a research article has presented the substantive background, the methods and the results, the discussion section assesses the validity of results and draws conclusions by interpreting them. The discussion puts the results into a broader context and reflects their implications for theoretical (e.g. etiological) and practical (e.g. interventional) purposes. As such, the discussion contains an article’s last words the reader is left with.

Common recommendations for the discussion section include general proposals for writing [ 1 ] and structuring (e.g. with a paragraph on a study’s strengths and weaknesses) [ 2 ], to avoid common statistical pitfalls (like misinterpreting non-significant findings as true null results) [ 3 ] and to “go beyond the data” when interpreting results [ 4 ]. Note that the latter includes much more than comparing an article’s results with the literature. If results and literature are consistent, this might be due to shared bias only. If they are not consistent, the question arises why inconsistency occurs – maybe because of bias acting differently across studies [ 5 – 7 ]. Recommendations like the CONSORT checklist do well in demanding all quantitative information on design, participation, compliance etc. to be reported in the methods and results section and “addressing sources of potential bias”, “limitations” and “considering other relevant evidence” in the discussion [ 8 , 9 ]. Similarly, the STROBE checklist for epidemiological research demands “a cautious overall interpretation of results” and "discussing the generalizability (external validity)" [ 10 , 11 ]. However, these guidelines do not clarify how to deal with the complex bias issue, and how to get to and report conclusions.

Consequently, suggestions on writing a discussion often remain vague by hardly addressing the role of the assumptions that have (often implicitly) been made when designing a study, analyzing the data and interpreting the results. Such assumptions involve mechanisms that have created the data and are related to sampling, measurement and treatment assignment (in observational studies common causes of factor and outcome) and, as a consequence, the bias this may produce [ 5 , 6 ]. They determine whether a result allows only an associational or a causal conclusion. Causal conclusions, if true, are of much higher relevance for etiology, prevention and intervention. However, they require much stronger assumptions. These have to be fully explicit and, therewith, essential part of the debate since they always involve subjectivity. Subjectivity is unavoidable because the mechanisms behind the data can never be fully estimated from the data themselves [ 12 ].

In this article, we argue that the conjunction of substantive and statistical (methodical) knowledge in the verbal integration of results and beliefs on mechanisms can be greatly improved in (medical) research papers. We illustrate this through the personal roles that a statistician (i.e. methods expert) and a substantive researcher should take. Doing so, we neither claim that usually just two people write a discussion, nor that one person lacks the knowledge of the other, nor that there were truly no researchers that have both kinds of expertise. As a metaphor, the division of these two roles into two persons describes the necessary integration of knowledge via the mode of a dialogue. Verbally, it addresses the finding of increased specialization of different study contributors in biomedical research. This has teared apart the two processes of statistical compilation of results and their verbal integration [ 13 ]. When this happens a statistician alone is limited to a study’s conditions (sampled population, experimental settings etc.), because he or she is unaware of the conditions’ generalizability. On the other hand, a A substantive expert alone is prone to over-generalize because he or she is not aware of the (mathematical) prerequisites for an interpretation.

The article addresses both (medical) researchers educated in basic statistics and research methods and statisticians who cooperate with them. Throughout the paper we exemplify our arguments with the finding of an association in a cross-tabulation between a binary X (factor) and a binary Y (outcome): those who are exposed to or treated with X have a statistically significantly elevated risk for Y as compared to the non-exposed or not (or otherwise) treated (for instance via the chi-squared independence test or logistic regression). Findings like this are frequent and raise the question which more profound conclusion is valid under what assumptions. Until some decades ago, statistics has largely avoided the related topic of causality and instead limited itself on describing observed distributions (here a two-by-two table between D = depression and LC = lung cancer) with well-fitting models.

We illustrate our arguments with the concrete example of the association found between the factor depression (D) and the outcome lung cancer (LC) [ 14 ]. Yet very different mechanisms could have produced such an association [ 7 ], and assumptions on these lead to the following fundamentally different conclusions (Fig. ​ (Fig.1 1 ):

  • D causes LC (e.g. because smoking might constitute “self-medication” of depression symptoms)
  • LC causes D (e.g. because LC patients are demoralized by their diagnosis)
  • D and LC cause each other (e.g. because the arguments in both a. and b. apply)
  • D and LC are the causal consequence of the same factor(s) (e.g. poor health behaviors - HB)
  • D and LC only share measurement error (e.g. because a fraction of individuals that has either depression or lung cancer denies both in self-report measures).

An external file that holds a picture, illustration, etc.
Object name is 12874_2018_490_Fig1_HTML.jpg

Different conclusions about an association between D and LC. a D causes LC, b LC causes B, c D and LC cause each other, d D and LC are associated because of a shared factor (HB), e D and LC are associated because they have correlated errors

Note that we use the example purely for illustrative purposes. We do not make substantive claims on what of a. through e. is true but show how one should reflect on mechanisms in order to find the right answer. Besides, we do not consider research on the D-LC relation apart from the finding of association [ 14 ].

Assessing which of a. through e. truly applies requires substantive assumptions on mechanisms: the temporal order of D and LC (a causal effect requires that the cause occurs before the effect), shared factors, selection processes and measurement error. Questions on related mechanisms have to be brought up by statistical consideration, while substantive reasoning has to address them. Together this yields provisional assumptions for inferring that are subject to readers’ substantive consideration and refinement. In general, the integration of prior beliefs (anything beyond the data a conclusion depends on) and the results from the data themselves is formalized by Bayesian statistics [ 15 , 16 ]. This is beyond the scope of this article, still we argue that Bayesian thinking should govern the process of drawing conclusions.

Building on this idea, we provide seven specific and four general recommendations for the cooperative process of writing a discussion. The recommendations are intended to be suggestions rather than rules. They should be subject to further refinement and adjustment to specific requirements in different fields of medical and other research. Note that the order of the points is not meant to structure a discussion’s writing (besides 1.).

Recommendations for writing a discussion section

Specific recommendations.

Consider the example on the association between D and LC. Rather than starting with an in-depth (causal) interpretation a finding should firstly be taken as what it allows inferring without doubt: Under the usual assumptions that a statistical model makes (e.g. random sampling, independence or certain correlation structure between observations [ 17 ]), the association indicates that D (strictly speaking: measuring D) predicts an elevated LC risk (strictly speaking: measuring LC) in the population that one has managed to sample (source population). Assume that the sample has been randomly drawn from primary care settings. In this case the association is useful to recommend medical doctors to better look at an individual’s LC risk in case of D. If the association has been adjusted for age and gender (conveniently through a regression model), the conclusion modifies to: If the doctor knows a patient’s age and gender (what should always be the case) D has additional value in predicting an elevated LC risk.

In the above example, a substantive researcher might want to conclude that D and LC are associated in a general population instead of just inferring to patients in primary care settings (a.). Another researcher might even take the finding as evidence for D being a causal factor in the etiology of LC, meaning that prevention of D could reduce the incidence rate of LC (in whatever target population) (b.). In both cases, the substantive researcher should insist on assessing the desired interpretation that goes beyond the data [ 4 ], but the statistician immediately needs to bring up the next point.

The explanation of all the assumptions that lead from a data result to a conclusion enables a reader to assess whether he or she agrees with the authors’ inference or not. These conditions, however, often remain incomplete or unclear, in which case the reader can hardly assess whether he or she follows a path of argumentation and, thus, shares the conclusion this path leads to.

Consider conclusion a. and suppose that, instead of representative sampling in a general population (e.g. all U.S. citizens aged 18 or above), the investigators were only able to sample in primary care settings. Extrapolating the results to another population than the source population requires what is called “external validity”, “transportability” or the absence of “selection bias” [ 18 , 19 ]. No such bias occurs if the parameter of interest is equal in the source and the target population. Note that this is a weaker condition than the common belief that the sample must represent the target population in everything . If the parameter of interest is the difference in risk for LC between cases and non-cases of D, the condition translates into: the risk difference must be equal in target and source population.

For the causal conclusion b., however, sufficient assumptions are very strict. In an RCT, the conclusion is valid under random sampling from the target population, random allocation of X, perfect compliance in X, complete participation and no measurement error in outcome (for details see [ 20 ]). In practice, on the other hand, the derivations from such conditions might sometimes be modest what may produce little bias only. For instance, non-compliance in a specific drug intake (treatment) might occur only in a few individuals to little extent through a random process (e.g. sickness of a nurse being responsible for drug dispense) and yield just small (downward) bias [ 5 ]. The conclusion of downward bias might also be justified if non-compliance does not cause anything that has a larger effect on a Y than the drug itself. Another researcher, however, could believe that non-compliance leads to taking a more effective, alternative treatment. He or she could infer upward bias instead if well-informed on the line of argument.

In practice, researchers frequently use causal language yet without mentioning any assumptions. This does not imply that they truly have a causal effect in mind, often causal and associational wordings are carelessly used in synonymous way. For example, concluding “depression increases the risk of lung cancer” constitutes already causal wording because it implies that a change in the depression status would change the cancer risk. Associational language like “lung cancer risk is elevated if depression occurs”, however, would allow for an elevated lung cancer risk in depression cases just because LC and D share some causes (“inducing” or “removing” depression would not change the cancer risk here).

Often, it is unclear where the path of argumentation from assumptions to a conclusion leads when alternative assumptions are made. Consider again bias due to selection. A different effect in target and source population occurs if effect-modifying variables distribute differently in both populations. Accordingly, the statistician should ask which variables influence the effect of interest, and whether these can be assumed to distribute equally in the source population and the target population. The substantive researcher might answer that the causal risk difference between D and LC likely increases with age. Given that this is true, and if elder individuals have been oversampled (e.g. because elderly are over-represented in primary care settings), both together would conclude that sampling has led to over-estimation (despite other factors, Fig. ​ Fig.2 2 ).

An external file that holds a picture, illustration, etc.
Object name is 12874_2018_490_Fig2_HTML.jpg

If higher age is related to a larger effect (risk difference) of D on LC, a larger effect estimate is expected in an elder sample

However, the statistician might add, if effect modification is weak, or the difference in the age distributions is modest (e.g. mean 54 vs. 52 years), selection is unlikely to have produced large (here: upward) bias. In turn, another substantive researcher, who reads the resulting discussion, might instead assume a decrease of effect with increasing age and thus infer downward bias.

In practice, researchers should be extremely sensitive for bias due to selection if a sample has been drawn conditionally on a common consequence of factor and outcome or a variable associated with such a consequence [19 and references therein]. For instance, hospitalization might be influenced by both D and LC, and thus sampling from hospitals might introduce a false association or change an association’s sign; particularly D and LC may appear to be negatively associated although the association is positive in the general population (Fig. ​ (Fig.3 3 ).

An external file that holds a picture, illustration, etc.
Object name is 12874_2018_490_Fig3_HTML.jpg

If hospitalization (H) is a common cause of D and LC, sampling conditionally on H can introduce a spurious association between D and LC ("conditioning on a collider")

Usually, only some kinds of bias are discussed, while the consequences of others are ignored [ 5 ]. Besides selection the main sources of bias are often measurement and confounding. If one is only interested in association, confounding is irrelevant. For causal conclusions, however, assumptions on all three kinds of bias are necessary.

Measurement error means that the measurement of a factor and/or outcome deviates from the true value, at least in some individuals. Bias due to measurement is known under many other terms that describe the reasons why such error occurs (e.g. “recall bias” and “reporting bias”). In contrast to conventional wisdom, measurement error does not always bias association and effect estimates downwards [ 5 , 6 ]. It does, for instance, if only the factor (e.g. depression) is measured with error and the errors occur independently from the outcome (e.g. lung cancer), or vice versa (“non-differential misclassification”) [22 and references therein]. However, many lung cancer cases might falsely report depression symptoms (e.g. to express need for care). Such false positives (non-cases of depression classified as cases) may also occur in non-cases of lung cancer but to a lesser extent (a special case of “differential misclassification”). Here, bias might be upward as well. Importantly, false positives cause larger bias than false negatives (non-cases of depression falsely classified as depression cases) as long as the relative frequency of a factor is lower than 50% [ 21 ]. Therefore, they should receive more attention in discussion. If measurement error occurs in depression and lung cancer, the direction of bias also depends on the correlation between both errors [ 21 ].

Note that what is in line with common standards of “good” measurement (e.g. a Kappa value measuring validity or reliability of 0.7) might anyway produce large bias. This applies to estimates of prevalence, association and effect. The reason is that while indices of measurement are one-dimensional, bias depends on two parameters (sensitivity and specificity) [ 21 , 22 ]. Moreover, estimates of such indices are often extrapolated to different kinds of populations (typically from a clinical to general population), what may be inadequate. Note that the different kinds of bias often interact, e.g. bias due to measurement might depend on selection (e.g. measurement error might differ between a clinical and a general population) [ 5 , 6 ].

Assessment of bias due to confounding variables (roughly speaking: common causes of factor and outcome) requires assumptions on the entire system of variables that affect both factor and outcome. For example, D and LC might share several causes such as stressful life events or socioeconomic status. If these influence D and LC with the same effect direction, this leads to overestimation, otherwise (different effect directions) the causal effect is underestimated. In the medical field, many unfavorable conditions may be positively related. If this holds true for all common factors of D and LC, upward bias can be assumed. However, not all confounders have to be taken into account. Within the framework of “causal graphs”, the “backdoor criterion” [ 7 ] provides a graphical rule for sets of confounders to be sufficient when adjusted for. Practically, such a causal graph must include all factors that directly or indirectly affect both D and LC. Then, adjustment for a set of confounders that meets the “backdoor criterion” in the graph completely removes bias due to confounding. In the example of Fig. ​ Fig.4 4 it is sufficient to adjust for Z 1 and Z 2 because this “blocks” all paths that otherwise lead backwards from D to LC. Note that fully eliminating bias due to confounding also requires that the confounders have been collected without measurement error [ 5 , 6 , 23 ]. Therefore, the advice is always to concede at least some “residual” bias and reflect on the direction this might have (could be downward if such error is not stronger related to D and LC than a confounder itself).

An external file that holds a picture, illustration, etc.
Object name is 12874_2018_490_Fig4_HTML.jpg

Causal graph for the effect of D on LC and confounders Z 1 , Z 2 and Z 3

Whereas the statistician should pinpoint to the mathematical insight of the backdoor criterion, its application requires profound substantive input and literature review. Of course, there are numerous relevant factors in the medical field. Hence, one should practically focus on those with the highest prevalence (a very seldom factor can hardly cause large bias) and large assumed effects on both X and Y.

If knowledge on any of the three kinds of bias is poor or very uncertain, researchers should admit that this adds uncertainty in a conclusion: systematic error on top of random error. In the Bayesian framework, quantitative bias analysis formalizes this through the result of larger variance in an estimate. Technically, this additional variance is introduced via the variances of distributions assigned to “bias parameters”; for instance a misclassification probability (e.g. classifying a true depression case as non-case) or the prevalence of a binary confounder and its effects on X and Y. Of course, bias analysis also changes point estimates (hopefully reducing bias considerably). Note that conventional frequentist analysis, as regarded from the Bayesian perspective, assumes that all bias parameters were zero with a probability of one [ 5 , 6 , 23 ]. The only exceptions (bias addressed in conventional analyses) are adjustment on variables to hopefully reduce bias due to confounding and weighting the individuals (according to variables related to participation) to take into account bias due to selection.

If the substantive investigator understands the processes of selection, measurement and confounding only poorly, such strict analysis numerically reveals that little to nothing is known on the effect of X on Y, no matter how large an observed association and a sample (providing small random error) may be [ 5 , 6 , 23 ]). This insight has to be brought up by the statistician. Although such an analysis is complicated, itself very sensitive to how it is conducted [ 5 , 6 ] and rarely done, the Bayesian thinking behind it forces researchers to better understand the processes behind the data. Otherwise, he or she cannot make any assumptions and, in turn, no conclusion on causality.

Usually articles end with statements that only go little further than the always true but never informative statement “more research is needed”. Moreover, larger samples and better measurements are frequently proposed. If an association has been found, a RCT or other interventional study is usually proposed to investigate causality. In our example, this recommendation disregards that: (1) onset of D might have a different effect on LC risk than an intervention against D (the effect of onset cannot be investigated in any interventional study), (2) the effects of onset and intervention concern different populations (those without vs. those with depression), (3) an intervention effect depends on the mode of intervention [ 24 ], and (4) (applying the backdoor criterion) a well-designed observational study may approximatively yield the same result as a randomized study would [ 25 – 27 ]. If the effect of “removing” depression is actually of interest, one could propose an RCT that investigates the effect of treating depression in a strictly defined way and in a strictly defined population (desirably in all who meet the criteria of depression). Ideally, this population is sampled randomly, and non-participants and dropouts are investigated with respect to assumed effect-modifiers (differences in their distributions between participants and non-participants can then be addressed e.g. by weighting [ 27 ]). In a non-randomized study, one should collect variables supposed to meet the backdoor-criterion with the best instruments possible.

General recommendations

Yet when considering 1) through 7); i.e. carefully reflecting on the mechanisms that have created the data, discussions on statistical results can be very misleading, because the basic statistical methods are mis-interpreted or inadequately worded.

A common pitfall is to consider the lack of evidence for the alternative hypothesis (e.g. association between D and LC) as evidence for the null hypothesis (no association). In fact, such inference requires an a-priori calculated sample-size to ensure that the type-two error probability does not exceed a pre-specified limit (typically 20% or 10%, given the other necessary assumptions, e.g. on the true magnitude of association). Otherwise, the type-two error is unknown and in practice often large. This may put a “false negative result” into the scientific public that turns out to be “unreplicable” – what would be falsely interpreted as part of the “replication crisis”. Such results are neither positive nor negative but uninformative . In this case, the wording “there is no evidence for an association” is adequate because it does not claim that there is no association.

Frequently, it remains unclear which hypotheses have been a-priori specified and which have been brought up only after some data analysis. This, of course, is scientific malpractice because it does not enable the readership to assess the random error emerging from explorative data analysis. Accordingly, the variance of results across statistical methods is often misused to filter out the analysis that yields a significant result (“ p -hacking”, [ 28 ]). Pre-planned tests (via writing a grant) leave at least less room for p-hacking because they specify a-priori which analysis is to be conducted.

On the other hand, post-hoc analyses can be extremely useful for identifying unexpected phenomena and creating new hypotheses. Verbalization in the discussion section should therefore sharply separate between conclusions from hypothesis testing and new hypotheses created from data exploration. The distinction is profound, since a newly proposed hypothesis just makes a new claim. Suggesting new hypotheses cannot be wrong, this can only be inefficient if many hypotheses turn out to be wrong. Therefore, we suggest proposing only a limited number of new hypotheses that appear promising to stimulate further research and scientific progress. They are to be confirmed or falsified with future studies. A present discussion, however, should yet explicate the testable predictions a new hypothesis entails, and how a future study should be designed to keep bias in related analyses as small as possible.

Confidence intervals address the problem of reducing results to the dichotomy of significant and non-significant through providing a range of values that are compatible with the data at the given confidence level, usually 95% [ 29 ].

This is also addressed by Bayesian statistics that allows calculating what frequentist p -values are often misinterpreted to be: the probability that the alternative (or null) hypothesis is true [ 17 ]. Moreover, one can calculate how likely it is that the parameter lies within any specified range (e.g. the risk difference being greater than .05, a lower boundary for practical significance) [ 15 , 16 ]. To gain these benefits, one needs to specify how the parameter of interest (e.g. causal risk difference between D and LC) is distributed before inspecting the data. In Bayesian statistics (unlike frequentist statistics) a parameter is a random number that expresses prior beliefs via a “prior distribution”. Such a “prior” is combined with the data result to a “posterior distribution”. This integrates both sources of information.

Note that confidence intervals also can be interpreted from the Bayesian perspective (then called “credibility interval”). This assumes that all parameter values were equally likely (uniformly distributed, strictly speaking) before analyzing the data [ 5 , 6 , 20 ].

Testing just for a non-zero association can only yield evidence for an association deviating from zero. A better indicator for the true impact of an effect/association for clinical, economic, political, or research purposes is its magnitude. If an association between D and LC after adjusting for age and gender has been discovered, then the knowledge of D has additional value in predicting an elevated LC probability beyond age and gender. However, there may be many other factors that stronger predict LC and thus should receive higher priority in a doctor’s assessment. Besides, if an association is small, it may yet be explained by modest (upward) bias. Especially large samples often yield significant results with little practical value. The p -value does not measure strength of association [ 17 ]. For instance, in a large sample, a Pearson correlation between two dimensional variables could equal 0.1 only but with a p -value <.001. A further problem arises if the significance threshold of .05 is weakened post-hoc to allow for “statistical trends” ( p between .05 and .10) because a result has “failed to reach significance” (this wording claims that there is truly an association. If this was known, no research would be necessary).

It is usually the statistician’s job to insist not only on removing the attention from pure statistical significance to confidence intervals or even Bayesian interpretation, but also to point out the necessity of a meaningful cutoff for practical significance. The substantive researcher then has to provide this cutoff.

Researchers should not draw conclusions that have not been explicitly tested for. For example, one may have found a positive association between D and LC (e.g. p  = .049), but this association is not significant (e.g. p  = .051), when adjusting for “health behavior”. This does not imply that “health behavior” “explains” the association (yet fully). The difference in magnitude of association in both analyses compared here (without and with adjustment on HB) may be very small and the difference in p -values (“borderline significance” after adjustment) likely to emerge from random error. This often applies to larger differences in p as well.

Investigators, however, might find patterns in their results that they consider worth mentioning for creating hypotheses. In the example above, adding the words “in the sample”, would clarify that they refer just to the difference of two point estimates . By default, “association” in hypotheses testing should mean “statistically significant association” (explorative analyses should instead refer to “suggestive associations”).

Conclusions

Some issues of discussing results not mentioned yet appear to require only substantive reasoning. For instance, Bradford Hill’s consideration on “plausibility” claims that a causal effect is more likely, if it is in line with biological (substantive) knowledge, or if a dose-response relation has been found [ 30 ]. However, the application of these considerations itself depends on the trueness of assumptions. For instance, bias might act differently across the dose of exposure (e.g. larger measurement error in outcome among those with higher dosage). As a consequence, a pattern observed across dose may mask a true or pretend a wrong dose-response relation [ 30 ]. This again has to be brought up by statistical expertise.

There are, however, some practical issues that hinder the cooperation we suggest. First, substantive researchers often feel discomfort when urged to make assumptions on the mechanisms behind the data, presumably because they fear to be wrong. Here, the statistician needs to insist: “If you are unable to make any assumptions, you cannot conclude anything!” And: “As a scientist you have to understand the processes that create your data.” See [ 31 ] for practical advice on how to arrive at meaningful assumptions.

Second, statisticians have long been skeptical against causal inference. Still, most of them focus solely on describing observed data with distributional models, probably because estimating causal effects has long been regarded as unfeasible with scientific methods. Training in causality remains rather new, since strict mathematical methods have been developed only in the last decades [ 7 ].

The cooperation could be improved if education in both fields focused on the insight that one cannot succeed without the other. Academic education should demonstrate that in-depth conclusions from data unavoidably involve prior beliefs. Such education should say: Data do not “speak for themselves”, because they “speak” only ambiguously and little, since they have been filtered through various biases [ 32 ]. The subjectivity introduced by addressing bias, however, unsettles many researchers. On the other hand, conventional frequentist statistics just pretends to be objective. Instead of accepting the variety of possible assumptions, it makes the absurd assumption of “no bias with probability of one”. Or it avoids causal conclusions at all if no randomized study is possible. This limits science to investigating just associations for all factors that can never be randomized (e.g. onset of depression). However, the alternative of Bayesian statistics and thinking are themselves prone to fundamental cognitive biases which should as well be subject of interdisciplinary teaching [ 33 ].

Readers may take this article as an invitation to read further papers’ discussions differently while evaluating our claims. Rather than sharing a provided conclusion (or not) they could ask themselves whether a discussion enables them to clearly specify why they share it (or not). If the result is uncertainty, this might motivate them to write their next discussion differently. The proposals made in this article could help shifting scientific debates to where they belong. Rather than arguing on misunderstandings caused by ambiguity in a conclusion’s assumptions one should argue on the assumptions themselves.

Acknowledgements

We acknowledge support by the German Research Foundation and the Open Access Publication Funds of the TU Dresden. We wish to thank Pia Grabbe and Helen Steiner for language editing and the cited authors for their outstanding work that our proposals build on.

John Venz is funded by the German Federal Ministry of Education and Research (BMBF) project no. 01ER1303 and 01ER1703. He has contributed to this manuscript outside of time funded by these projects.

Availability of data and materials

Abbreviations.

Ddepression
HBhealth behavior
LClung cancer
RCTrandomized clinical trial
Xfactor variable
Youtcome variable

Authors’ contributions

MH and RM had the initial idea on the article. MH has taken the lead in writing. JV has contributed to the statistical parts, especially the Bayesian aspects. RM has refined the paragraphs on statistical inference. ST joined later and has added many clarifications related to the perspective of the substantive researcher. All authors have contributed to the final wording of all sections and the article’s revision. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Consent for publication, competing interests.

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Discussion Section for a Research Paper

sample discussion section of a research paper

We’ve talked about several useful writing tips that authors should consider while drafting or editing their research papers. In particular, we’ve focused on  figures and legends , as well as the Introduction ,  Methods , and  Results . Now that we’ve addressed the more technical portions of your journal manuscript, let’s turn to the analytical segments of your research article. In this article, we’ll provide tips on how to write a strong Discussion section that best portrays the significance of your research contributions.

What is the Discussion section of a research paper?

In a nutshell,  your Discussion fulfills the promise you made to readers in your Introduction . At the beginning of your paper, you tell us why we should care about your research. You then guide us through a series of intricate images and graphs that capture all the relevant data you collected during your research. We may be dazzled and impressed at first, but none of that matters if you deliver an anti-climactic conclusion in the Discussion section!

Are you feeling pressured? Don’t worry. To be honest, you will edit the Discussion section of your manuscript numerous times. After all, in as little as one to two paragraphs ( Nature ‘s suggestion  based on their 3,000-word main body text limit), you have to explain how your research moves us from point A (issues you raise in the Introduction) to point B (our new understanding of these matters). You must also recommend how we might get to point C (i.e., identify what you think is the next direction for research in this field). That’s a lot to say in two paragraphs!

So, how do you do that? Let’s take a closer look.

What should I include in the Discussion section?

As we stated above, the goal of your Discussion section is to  answer the questions you raise in your Introduction by using the results you collected during your research . The content you include in the Discussions segment should include the following information:

  • Remind us why we should be interested in this research project.
  • Describe the nature of the knowledge gap you were trying to fill using the results of your study.
  • Don’t repeat your Introduction. Instead, focus on why  this  particular study was needed to fill the gap you noticed and why that gap needed filling in the first place.
  • Mainly, you want to remind us of how your research will increase our knowledge base and inspire others to conduct further research.
  • Clearly tell us what that piece of missing knowledge was.
  • Answer each of the questions you asked in your Introduction and explain how your results support those conclusions.
  • Make sure to factor in all results relevant to the questions (even if those results were not statistically significant).
  • Focus on the significance of the most noteworthy results.
  • If conflicting inferences can be drawn from your results, evaluate the merits of all of them.
  • Don’t rehash what you said earlier in the Results section. Rather, discuss your findings in the context of answering your hypothesis. Instead of making statements like “[The first result] was this…,” say, “[The first result] suggests [conclusion].”
  • Do your conclusions line up with existing literature?
  • Discuss whether your findings agree with current knowledge and expectations.
  • Keep in mind good persuasive argument skills, such as explaining the strengths of your arguments and highlighting the weaknesses of contrary opinions.
  • If you discovered something unexpected, offer reasons. If your conclusions aren’t aligned with current literature, explain.
  • Address any limitations of your study and how relevant they are to interpreting your results and validating your findings.
  • Make sure to acknowledge any weaknesses in your conclusions and suggest room for further research concerning that aspect of your analysis.
  • Make sure your suggestions aren’t ones that should have been conducted during your research! Doing so might raise questions about your initial research design and protocols.
  • Similarly, maintain a critical but unapologetic tone. You want to instill confidence in your readers that you have thoroughly examined your results and have objectively assessed them in a way that would benefit the scientific community’s desire to expand our knowledge base.
  • Recommend next steps.
  • Your suggestions should inspire other researchers to conduct follow-up studies to build upon the knowledge you have shared with them.
  • Keep the list short (no more than two).

How to Write the Discussion Section

The above list of what to include in the Discussion section gives an overall idea of what you need to focus on throughout the section. Below are some tips and general suggestions about the technical aspects of writing and organization that you might find useful as you draft or revise the contents we’ve outlined above.

Technical writing elements

  • Embrace active voice because it eliminates the awkward phrasing and wordiness that accompanies passive voice.
  • Use the present tense, which should also be employed in the Introduction.
  • Sprinkle with first person pronouns if needed, but generally, avoid it. We want to focus on your findings.
  • Maintain an objective and analytical tone.

Discussion section organization

  • Keep the same flow across the Results, Methods, and Discussion sections.
  • We develop a rhythm as we read and parallel structures facilitate our comprehension. When you organize information the same way in each of these related parts of your journal manuscript, we can quickly see how a certain result was interpreted and quickly verify the particular methods used to produce that result.
  • Notice how using parallel structure will eliminate extra narration in the Discussion part since we can anticipate the flow of your ideas based on what we read in the Results segment. Reducing wordiness is important when you only have a few paragraphs to devote to the Discussion section!
  • Within each subpart of a Discussion, the information should flow as follows: (A) conclusion first, (B) relevant results and how they relate to that conclusion and (C) relevant literature.
  • End with a concise summary explaining the big-picture impact of your study on our understanding of the subject matter. At the beginning of your Discussion section, you stated why  this  particular study was needed to fill the gap you noticed and why that gap needed filling in the first place. Now, it is time to end with “how your research filled that gap.”

Discussion Part 1: Summarizing Key Findings

Begin the Discussion section by restating your  statement of the problem  and briefly summarizing the major results. Do not simply repeat your findings. Rather, try to create a concise statement of the main results that directly answer the central research question that you stated in the Introduction section . This content should not be longer than one paragraph in length.

Many researchers struggle with understanding the precise differences between a Discussion section and a Results section . The most important thing to remember here is that your Discussion section should subjectively evaluate the findings presented in the Results section, and in relatively the same order. Keep these sections distinct by making sure that you do not repeat the findings without providing an interpretation.

Phrase examples: Summarizing the results

  • The findings indicate that …
  • These results suggest a correlation between A and B …
  • The data present here suggest that …
  • An interpretation of the findings reveals a connection between…

Discussion Part 2: Interpreting the Findings

What do the results mean? It may seem obvious to you, but simply looking at the figures in the Results section will not necessarily convey to readers the importance of the findings in answering your research questions.

The exact structure of interpretations depends on the type of research being conducted. Here are some common approaches to interpreting data:

  • Identifying correlations and relationships in the findings
  • Explaining whether the results confirm or undermine your research hypothesis
  • Giving the findings context within the history of similar research studies
  • Discussing unexpected results and analyzing their significance to your study or general research
  • Offering alternative explanations and arguing for your position

Organize the Discussion section around key arguments, themes, hypotheses, or research questions or problems. Again, make sure to follow the same order as you did in the Results section.

Discussion Part 3: Discussing the Implications

In addition to providing your own interpretations, show how your results fit into the wider scholarly literature you surveyed in the  literature review section. This section is called the implications of the study . Show where and how these results fit into existing knowledge, what additional insights they contribute, and any possible consequences that might arise from this knowledge, both in the specific research topic and in the wider scientific domain.

Questions to ask yourself when dealing with potential implications:

  • Do your findings fall in line with existing theories, or do they challenge these theories or findings? What new information do they contribute to the literature, if any? How exactly do these findings impact or conflict with existing theories or models?
  • What are the practical implications on actual subjects or demographics?
  • What are the methodological implications for similar studies conducted either in the past or future?

Your purpose in giving the implications is to spell out exactly what your study has contributed and why researchers and other readers should be interested.

Phrase examples: Discussing the implications of the research

  • These results confirm the existing evidence in X studies…
  • The results are not in line with the foregoing theory that…
  • This experiment provides new insights into the connection between…
  • These findings present a more nuanced understanding of…
  • While previous studies have focused on X, these results demonstrate that Y.

Step 4: Acknowledging the limitations

All research has study limitations of one sort or another. Acknowledging limitations in methodology or approach helps strengthen your credibility as a researcher. Study limitations are not simply a list of mistakes made in the study. Rather, limitations help provide a more detailed picture of what can or cannot be concluded from your findings. In essence, they help temper and qualify the study implications you listed previously.

Study limitations can relate to research design, specific methodological or material choices, or unexpected issues that emerged while you conducted the research. Mention only those limitations directly relate to your research questions, and explain what impact these limitations had on how your study was conducted and the validity of any interpretations.

Possible types of study limitations:

  • Insufficient sample size for statistical measurements
  • Lack of previous research studies on the topic
  • Methods/instruments/techniques used to collect the data
  • Limited access to data
  • Time constraints in properly preparing and executing the study

After discussing the study limitations, you can also stress that your results are still valid. Give some specific reasons why the limitations do not necessarily handicap your study or narrow its scope.

Phrase examples: Limitations sentence beginners

  • “There may be some possible limitations in this study.”
  • “The findings of this study have to be seen in light of some limitations.”
  •  “The first limitation is the…The second limitation concerns the…”
  •  “The empirical results reported herein should be considered in the light of some limitations.”
  • “This research, however, is subject to several limitations.”
  • “The primary limitation to the generalization of these results is…”
  • “Nonetheless, these results must be interpreted with caution and a number of limitations should be borne in mind.”

Discussion Part 5: Giving Recommendations for Further Research

Based on your interpretation and discussion of the findings, your recommendations can include practical changes to the study or specific further research to be conducted to clarify the research questions. Recommendations are often listed in a separate Conclusion section , but often this is just the final paragraph of the Discussion section.

Suggestions for further research often stem directly from the limitations outlined. Rather than simply stating that “further research should be conducted,” provide concrete specifics for how future can help answer questions that your research could not.

Phrase examples: Recommendation sentence beginners

  • Further research is needed to establish …
  • There is abundant space for further progress in analyzing…
  • A further study with more focus on X should be done to investigate…
  • Further studies of X that account for these variables must be undertaken.

Consider Receiving Professional Language Editing

As you edit or draft your research manuscript, we hope that you implement these guidelines to produce a more effective Discussion section. And after completing your draft, don’t forget to submit your work to a professional proofreading and English editing service like Wordvice, including our manuscript editing service for  paper editing , cover letter editing , SOP editing , and personal statement proofreading services. Language editors not only proofread and correct errors in grammar, punctuation, mechanics, and formatting but also improve terms and revise phrases so they read more naturally. Wordvice is an industry leader in providing high-quality revision for all types of academic documents.

For additional information about how to write a strong research paper, make sure to check out our full  research writing series !

Wordvice Writing Resources

  • How to Write a Research Paper Introduction 
  • Which Verb Tenses to Use in a Research Paper
  • How to Write an Abstract for a Research Paper
  • How to Write a Research Paper Title
  • Useful Phrases for Academic Writing
  • Common Transition Terms in Academic Papers
  • Active and Passive Voice in Research Papers
  • 100+ Verbs That Will Make Your Research Writing Amazing
  • Tips for Paraphrasing in Research Papers

Additional Academic Resources

  •   Guide for Authors.  (Elsevier)
  •  How to Write the Results Section of a Research Paper.  (Bates College)
  •   Structure of a Research Paper.  (University of Minnesota Biomedical Library)
  •   How to Choose a Target Journal  (Springer)
  •   How to Write Figures and Tables  (UNC Writing Center)

Sacred Heart University Library

Organizing Academic Research Papers: 8. The Discussion

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

The purpose of the discussion is to interpret and describe the significance of your findings in light of what was already known about the research problem being investigated, and to explain any new understanding or fresh insights about the problem after you've taken the findings into consideration. The discussion will always connect to the introduction by way of the research questions or hypotheses you posed and the literature you reviewed, but it does not simply repeat or rearrange the introduction; the discussion should always explain how your study has moved the reader's understanding of the research problem forward from where you left them at the end of the introduction.

Importance of a Good Discussion

This section is often considered the most important part of a research paper because it most effectively demonstrates your ability as a researcher to think critically about an issue, to develop creative solutions to problems based on the findings, and to formulate a deeper, more profound understanding of the research problem you are studying.

The discussion section is where you explore the underlying meaning of your research , its possible implications in other areas of study, and the possible improvements that can be made in order to further develop the concerns of your research.

This is the section where you need to present the importance of your study and how it may be able to contribute to and/or fill existing gaps in the field. If appropriate, the discussion section is also where you state how the findings from your study revealed new gaps in the literature that had not been previously exposed or adequately described.

This part of the paper is not strictly governed by objective reporting of information but, rather, it is where you can engage in creative thinking about issues through evidence-based interpretation of findings. This is where you infuse your results with meaning.

Kretchmer, Paul. Fourteen Steps to Writing to Writing an Effective Discussion Section . San Francisco Edit, 2003-2008.

Structure and Writing Style

I.  General Rules

These are the general rules you should adopt when composing your discussion of the results :

  • Do not be verbose or repetitive.
  • Be concise and make your points clearly.
  • Avoid using jargon.
  • Follow a logical stream of thought.
  • Use the present verb tense, especially for established facts; however, refer to specific works and references in the past tense.
  • If needed, use subheadings to help organize your presentation or to group your interpretations into themes.

II.  The Content

The content of the discussion section of your paper most often includes :

  • Explanation of results : comment on whether or not the results were expected and present explanations for the results; go into greater depth when explaining findings that were unexpected or especially profound. If appropriate, note any unusual or unanticipated patterns or trends that emerged from your results and explain their meaning.
  • References to previous research : compare your results with the findings from other studies, or use the studies to support a claim. This can include re-visiting key sources already cited in your literature review section, or, save them to cite later in the discussion section if they are more important to compare with your results than being part of the general research you cited to provide context and background information.
  • Deduction : a claim for how the results can be applied more generally. For example, describing lessons learned, proposing recommendations that can help improve a situation, or recommending best practices.
  • Hypothesis : a more general claim or possible conclusion arising from the results [which may be proved or disproved in subsequent research].

III. Organization and Structure

Keep the following sequential points in mind as you organize and write the discussion section of your paper:

  • Think of your discussion as an inverted pyramid. Organize the discussion from the general to the specific, linking your findings to the literature, then to theory, then to practice [if appropriate].
  • Use the same key terms, mode of narration, and verb tense [present] that you used when when describing the research problem in the introduction.
  • Begin by briefly re-stating the research problem you were investigating and answer all of the research questions underpinning the problem that you posed in the introduction.
  • Describe the patterns, principles, and relationships shown by each major findings and place them in proper perspective. The sequencing of providing this information is important; first state the answer, then the relevant results, then cite the work of others. If appropriate, refer the reader to a figure or table to help enhance the interpretation of the data. The order of interpreting each major finding should be in the same order as they were described in your results section.
  • A good discussion section includes analysis of any unexpected findings. This paragraph should begin with a description of the unexpected finding, followed by a brief interpretation as to why you believe it appeared and, if necessary, its possible significance in relation to the overall study. If more than one unexpected finding emerged during the study, describe each them in the order they appeared as you gathered the data.
  • Before concluding the discussion, identify potential limitations and weaknesses. Comment on their relative importance in relation to your overall interpretation of the results and, if necessary, note how they may affect the validity of the findings. Avoid using an apologetic tone; however, be honest and self-critical.
  • The discussion section should end with a concise summary of the principal implications of the findings regardless of statistical significance. Give a brief explanation about why you believe the findings and conclusions of your study are important and how they support broader knowledge or understanding of the research problem. This can be followed by any recommendations for further research. However, do not offer recommendations which could have been easily addressed within the study. This demonstrates to the reader you have inadequately examined and interpreted the data.

IV.  Overall Objectives

The objectives of your discussion section should include the following: I.  Reiterate the Research Problem/State the Major Findings

Briefly reiterate for your readers the research problem or problems you are investigating and the methods you used to investigate them, then move quickly to describe the major findings of the study. You should write a direct, declarative, and succinct proclamation of the study results.

II.  Explain the Meaning of the Findings and Why They are Important

No one has thought as long and hard about your study as you have. Systematically explain the meaning of the findings and why you believe they are important. After reading the discussion section, you want the reader to think about the results [“why hadn’t I thought of that?”]. You don’t want to force the reader to go through the paper multiple times to figure out what it all means. Begin this part of the section by repeating what you consider to be your most important finding first.

III.  Relate the Findings to Similar Studies

No study is so novel or possesses such a restricted focus that it has absolutely no relation to other previously published research. The discussion section should relate your study findings to those of other studies, particularly if questions raised by previous studies served as the motivation for your study, the findings of other studies support your findings [which strengthens the importance of your study results], and/or they point out how your study differs from other similar studies. IV.  Consider Alternative Explanations of the Findings

It is important to remember that the purpose of research is to discover and not to prove . When writing the discussion section, you should carefully consider all possible explanations for the study results, rather than just those that fit your prior assumptions or biases.

V.  Acknowledge the Study’s Limitations

It is far better for you to identify and acknowledge your study’s limitations than to have them pointed out by your professor! Describe the generalizability of your results to other situations, if applicable to the method chosen, then describe in detail problems you encountered in the method(s) you used to gather information. Note any unanswered questions or issues your study did not address, and.... VI.  Make Suggestions for Further Research

Although your study may offer important insights about the research problem, other questions related to the problem likely remain unanswered. Moreover, some unanswered questions may have become more focused because of your study. You should make suggestions for further research in the discussion section.

NOTE: Besides the literature review section, the preponderance of references to sources in your research paper are usually found in the discussion section . A few historical references may be helpful for perspective but most of the references should be relatively recent and included to aid in the interpretation of your results and/or linked to similar studies. If a study that you cited disagrees with your findings, don't ignore it--clearly explain why the study's findings differ from yours.

V.  Problems to Avoid

  • Do not waste entire sentences restating your results . Should you need to remind the reader of the finding to be discussed, use "bridge sentences" that relate the result to the interpretation. An example would be: “The lack of available housing to single women with children in rural areas of Texas suggests that...[then move to the interpretation of this finding].”
  • Recommendations for further research can be included in either the discussion or conclusion of your paper but do not repeat your recommendations in the both sections.
  • Do not introduce new results in the discussion. Be wary of mistaking the reiteration of a specific finding for an interpretation.
  • Use of the first person is acceptable, but too much use of the first person may actually distract the reader from the main points.

Analyzing vs. Summarizing. Department of English Writing Guide. George Mason University; Discussion . The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College; Hess, Dean R. How to Write an Effective Discussion. Respiratory Care 49 (October 2004); Kretchmer, Paul. Fourteen Steps to Writing to Writing an Effective Discussion Section . San Francisco Edit, 2003-2008; The Lab Report . University College Writing Centre. University of Toronto; Summary: Using it Wisely . The Writing Center. University of North Carolina; Schafer, Mickey S. Writing the Discussion . Writing in Psychology course syllabus. University of Florida; Yellin, Linda L. A Sociology Writer's Guide. Boston, MA: Allyn and Bacon, 2009.

Writing Tip

Don’t Overinterpret the Results!

Interpretation is a subjective exercise. Therefore, be careful that you do not read more into the findings than can be supported by the evidence you've gathered. Remember that the data are the data: nothing more, nothing less.

Another Writing Tip

Don't Write Two Results Sections!

One of the most common mistakes that you can make when discussing the results of your study is to present a superficial interpretation of the findings that more or less re-states the results section of your paper. Obviously, you must refer to your results when discussing them, but focus on the interpretion of those results, not just the data itself.

Azar, Beth. Discussing Your Findings.  American Psychological Association gradPSYCH Magazine (January 2006)

Yet Another Writing Tip

Avoid Unwarranted Speculation!

The discussion section should remain focused on the findings of your study. For example, if you studied the impact of foreign aid on increasing levels of education among the poor in Bangladesh, it's generally not appropriate to speculate about how your findings might apply to populations in other countries without drawing from existing studies to support your claim. If you feel compelled to speculate, be certain that you clearly identify your comments as speculation or as a suggestion for where further research is needed. Sometimes your professor will encourage you to expand the discussion in this way, while others don’t care what your opinion is beyond your efforts to interpret the data.

  • << Previous: Using Non-Textual Elements
  • Next: Limitations of the Study >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

sample discussion section of a research paper

  • Walden University
  • Faculty Portal

General Research Paper Guidelines: Discussion

Discussion section.

The overall purpose of a research paper’s discussion section is to evaluate and interpret results, while explaining both the implications and limitations of your findings. Per APA (2020) guidelines, this section requires you to “examine, interpret, and qualify the results and draw inferences and conclusions from them” (p. 89). Discussion sections also require you to detail any new insights, think through areas for future research, highlight the work that still needs to be done to further your topic, and provide a clear conclusion to your research paper. In a good discussion section, you should do the following:

  • Clearly connect the discussion of your results to your introduction, including your central argument, thesis, or problem statement.
  • Provide readers with a critical thinking through of your results, answering the “so what?” question about each of your findings. In other words, why is this finding important?
  • Detail how your research findings might address critical gaps or problems in your field
  • Compare your results to similar studies’ findings
  • Provide the possibility of alternative interpretations, as your goal as a researcher is to “discover” and “examine” and not to “prove” or “disprove.” Instead of trying to fit your results into your hypothesis, critically engage with alternative interpretations to your results.

For more specific details on your Discussion section, be sure to review Sections 3.8 (pp. 89-90) and 3.16 (pp. 103-104) of your 7 th edition APA manual

*Box content adapted from:

University of Southern California (n.d.). Organizing your social sciences research paper: 8 the discussion . https://libguides.usc.edu/writingguide/discussion

Limitations

Limitations of generalizability or utility of findings, often over which the researcher has no control, should be detailed in your Discussion section. Including limitations for your reader allows you to demonstrate you have thought critically about your given topic, understood relevant literature addressing your topic, and chosen the methodology most appropriate for your research. It also allows you an opportunity to suggest avenues for future research on your topic. An effective limitations section will include the following:

  • Detail (a) sources of potential bias, (b) possible imprecision of measures, (c) other limitations or weaknesses of the study, including any methodological or researcher limitations.
  • Sample size: In quantitative research, if a sample size is too small, it is more difficult to generalize results.
  • Lack of available/reliable data : In some cases, data might not be available or reliable, which will ultimately affect the overall scope of your research. Use this as an opportunity to explain areas for future study.
  • Lack of prior research on your study topic: In some cases, you might find that there is very little or no similar research on your study topic, which hinders the credibility and scope of your own research. If this is the case, use this limitation as an opportunity to call for future research. However, make sure you have done a thorough search of the available literature before making this claim.
  • Flaws in measurement of data: Hindsight is 20/20, and you might realize after you have completed your research that the data tool you used actually limited the scope or results of your study in some way. Again, acknowledge the weakness and use it as an opportunity to highlight areas for future study.
  • Limits of self-reported data: In your research, you are assuming that any participants will be honest and forthcoming with responses or information they provide to you. Simply acknowledging this assumption as a possible limitation is important in your research.
  • Access: Most research requires that you have access to people, documents, organizations, etc.. However, for various reasons, access is sometimes limited or denied altogether. If this is the case, you will want to acknowledge access as a limitation to your research.
  • Time: Choosing a research focus that is narrow enough in scope to finish in a given time period is important. If such limitations of time prevent you from certain forms of research, access, or study designs, acknowledging this time restraint is important. Acknowledging such limitations is important, as they can point other researchers to areas that require future study.
  • Potential Bias: All researchers have some biases, so when reading and revising your draft, pay special attention to the possibilities for bias in your own work. Such bias could be in the form you organized people, places, participants, or events. They might also exist in the method you selected or the interpretation of your results. Acknowledging such bias is an important part of the research process.
  • Language Fluency: On occasion, researchers or research participants might have language fluency issues, which could potentially hinder results or how effectively you interpret results. If this is an issue in your research, make sure to acknowledge it in your limitations section.

University of Southern California (n.d.). Organizing your social sciences research paper: Limitations of the study . https://libguides.usc.edu/writingguide/limitations

In many research papers, the conclusion, like the limitations section, is folded into the larger discussion section. If you are unsure whether to include the conclusion as part of your discussion or as a separate section, be sure to defer to the assignment instructions or ask your instructor.

The conclusion is important, as it is specifically designed to highlight your research’s larger importance outside of the specific results of your study. Your conclusion section allows you to reiterate the main findings of your study, highlight their importance, and point out areas for future research. Based on the scope of your paper, your conclusion could be anywhere from one to three paragraphs long. An effective conclusion section should include the following:

  • Describe the possibilities for continued research on your topic, including what might be improved, adapted, or added to ensure useful and informed future research.
  • Provide a detailed account of the importance of your findings
  • Reiterate why your problem is important, detail how your interpretation of results impacts the subfield of study, and what larger issues both within and outside of your field might be affected from such results

University of Southern California (n.d.). Organizing your social sciences research paper: 9. the conclusion . https://libguides.usc.edu/writingguide/conclusion

  • Previous Page: Results
  • Next Page: References
  • Office of Student Disability Services

Walden Resources

Departments.

  • Academic Residencies
  • Academic Skills
  • Career Planning and Development
  • Customer Care Team
  • Field Experience
  • Military Services
  • Student Success Advising
  • Writing Skills

Centers and Offices

  • Center for Social Change
  • Office of Academic Support and Instructional Services
  • Office of Degree Acceleration
  • Office of Research and Doctoral Services
  • Office of Student Affairs

Student Resources

  • Doctoral Writing Assessment
  • Form & Style Review
  • Quick Answers
  • ScholarWorks
  • SKIL Courses and Workshops
  • Walden Bookstore
  • Walden Catalog & Student Handbook
  • Student Safety/Title IX
  • Legal & Consumer Information
  • Website Terms and Conditions
  • Cookie Policy
  • Accessibility
  • Accreditation
  • State Authorization
  • Net Price Calculator
  • Contact Walden

Walden University is a member of Adtalem Global Education, Inc. www.adtalem.com Walden University is certified to operate by SCHEV © 2024 Walden University LLC. All rights reserved.

Illustration

  • Research Paper Guides
  • Basics of Research Paper Writing

How to Write a Discussion Section: Writing Guide

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

how to write a discussion section

Table of contents

Illustration

Use our free Readability checker

The discussion section of a research paper is where the author analyzes and explains the importance of the study's results. It presents the conclusions drawn from the study, compares them to previous research, and addresses any potential limitations or weaknesses. The discussion section should also suggest areas for future research.

Everything is not that complicated if you know where to find the required information. We’ll tell you everything there is to know about writing your discussion. Our easy guide covers all important bits, including research questions and your research results. Do you know how all enumerated events are connected? Well, you will after reading this guide we’ve prepared for you!

What Is in the Discussion Section of a Research Paper

The discussion section of a research paper can be viewed as something similar to the conclusion of your paper. But not literal, of course. It’s an ultimate section where you can talk about the findings of your study. Think about these questions when writing:

  • Did you answer all of the promised research questions?
  • Did you mention why your work matters?
  • What are your findings, and why should anyone even care?
  • Does your study have a literature review?

So, answer your questions, provide proof, and don’t forget about your promises from the introduction. 

How to Write a Discussion Section in 5 Steps

How to write the discussion section of a research paper is something everyone googles eventually. It's just life. But why not make everything easier? In brief, this section we’re talking about must include all following parts:

  • Answers for research questions
  • Literature review
  • Results of the work
  • Limitations of one’s study
  • Overall conclusion

Indeed, all those parts may confuse anyone. So by looking at our guide, you'll save yourself some hassle.  P.S. All our steps are easy and explained in detail! But if you are looking for the most efficient solution, consider using professional help. Leave your “ write my research paper for me ” order at StudyCrumb and get a customized study tailored to your requirements.

Step 1. Start Strong: Discussion Section of a Research Paper

First and foremost, how to start the discussion section of a research paper? Here’s what you should definitely consider before settling down to start writing:

  • All essays or papers must begin strong. All readers will not wait for any writer to get to the point. We advise summarizing the paper's main findings.
  • Moreover, you should relate both discussion and literature review to what you have discovered. Mentioning that would be a plus too.
  • Make sure that an introduction or start per se is clear and concise. Word count might be needed for school. But any paper should be understandable and not too diluted.

Step 2. Answer the Questions in Your Discussion Section of a Research Paper

Writing the discussion section of a research paper also involves mentioning your questions. Remember that in your introduction, you have promised your readers to answer certain questions. Well, now it’s a perfect time to finally give the awaited answer. You need to explain all possible correlations between your findings, research questions, and literature proposed. You already had hypotheses. So were they correct, or maybe you want to propose certain corrections? Section’s main goal is to avoid open ends. It’s not a story or a fairytale with an intriguing ending. If you have several questions, you must answer them. As simple as that.

Step 3. Relate Your Results in a Discussion Section

Writing a discussion section of a research paper also requires any writer to explain their results. You will undoubtedly include an impactful literature review. However, your readers should not just try and struggle with understanding what are some specific relationships behind previous studies and your results.  Your results should sound something like: “This guy in their paper discovered that apples are green. Nevertheless, I have proven via experimentation and research that apples are actually red.” Please, don’t take these results directly. It’s just an initial hypothesis. But what you should definitely remember is any practical implications of your study. Why does it matter and how can anyone use it? That’s the most crucial question.

Step 4. Describe the Limitations in Your Discussion Section

Discussion section of a research paper isn’t limitless. What does that mean? Essentially, it means that you also have to discuss any limitations of your study. Maybe you had some methodological inconsistencies. Possibly, there are no particular theories or not enough information for you to be entirely confident in one’s conclusions.  You might say that an available source of literature you have studied does not focus on one’s issue. That’s why one’s main limitation is theoretical. However, keep in mind that your limitations must possess a certain degree of relevancy. You can just say that you haven’t found enough books. Your information must be truthful to research.

Step 5. Conclude Your Discussion Section With Recommendations

Your last step when you write a discussion section in a paper is its conclusion, like in any other academic work. Writer’s conclusion must be as strong as their starting point of the overall work. Check out our brief list of things to know about the conclusion in research paper :

  • It must present its scientific relevance and importance of your work.
  • It should include different implications of your research.
  • It should not, however, discuss anything new or things that you have not mentioned before.
  • Leave no open questions and carefully complete the work without them.

Discussion Section of a Research Paper Example

All the best example discussion sections of a research paper will be written according to our brief guide. Don’t forget that you need to state your findings and underline the importance of your work. An undoubtedly big part of one’s discussion will definitely be answering and explaining the research questions. In other words, you’ll already have all the knowledge you have so carefully gathered. Our last step for you is to recollect and wrap up your paper. But we’re sure you’ll succeed!

Illustration

How to Write a Discussion Section: Final Thoughts

Today we have covered how to write a discussion section. That was quite a brief journey, wasn’t it? Just to remind you to focus on these things:

  • Importance of your study.
  • Summary of the information you have gathered.
  • Main findings and conclusions.
  • Answers to all research questions without an open end.
  • Correlation between literature review and your results.

But, wait, this guide is not the only thing we can do. Looking for how to write an abstract for a research paper  for example? We have such a blog and much more on our platform.

Illustration

Our academic writing service is just a click away. We are proud to say that our writers are professionals in their fields. Buy a research paper and our experts can provide prompt solutions without compromising the quality.

Discussion Section of a Research Paper: Frequently Asked Questions

1. how long should the discussion section of a research paper be.

Our discussion section of a research paper should not be longer than other sections. So try to keep it short but as informative as possible. It usually contains around 6-7 paragraphs in length. It is enough to briefly summarize all the important data and not to drag it.

2. What's the difference between the discussion and the results?

The difference between discussion and results is very simple and easy to understand. The results only report your main findings. You stated what you have found and how you have done that. In contrast, one’s discussion mentions your findings and explains how they relate to other literature, research questions, and one’s hypothesis. Therefore, it is not only a report but an efficient as well as proper explanation.

3. What's the difference between a discussion and a conclusion?

The difference between discussion and conclusion is also quite easy. Conclusion is a brief summary of all the findings and results. Still, our favorite discussion section interprets and explains your main results. It is an important but more lengthy and wordy part. Besides, it uses extra literature for references.

4. What is the purpose of the discussion section?

The primary purpose of a discussion section is to interpret and describe all your interesting findings. Therefore, you should state what you have learned, whether your hypothesis was correct and how your results can be explained using other sources. If this section is clear to readers, our congratulations as you have succeeded.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

thumbnail@2x.png

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • How to Write a Discussion Section | Tips & Examples

How to Write a Discussion Section | Tips & Examples

Published on 21 August 2022 by Shona McCombes . Revised on 25 October 2022.

Discussion section flow chart

The discussion section is where you delve into the meaning, importance, and relevance of your results .

It should focus on explaining and evaluating what you found, showing how it relates to your literature review , and making an argument in support of your overall conclusion . It should not be a second results section .

There are different ways to write this section, but you can focus your writing around these key elements:

  • Summary: A brief recap of your key results
  • Interpretations: What do your results mean?
  • Implications: Why do your results matter?
  • Limitations: What can’t your results tell us?
  • Recommendations: Avenues for further studies or analyses

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

What not to include in your discussion section, step 1: summarise your key findings, step 2: give your interpretations, step 3: discuss the implications, step 4: acknowledge the limitations, step 5: share your recommendations, discussion section example.

There are a few common mistakes to avoid when writing the discussion section of your paper.

  • Don’t introduce new results: You should only discuss the data that you have already reported in your results section .
  • Don’t make inflated claims: Avoid overinterpretation and speculation that isn’t directly supported by your data.
  • Don’t undermine your research: The discussion of limitations should aim to strengthen your credibility, not emphasise weaknesses or failures.

Prevent plagiarism, run a free check.

Start this section by reiterating your research problem  and concisely summarising your major findings. Don’t just repeat all the data you have already reported – aim for a clear statement of the overall result that directly answers your main  research question . This should be no more than one paragraph.

Many students struggle with the differences between a discussion section and a results section . The crux of the matter is that your results sections should present your results, and your discussion section should subjectively evaluate them. Try not to blend elements of these two sections, in order to keep your paper sharp.

  • The results indicate that …
  • The study demonstrates a correlation between …
  • This analysis supports the theory that …
  • The data suggest  that …

The meaning of your results may seem obvious to you, but it’s important to spell out their significance for your reader, showing exactly how they answer your research question.

The form of your interpretations will depend on the type of research, but some typical approaches to interpreting the data include:

  • Identifying correlations , patterns, and relationships among the data
  • Discussing whether the results met your expectations or supported your hypotheses
  • Contextualising your findings within previous research and theory
  • Explaining unexpected results and evaluating their significance
  • Considering possible alternative explanations and making an argument for your position

You can organise your discussion around key themes, hypotheses, or research questions, following the same structure as your results section. Alternatively, you can also begin by highlighting the most significant or unexpected results.

  • In line with the hypothesis …
  • Contrary to the hypothesised association …
  • The results contradict the claims of Smith (2007) that …
  • The results might suggest that x . However, based on the findings of similar studies, a more plausible explanation is x .

As well as giving your own interpretations, make sure to relate your results back to the scholarly work that you surveyed in the literature review . The discussion should show how your findings fit with existing knowledge, what new insights they contribute, and what consequences they have for theory or practice.

Ask yourself these questions:

  • Do your results support or challenge existing theories? If they support existing theories, what new information do they contribute? If they challenge existing theories, why do you think that is?
  • Are there any practical implications?

Your overall aim is to show the reader exactly what your research has contributed, and why they should care.

  • These results build on existing evidence of …
  • The results do not fit with the theory that …
  • The experiment provides a new insight into the relationship between …
  • These results should be taken into account when considering how to …
  • The data contribute a clearer understanding of …
  • While previous research has focused on  x , these results demonstrate that y .

Even the best research has its limitations. Acknowledging these is important to demonstrate your credibility. Limitations aren’t about listing your errors, but about providing an accurate picture of what can and cannot be concluded from your study.

Limitations might be due to your overall research design, specific methodological choices , or unanticipated obstacles that emerged during your research process.

Here are a few common possibilities:

  • If your sample size was small or limited to a specific group of people, explain how generalisability is limited.
  • If you encountered problems when gathering or analysing data, explain how these influenced the results.
  • If there are potential confounding variables that you were unable to control, acknowledge the effect these may have had.

After noting the limitations, you can reiterate why the results are nonetheless valid for the purpose of answering your research question.

  • The generalisability of the results is limited by …
  • The reliability of these data is impacted by …
  • Due to the lack of data on x , the results cannot confirm …
  • The methodological choices were constrained by …
  • It is beyond the scope of this study to …

Based on the discussion of your results, you can make recommendations for practical implementation or further research. Sometimes, the recommendations are saved for the conclusion .

Suggestions for further research can lead directly from the limitations. Don’t just state that more studies should be done – give concrete ideas for how future work can build on areas that your own research was unable to address.

  • Further research is needed to establish …
  • Future studies should take into account …
  • Avenues for future research include …

Discussion section example

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 25). How to Write a Discussion Section | Tips & Examples. Scribbr. Retrieved 24 June 2024, from https://www.scribbr.co.uk/thesis-dissertation/discussion/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a results section | tips & examples, research paper appendix | example & templates, how to write a thesis or dissertation introduction.

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

sample discussion section of a research paper

  • Research Paper >

Writing a Discussion Section

Writing a discussion section is where you really begin to add your interpretations to the work.

This article is a part of the guide:

  • Outline Examples
  • Example of a Paper
  • Write a Hypothesis
  • Introduction

Browse Full Outline

  • 1 Write a Research Paper
  • 2 Writing a Paper
  • 3.1 Write an Outline
  • 3.2 Outline Examples
  • 4.1 Thesis Statement
  • 4.2 Write a Hypothesis
  • 5.2 Abstract
  • 5.3 Introduction
  • 5.4 Methods
  • 5.5 Results
  • 5.6 Discussion
  • 5.7 Conclusion
  • 5.8 Bibliography
  • 6.1 Table of Contents
  • 6.2 Acknowledgements
  • 6.3 Appendix
  • 7.1 In Text Citations
  • 7.2 Footnotes
  • 7.3.1 Floating Blocks
  • 7.4 Example of a Paper
  • 7.5 Example of a Paper 2
  • 7.6.1 Citations
  • 7.7.1 Writing Style
  • 7.7.2 Citations
  • 8.1.1 Sham Peer Review
  • 8.1.2 Advantages
  • 8.1.3 Disadvantages
  • 8.2 Publication Bias
  • 8.3.1 Journal Rejection
  • 9.1 Article Writing
  • 9.2 Ideas for Topics

In this critical part of the research paper, you start the process of explaining any links and correlations apparent in your data.

If you left few interesting leads and open questions in the results section , the discussion is simply a matter of building upon those and expanding them.

sample discussion section of a research paper

The Difficulties of Writing a Discussion Section

In an ideal world, you could simply reject your null or alternative hypotheses according to the significance levels found by the statistics.

That is the main point of your discussion section, but the process is usually a lot more complex than that. It is rarely clear-cut, and you will need to interpret your findings.

For example, one of your graphs may show a distinct trend, but not enough to reach an acceptable significance level.

Remember that no significance is not the same as no difference, and you can begin to explain this in your discussion section.

Whilst your results may not be enough to reject the null hypothesis , they may show a trend that later researchers may wish to explore, perhaps by refining the experiment .

sample discussion section of a research paper

Self-Criticism at the Heart of Writing a Discussion Section

For this purpose, you should criticize the experiment, and be honest about whether your design was good enough. If not, suggest any modifications and improvements that could be made to the design.

Maybe the reason that you did not find a significant correlation is because your sampling was not random , or you did not use sensitive enough equipment.

The discussion section is not always about what you found, but what you did not find, and how you deal with that. Stating that the results are inconclusive is the easy way out, and you must always try to pick out something of value.

Using the Discussion Section to Expand Knowledge

You should always put your findings into the context of the previous research that you found during your literature review . Do your results agree or disagree with previous research?

Do the results of the previous research help you to interpret your own findings? If your results are very different, why? Either you have uncovered something new, or you may have made a major flaw with the design of the experiment .

Finally, after saying all of this, you can make a statement about whether the experiment has contributed to knowledge in the field, or not.

Unless you made so many errors that the results are completely unreliable, you will; certainly have learned something. Try not to be too broad in your generalizations to the wider world - it is a small experiment and is unlikely to change the world.

Once writing the discussion section is complete, you can move onto the next stage, wrapping up the paper with a focused conclusion .

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Mar 6, 2009). Writing a Discussion Section. Retrieved Jun 30, 2024 from Explorable.com: https://explorable.com/writing-a-discussion-section

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Check out the official book.

Learn how to construct, style and format an Academic paper and take your skills to the next level.

sample discussion section of a research paper

(also available as ebook )

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

sample discussion section of a research paper

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Write your paper

sample discussion section of a research paper

8.2 An example template for Discussion sections

sample discussion section of a research paper

There’s no hard rule about what information types (d1 to d6) to include in each paragraph of the Discussion section. The only ‘rule’ is that the Discussion section of published papers contains all of the six information types ( Cargill M and O’Connor P 2013 Writing Scientific Research Articles: Strategy and Steps ), and your Discussion section probably should, too.

On Pages 5 to 6 of the following document is a template that I (Amanda) use to help me get started in writing the Discussion section of papers in my own field of research (obesity). The finished Discussion section is often different from the template below, so the template is more of a ‘kick-starter’ template than a bossy template.

You may like to use this template as an example from which to create a kick-starter template for writing the Discussion section of your own papers, based on your observations from dissection of Discussion sections you like from published papers in your field.

It’s possible that you already have a copy of the following document, as it was also included for download in Steps 2 and 8.

Photo by Zdeněk Macháček on Unsplash

Click here to download the document

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

agriculture-logo

Article Menu

sample discussion section of a research paper

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Rubber-based agroforestry systems associated with food crops: a solution for sustainable rubber and food production.

sample discussion section of a research paper

1. Introduction

2. materials and methods, 3.1. structure of the library, 3.2. evolution of the number of research studies related to rubber-based agroforestry, 3.3. number of journal articles on rubber per country, 3.4. analysis of intercrop types in rubber agroforestry systems, 3.5. analysis of intercrop products and level of usage in rubber-based agroforestry systems, 3.6. analysis of the disciplines studied in the journal articles, 4. discussion, 4.1. evolution of research on rubber agroforestry, 4.2. breeding food crops for agroforestry systems.

FactorGrowth and Development of Tropical Food CropsReference
TemperatureOptimum yield can be achieved at a temperature range of 22 and 32 °C; beyond this range, at temperatures exceeding 42 °C, yields begin to decline. Extreme temperatures, both high and low, have a significant impact on the formation of starch in tubers, while pod development does not exhibit any signs of endothelial formation.[ , , , , ]
LightThe threshold for the red/far red ratio is greater than 0.5. When this ratio is met, it leads to the elongation of stem-like structures, an upward orientation of leaves (hyponasty), reduced branching or tillering, and earlier flowering. However, it also diminishes the root anchorage capacity, making the crops more susceptible to lodging.[ , ]
WaterCompetition among plants for limited shallow-water resources increases their susceptibility to drought stress. The extent of this competition is influenced by the relative difference in soil water content due to soil water absorption.[ , ]
Metal toxicityMostly in the form of soluble aluminum, such as [Al(H O) ] , which, at a millimolar concentration can stimulate the division of root cells in cereal and legume crops. Aluminum also triggers an increased accumulation of reactive oxygen species and higher fatty acid peroxidation, resulting in an alteration in plasma membrane integrity.[ , ]
Pests and diseasesCertain insects and pathogens can be shared among related plant species. For instance, Bruchid, which are pantropical seed pests of grain legumes, commonly feed on the seeds of tree legumes as well. Additionally, various vertebrata pests, fungi, virus, nematodes, and phytoplasmas have been identified as having relationships with both crop and tree species.[ , , ]

4.3. Crop Management for Food Crops in Agroforestry

4.4. tentative recommendation for rass with food crops, 5. conclusions, supplementary materials, author contributions, data availability statement, acknowledgments, conflicts of interest.

  • Burgess, A.J.; Correa Cano, M.E.; Parkes, B. The Deployment of Intercropping and Agroforestry as Adaptation to Climate Change. Crop. Environ. 2022 , 1 , 145–160. [ Google Scholar ] [ CrossRef ]
  • UN Transforming Our World: The 2030 Agenda for Sustainable Development|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 2 June 2024).
  • Nair, P.K.R.; Gordon, A.M.; Mosquera-Losada, M.R. Agroforestry. In Ecological Engineering of Encyclopedia of Ecology ; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Oxford, UK, 2008; Volume 1, pp. 101–110. [ Google Scholar ]
  • FAO. Agroforestry: Definition. Available online: https://www.fao.org/forestry/en/ (accessed on 24 July 2023).
  • Hougni, D.-G.J.M.; Chambon, B.; Penot, E.; Promkhambut, A. The Household Economics of Rubber Intercropping during the Immature Period in Northeast Thailand. J. Sustain. For. 2018 , 37 , 787–803. [ Google Scholar ] [ CrossRef ]
  • Polthanee, A.; Promkhambut, A.; Khamla, N. Seeking Security through Rubber Intercropping: A Case Study from Northeastern Thailand. KKU Res. J. 2016 , 21 , 1–11. [ Google Scholar ]
  • Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A Sustainable Environmental Practice for Carbon Sequestration under the Climate Change Scenarios—A Review. Environ. Sci. Pollut. Res. 2017 , 24 , 11177–11191. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Huang, I.Y.; James, K.; Thamthanakoon, N.; Pinitjitsamut, P.; Rattanamanee, N.; Pinitjitsamut, M.; Yamklin, S.; Lowenberg-DeBoer, J. Economic Outcomes of Rubber-Based Agroforestry Systems: A Systematic Review and Narrative Synthesis. Agrofor. Syst. 2022 , 97 , 335–354. [ Google Scholar ] [ CrossRef ]
  • Penot, E. Stratégies Paysannes et Évolution des Savoirs: L’hévéaculture Agro-Forestière Indonésienne. Ph.D. Thesis, Université Montpellier, Montpellier, France, 2001. [ Google Scholar ]
  • Diaz-Novellon, S.; Penot, E.; Arnaud, M. Characterisation of Biodiversity in Improved Rubber Agroforests in West-Kalimantan, Indonesia: Real and Potential Uses for Spontaneous Plants. In Land Use, Nature Conservation and the Stability of Rainforest Margins in Southeast Asia ; Springer: Berlin/Heidelberg, Germany, 2002; pp. 427–444. [ Google Scholar ] [ CrossRef ]
  • Warren-Thomas, E.; Nelson, L.; Juthong, W.; Bumrungsri, S.; Brattsrom, O.; Stroesser, L.; Chambon, B.; Penot, E.; Tongkaemkaew, U.; Dolman, P.M. Rubber Agroforestry in Thailand Provides Some Biodiversity Benefits without Reducing Yields. J. Appl. Ecol. 2019 , 57 , 17–30. [ Google Scholar ] [ CrossRef ]
  • Cahyo, A.N.; Babel, M.S.; Datta, A.; Prasad, K.C.; Clemente, R. Evaluation of Land and Water Management Options to Enhance Productivity of Rubber Plantation Using WaNuLCAS Model. AGRIVITA J. Agr. Sci. 2016 , 38 , 93–103. [ Google Scholar ] [ CrossRef ]
  • Sahuri, S. Teknologi tumpangsari karet-tanaman pangan: Kendala dan peluang pengembangan berkelanjutan. J. Penelit. Dan. Pengemb. Pertan. 2019 , 38 , 23. [ Google Scholar ]
  • Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021 , 2 , 494–501. [ Google Scholar ] [ CrossRef ]
  • Duffy, C.; Toth, G.G.; Hagan, R.P.O.; McKeown, P.C.; Rahman, S.A.; Widyaningsih, Y.; Sunderland, T.C.H.; Spillane, C. Agroforestry Contributions to Smallholder Farmer Food Security in Indonesia. Agrofor. Syst. 2021 , 95 , 1109–1124. [ Google Scholar ] [ CrossRef ]
  • Microsoft Corporation. Microsoft Excel. 2019. Available online: https://office.microsoft.com/excel (accessed on 25 March 2021).
  • Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Bastos Lima, M.G.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the Numbers behind Agriculture-Driven Tropical Deforestation. Science 2022 , 377 , eabm9267. [ Google Scholar ] [ CrossRef ]
  • Nugraha, I.S.; Alamsyah, A.; Sahuri, S. Effort to Increase Rubber Farmers’ Income When Rubber Low Prices. J. Perspekt. Pembiayaan dan Pembang. Drh. 2018 , 6 , 345–352. [ Google Scholar ] [ CrossRef ]
  • Jayathilake, H.M.; Jamaludin, J.; De Alban, J.D.T.; Webb, E.L.; Carrasco, L.R. The Conversion of Rubber to Oil Palm and Other Landcover Types in Southeast Asia. Appl. Geogr. 2023 , 150 , 102838. [ Google Scholar ] [ CrossRef ]
  • Tongkaemkaew, U.; Chambon, B. Rubber Plantation Labor and Labor Movements as Rubber Prices Decrease in Southern Thailand. FS. 2018 , 2 , 18. [ Google Scholar ] [ CrossRef ]
  • FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 July 2023).
  • Tongkaemkaew, U.; Penot, E.; Chambon, B. Rubber Agroforestry Systems in Mature Plantations in Phatthalung Province, Southern Thailand. Thaksin J. 2020 , 23 , 78–85. [ Google Scholar ]
  • Rodrigo, V.H.L.; Silva, T.U.K.; Kariyawasam, L.S.; Munasinghe, E.S. Rubber/Timber Intercropping Systems and Their Impact on the Performance of Rubber. J. Rubber Res. Inst. Sri Lanka 2002 , 85 , 10–26. [ Google Scholar ]
  • Silva-Parra, A. Modeling soil carbon stocks and carbon dioxide emissions (GHG) in production systems of Plain Altillanura. Orinoquía 2018 , 22 , 158–171. [ Google Scholar ] [ CrossRef ]
  • Huang, J.; Pan, J.; Zhou, L.; Zheng, D.; Yuan, S.; Chen, J.; Li, J.; Gui, Q.; Lin, W. An Improved Double-Row Rubber (Hevea Brasiliensis) Plantation System Increases Land Use Efficiency by Allowing Intercropping with Yam Bean, Common Bean, Soybean, Peanut, and Coffee: A 17-Year Case Study on Hainan Island, China. J. Clean. Prod. 2020 , 263 , 121493. [ Google Scholar ] [ CrossRef ]
  • Niether, W.; Jacobi, J.; Blaser, W.J.; Andres, C.; Armengot, L. Cocoa Agroforestry Systems versus Monocultures: A Multi-Dimensional Meta-Analysis. Environ. Res. Lett. 2020 , 15 , 104085. [ Google Scholar ] [ CrossRef ]
  • Rodrigues, G.S.; de Barros, I.; Ehabe, E.E.; Lang, P.S.; Enjalric, F. Integrated Indicators for Performance Assessment of Traditional Agroforestry Systems in South West Cameroon. Agrofor. Syst. 2009 , 77 , 9–22. [ Google Scholar ] [ CrossRef ]
  • Penot, E.; Ollivier, I. L’hévéa en association avec les cultures pérennes, fruitières ou forestières: Quelques exemples en Asie, Afrique et Amérique latine. Bois. Trop. 2009 , 301 , 67. [ Google Scholar ] [ CrossRef ]
  • Levang, P. Les agroforets Indonesiennes. Atelier Agroforesterie 16–18 Octobre 1991 , Montpellier, France.
  • Saint-Pierre, C. Evolution of Agroforestry in the Xishuangbanna Region of Tropical China. Agrofor. Syst. 1991 , 13 , 159–176. [ Google Scholar ] [ CrossRef ]
  • Sahuri, N. Pengembangan Tanaman Jagung ( Zea mays L.) di antara Tanaman Karet Belum Menghasilkan. Anal. Kebijak. Pertan. 2018 , 15 , 113. [ Google Scholar ] [ CrossRef ]
  • Rodrigo, V.H.L.; Stirling, C.M.; Teklehaimanot, Z.; Samarasekera, R.K.; Pathirana, P.D. Interplanting Banana at High Densities with Immature Rubber Crop for Improved Water Use. Agron. Sustain. Dev. 2005 , 25 , 45–54. [ Google Scholar ] [ CrossRef ]
  • Liu, Z.; Liu, P.; An, F.; Cheng, L.; Yun, T.; Ma, X. Effects of Cassava Allelochemicals on Rubber Tree Pathogens, Soil Microorganisms, and Soil Fertility in a Rubber Tree–Cassava Intercropping System. J. Rubber Res. 2020 , 23 , 257–271. [ Google Scholar ] [ CrossRef ]
  • Sundari, T.; Purwantoro, P. Kesesuaian Genotipe Kedelai untuk Tanaman Sela di Bawah Tegakan Pohon Karet. J. Penelit. Pertan. Tanam. Pangan 2014 , 33 , 44. [ Google Scholar ] [ CrossRef ]
  • Penot, E.; Utami, A.W.; Purwestri, Y.A.; Wibawa, G.; Aguilar, E.; Somboonsuk, B.; Aris, M.N.M.; Gay, F.; Widiyatno; Wijaya, T.; et al. A Participatory Breeding Initiative for Resilient Rubber Cultivation Systems for Smallholders in a Context of Global Change. In Proceedings of the E3S Web of Conferences ; Asih Purwestri, Y., Subandiyah, S., Montoro, P., Dyah Sawitri, W., Restu Susilo, K., Yoga Prasada, I., Wirakusuma, G., Dewi, A., Eds.; EDP Science: Les Ulis, France, 2021; Volume 305, p. 01001. [ Google Scholar ] [ CrossRef ]
  • Penot, E.; Yeo, S.Y.; Hua, M.W.; Sophea, D.; Kimchhin, D.; Bunnarith, D. Rubber Agroforestry Systems (RAS) for a Sustainable Agriculture ; Forests, Trees and Agroforestry Program from CIFOR: Jambi, Indonesia, 2022. [ Google Scholar ]
  • Penot, E.; Ilahang, I.; Asgnari, A.; Dinas, P. Rubber Agroforestry Systems in Kalimantan, Indonesia. Which Changes from 1994 to 2019? SRAP/RAS (Smallholder Rubber Agroforestry Project/Rubber Agroforestry Systems) ; CIRAD/Umr Innovation, Forests, Trees and Agroforestry Program from CIFOR: Jambi, Indonesia, 2019. [ Google Scholar ]
  • Sahuri; Rosyid, M.J.; Agustina, D.S. Development of Wide Row Spacing to Increase Land Productivity of Rubber Plantation ; International Rubber Conference: Siem Reap, Cambodia, 2016; pp. 364–371. [ Google Scholar ]
  • Sahuri; Ardika, R.; Tistama, R.; Oktavia, F. A Review: The Development of Double Row Spacing to Improve Land Productivity and Income of Rubber Smallholders. E3S Web Conf. 2021 , 305 , 03002. [ Google Scholar ] [ CrossRef ]
  • Sahuri, S.; Cahyo, A.N.; Ardika, R.; Nugraha, I.S.; Alamsyah, A.; Nurmansyah, N. Modification of Rubber (Hevea Brasiliensis Muell. Arg.) Spacing for Long-Term Intercropping. J. Trop. Crop. Sci. 2019 , 6 , 50–59. [ Google Scholar ] [ CrossRef ]
  • Szott, L.T.; Palm, C.A.; Sanchez, P.A. Agroforestry in Acid Soils of the Humid Tropics. In Advances in Agronomy ; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1991; Volume 45, pp. 275–301. [ Google Scholar ]
  • Kanmegne, J.; Bayomock, L.A.; Duguma, B.; Ladipo, D.O. Screening of 18 Agroforestry Species for Highly Acid and Aluminum Toxic Soils of the Humid Tropics. Agrofor. Syst. 2000 , 49 , 31–39. [ Google Scholar ] [ CrossRef ]
  • Londo, J.P.; Chiang, Y.-C.; Hung, K.-H.; Chiang, T.-Y.; Schaal, B.A. Phylogeography of Asian Wild Rice, Oryza Rufipogon , Reveals Multiple Independent Domestications of Cultivated Rice, Oryza sativa . Proc. Natl. Acad. Sci. USA 2006 , 103 , 9578–9583. [ Google Scholar ] [ CrossRef ]
  • Stebbins, G.L. The Inviability, Weakness, and Sterility of Interspecific Hybrids. In Advances in Genetics ; Demerec, M., Ed.; Academic Press: Cambridge, MA, USA, 1958; Volume 9, pp. 147–215. [ Google Scholar ]
  • Brar, D.S.; Khush, G.S. Wild Relatives of Rice: A Valuable Genetic Resource for Genomics and Breeding Research. In The Wild Oryza Genomes ; Mondal, T.K., Henry, R.J., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–25. ISBN 978-3-319-71997-9. [ Google Scholar ]
  • Koundinya, A.V.V.; Das, A.; Hegde, V. Mutation Breeding in Tropical Root and Tuber Crops. In Mutation Breeding for Sustainable Food Production and Climate Resilience ; Penna, S., Jain, S.M., Eds.; Springer Nature: Singapore, 2023; pp. 779–809. ISBN 9789811697203. [ Google Scholar ]
  • Li, W.; Katin-Grazzini, L.; Gu, X.; Wang, X.; El-Tanbouly, R.; Yer, H.; Thammina, C.; Inguagiato, J.; Guillard, K.; McAvoy, R.J.; et al. Transcriptome Analysis Reveals Differential Gene Expression and a Possible Role of Gibberellins in a Shade-Tolerant Mutant of Perennial Ryegrass. Front. Plant Sci. 2017 , 8 , 868. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Al-Khatib, K.; Paulsen, G.M. High-Temperature Effects on Photosynthetic Processes in Temperate and Tropical Cereals. Crop. Sci. 1999 , 39 , 119–125. [ Google Scholar ] [ CrossRef ]
  • Bindumadhava, H.; Nair, R.M.; Nayyar, H.; Riley, J.J.; Easdown, W. Mungbean Production under a Changing Climate—Insights from Growth Physiology. Mysore J. Agric. Sci. 2017 , 51 , 21–26. [ Google Scholar ]
  • Liu, Q.; Peng, P.; Wang, Y.; Xu, P.; Guo, Y. Microclimate Regulation Efficiency of the Rural Homegarden Agroforestry System in the Western Sichuan Plain, China. J. Mt. Sci. 2019 , 16 , 516–528. [ Google Scholar ] [ CrossRef ]
  • Singh, U.; Matthews, R.B.; Griffin, T.S.; Ritchie, J.T.; Hunt, L.A.; Goenaga, R. Modeling Growth and Development of Root and Tuber Crops. In Understanding Options for Agricultural Production ; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Systems Approaches for Sustainable Agricultural Development; Springer: Dordrecht, The Netherlands, 1998; pp. 129–156. ISBN 978-94-017-3624-4. [ Google Scholar ]
  • Watts, M.; Hutton, C.; Mata Guel, E.O.; Suckall, N.; Peh, K.S.-H. Impacts of Climate Change on Tropical Agroforestry Systems: A Systematic Review for Identifying Future Research Priorities. Front. For. Glob. Chang. 2022 , 5 , 880621. [ Google Scholar ] [ CrossRef ]
  • Sparkes, D.L.; King, M. Disentangling the Effects of PAR and R:FR on Lodging-Associated Characters of Wheat (Triticum Aestivum). Ann. Appl. Biol. 2008 , 152 , 1–9. [ Google Scholar ] [ CrossRef ]
  • Wille, W.; Pipper, C.B.; Rosenqvist, E.; Andersen, S.B.; Weiner, J. Reducing Shade Avoidance Responses in a Cereal Crop. AoB Plants 2017 , 9 , plx039. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wen, Z.; Wu, J.; Yang, Y.; Li, R.; Ouyang, Z.; Zheng, H. Implementing Intercropping Maintains Soil Water Balance While Enhancing Multiple Ecosystem Services. Catena 2022 , 217 , 106426. [ Google Scholar ] [ CrossRef ]
  • Yang, B.; Meng, X.; Singh, A.K.; Wang, P.; Song, L.; Zakari, S.; Liu, W. Intercrops Improve Surface Water Availability in Rubber-Based Agroforestry Systems. Agric. Ecosyst. Environ. 2020 , 298 , 106937. [ Google Scholar ] [ CrossRef ]
  • Arunakumara, K.K.I.U.; Walpola, B.C.; Yoon, M.-H. Aluminum Toxicity and Tolerance Mechanism in Cereals and Legumes—A Review. J. Korean Soc. Appl. Biol. Chem. 2013 , 56 , 1–9. [ Google Scholar ] [ CrossRef ]
  • Gauthier, R. Vertebrate Pests, Crop and Soil: The Case for an Agroforestry Approach to Agriculture on Recently Deforested Land in North Lampung. Agrivita 1996 , 19 , 206–212. [ Google Scholar ]
  • Pumariño, L.; Sileshi, G.W.; Gripenberg, S.; Kaartinen, R.; Barrios, E.; Muchane, M.N.; Midega, C.; Jonsson, M. Effects of Agroforestry on Pest, Disease and Weed Control: A Meta-Analysis. Basic Appl. Ecol. 2015 , 16 , 573–582. [ Google Scholar ] [ CrossRef ]
  • Schroth, G.; Krauss, U.; Gasparotto, L.; Duarte Aguilar, J.A.; Vohland, K. Pests and Diseases in Agroforestry Systems of the Humid Tropics. Agrofor. Syst. 2000 , 50 , 199–241. [ Google Scholar ] [ CrossRef ]
  • Deng, Y.; Ning, Y.; Yang, D.-L.; Zhai, K.; Wang, G.-L.; He, Z. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Mol. Plant 2020 , 13 , 1402–1419. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gilliham, M.; Able, J.A.; Roy, S.J. Translating Knowledge about Abiotic Stress Tolerance to Breeding Programmes. Plant J. 2017 , 90 , 898–917. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Mir, R.R.; Zaman-Allah, M.; Sreenivasulu, N.; Trethowan, R.; Varshney, R.K. Integrated Genomics, Physiology and Breeding Approaches for Improving Drought Tolerance in Crops. Theor. Appl. Genet. 2012 , 125 , 625–645. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Mallik, S.; Mandal, B.K.; Sen, S.N.; Sarkarung, S. Shuttle-Breeding: An Effective Tool for Rice Varietal Improvement in Rainfed Lowland Ecosystem in Eastern India. Curr. Sci. 2002 , 83 , 1097–1102. [ Google Scholar ]
  • Atlin, G.N.; Baker, R.J.; McRae, K.B.; Lu, X. Selection Response in Subdivided Target Regions. Crop. Sci. 2000 , 40 , 7–13. [ Google Scholar ] [ CrossRef ]
  • Venuprasad, R.; Lafitte, H.R.; Atlin, G.N. Response to Direct Selection for Grain Yield under Drought Stress in Rice. Crop. Sci. 2007 , 47 , 285–293. [ Google Scholar ] [ CrossRef ]
  • Ceccarelli, S.; Grando, S. Decentralized-Participatory Plant Breeding: An Example of Demand Driven Research. Euphytica 2007 , 155 , 349–360. [ Google Scholar ] [ CrossRef ]
  • Nair, P.K.R. Tropical Agroforestry Systems and Practices. In Tropical Resource Ecology and Development ; John Wiley: Hoboken, NJ, USA, 1984; pp. 1–23. [ Google Scholar ]
  • Lundgren, B.O.; Raintree, J.B. Sustained Agroforestry. In Agricultural Research for Development: Potentials and Challenges in Asia ; ISNAR: The Hague, The Netherlands, 1983; ICRAF Reprint No 3. [ Google Scholar ]
  • Veldkamp, E.; Schmidt, M.; Markwitz, C.; Beule, L.; Beuschel, R.; Biertümpfel, A.; Bischel, X.; Duan, X.; Gerjets, R.; Göbel, L.; et al. Multifunctionality of Temperate Alley-Cropping Agroforestry Outperforms Open Cropland and Grassland. Commun. Earth Environ. 2023 , 4 , 20. [ Google Scholar ] [ CrossRef ]
  • Widodo, Y. Food from the Forest of Java: Tropical Agro-Forestry Experiences in Feeding Dwellers and Keeping the Environment Greener ; Wessex Institute of Technology (WIT) Press: Southampton, UK; Boston, MA, USA, 2011; pp. 281–293. [ Google Scholar ]
  • Sibuea, S.M.; Kardhinata, E.H.; Ilyas, S. Identification and Inventory type of Tuberous crops that Potential as a Source of Alternative Carbohydrates in Serdang Bedagai Regency. J. Online Agroekoteknologi 2014 , 2 , 1408–1418. [ Google Scholar ]
  • Wahyono, A.; Arifianto, A.S.; Wahyono, N.D.; Riskiawan, H.Y. The economic prospect of utilization of idle land productivityfor cultivation ofporang and oyster mushroom in east java. J. Cakrawala 2017 , 11 , 171–180. [ Google Scholar ]
  • Atiah, S.; Kaswinarni, F.; Dewi, L.R. Keanekaragaman jenis umbi-umbian yang berpotensi sebagai bahan pangan di desa ngesrepbalong kabupaten kendal. In Proceedings of the Seminar Nasional Edusainstek ; EDUSAINTEK: Yogyakarta, Indonesia, 2019; pp. 390–396. ISBN 2685-5852. [ Google Scholar ]
  • Curl, E.A. Control of Plant Diseases by Crop Rotation. Bot. Rev. 1963 , 29 , 413–479. [ Google Scholar ] [ CrossRef ]
  • Rusch, A.; Bommarco, R.; Jonsson, M.; Smith, H.G.; Ekbom, B. Flow and Stability of Natural Pest Control Services Depend on Complexity and Crop Rotation at the Landscape Scale. J. Appl. Ecol. 2013 , 50 , 345–354. [ Google Scholar ] [ CrossRef ]
  • Ariful Islam, M.; Sarkar, D.; Robiul Alam, M.; Jahangir, M.M.R.; Ali, M.O.; Sarker, D.; Hossain, M.F.; Sarker, A.; Gaber, A.; Maitra, S.; et al. Legumes in Conservation Agriculture: A Sustainable Approach in Rice-Based Ecology of the Eastern Indo-Gangetic Plain of South Asia—An Overview. Technol. Agron. 2023 , 3 , 1–17. [ Google Scholar ] [ CrossRef ]
  • Panneerselvam, P.; Senapati, A.; Chidambaranathan, P.; Prabhukarthikeyan, S.R.; Mitra, D.; Pandi Govindharaj, G.P.; Nayak, A.K.; Anandan, A. Long-Term Impact of Pulses Crop Rotation on Soil Fungal Diversity in Aerobic and Wetland Rice Cultivation. Fungal Biol. 2023 , 127 , 1053–1066. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Sahuri Pengaturan pola tanam karet ( Hevea brasiliensis ) untuk tumpang sari jangka panjang. J. Ilmu Pertan. Indones. 2017 , 22 , 46–51. [ CrossRef ]
  • Herlinawati, E.; Montoro, P.; Ismawanto, S.; Syafaah, A.; Aji, M.; Giner, M.; Flori, A.; Gohet, E.; Oktavia, F. Dynamic Analysis of Tapping Panel Dryness in Hevea Brasiliensis Reveals New Insights on This Physiological Syndrome Affecting Latex Production. Heliyon 2022 , 8 , e10920. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current Trends of Rubber Plantation Expansion May Threaten Biodiversity and Livelihoods. Glob. Environ. Chang. 2015 , 34 , 48–58. [ Google Scholar ] [ CrossRef ]
  • Cahyo, A.N.; Murti, R.H.; Putra, E.T.S.; Oktavia, F.; Ismawanto, S.; Mournet, P.; Fabre, D.; Montoro, P. Screening and QTLs Detection for Drought Factor Index Trait in Rubber (Hevea Brasiliensis Müll. Arg.). Ind. Crop. Prod. 2022 , 190 , 115894. [ Google Scholar ] [ CrossRef ]
  • Darojat, M.R.; Ardhie, S.W.; Oktavia, F.; Sudarsono, S. New Leaf Fall Disease in Rubber-Pathogen Characterization and Rubber Clone Resistance Evaluation Using Detached Leaf Assay. Biodiversitas J. Biol. Divers. 2023 , 24 , 1935–1945. [ Google Scholar ] [ CrossRef ]
  • Putranto, R.-A.; Herlinawati, E.; Rio, M.; Leclercq, J.; Piyatrakul, P.; Gohet, E.; Sanier, C.; Oktavia, F.; Pirrello, J.; Kuswanhadi; et al. Involvement of Ethylene in the Latex Metabolism and Tapping Panel Dryness of Hevea brasiliensis . Int. J. Mol. Sci. 2015 , 16 , 17885–17908. [ Google Scholar ] [ CrossRef ]
  • Qi, D.; Wu, Z.; Yang, C.; Xie, G.; Li, Z.; Yang, X.; Li, D. Can Intercropping with Native Trees Enhance Structural Stability in Young Rubber ( Hevea brasiliensis ) Agroforestry System? Eur. J. Agron. 2021 , 130 , 126353. [ Google Scholar ] [ CrossRef ]
  • Sudomo, A.; Leksono, B.; Tata, H.L.; Rahayu, A.A.D.; Umroni, A.; Rianawati, H.; Asmaliyah; Krisnawati; Setyayudi, A.; Utomo, M.M.B.; et al. Can Agroforestry Contribute to Food and Livelihood Security for Indonesia’s Smallholders in the Climate Change Era? Agriculture 2023 , 13 , 1896. [ Google Scholar ] [ CrossRef ]
  • Hairmansis, A.; Yullianida, Y.; Hermanasari, R.; Lestari, A.P. Development of Shading Tolerant Rice Varieties Suitable for Intercropping Cultivation in Agroforestry Systems. In Proceedings of the E3S Web of Conferences, Krasnoyarsk, Russia, 14–17 September 2021; Asih Purwestri, Y., Subandiyah, S., Montoro, P., Dyah Sawitri, W., Restu Susilo, K., Yoga Prasada, I., Wirakusuma, G., Dewi, A., Eds.; EDP Science: Les Ulis, France, 2021; Volume 305, p. 07001. [ Google Scholar ] [ CrossRef ]
  • Wahyuningsih, S.; Sundari, T.; Sutrisno; Harnowo, D.; Harsono, A.; Soehendi, R.; Mejaya, M.J. Growth and Productivity of Soybean (Glycine Max (L) Merr.) Genotypes under Shading. Appl. Ecol. Environ. Res. 2021 , 19 , 3377–3392. [ Google Scholar ] [ CrossRef ]
  • Syahruddin, K.; Azrai, M.; Nur, A.; Abid, M.; Wu, W.Z. A Review of Maize Production and Breeding in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020 , 484 , 012040. [ Google Scholar ] [ CrossRef ]
  • Ngongo, Y.; Basuki, T.; deRosari, B.; Mau, Y.S.; Noerwijati, K.; da Silva, H.; Sitorus, A.; Kotta, N.R.E.; Utomo, W.H.; Wisnubroto, E.I. The Roles of Cassava in Marginal Semi-Arid Farming in East Nusa Tenggara—Indonesia. Sustainability 2022 , 14 , 5439. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

CategoryTag
Cropping systemMonoculture, intercropping, agroforestry, jungle rubber, annual associated crop, etc.
CountryBrazil, Cameroon, China, Colombia, Ghana, India, Indonesia, Laos, Malaysia, Thailand, etc., and world (for review papers combining research from several countries)
Main tree speciesRubber, oil palm, cocoa, coffee, teak, kayu putih, eucalyptus, etc.
Intercrop typePerennial intercrop, annual intercrop, multi-species intercrop, etc.
Intercrop productIndustrial, medicinal purpose, food, timber, mushroom, fodder, etc.
Level of product useCommercial, subsistence, etc.
Discipline of the studyAgronomy, plant protection, agro-ecology, sociology, economy, breeding, soil science, ecophysiology, etc.
Research topicFarming system, cropping practices, ecosystem services, socio-economic services, etc.
Intercrop speciesRice, maize, soybean, elephant foot yam, coffee, pepper, etc.
Tree Species Associated with RubberJournal Articles (No)
Albizia1
Arecanut1
Cocoa8
Coconut1
Coffee1
Durian1
Gmelina1
Neem1
Oil palm4
Palaquium1
Pongamia1
Simarouba1
Disciplines Covered by ArticlesJournal Article (No)
Agronomy63
Ecology28
Economy12
Plant physiology3
sociology4
Agronomy, breeding1
Agronomy, ecology2
Agronomy, economy1
Forestry, economy1
Sociology, economy19
Agronomy, economy, sociology3
Ecology, sociology, economy1
Agronomy, ecology, sociology1
Food CropLife Cycle
(Month)
Upland rice3.5–7.0
Maize3.0–5.0
Sorghum3.0–5.0
Soybean2.5–5.0
Mung bean2.5–4.0
Cowpea2.5–3.0
Pigeon pea3.0–9.0
Cassava6.0–12.0
Sweet potato3.5–5.0
Arrowroot8.0–12.0
Canna root8.0–10.0
Yam5.0–7.0
Coco yam5.0–6.0
Taro7.0–12.0
Elephant foot yam7.0–9.0
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Cahyo, A.N.; Dong, Y.; Taryono; Nugraha, Y.; Junaidi; Sahuri; Penot, E.; Hairmansis, A.; Purwestri, Y.A.; Akbar, A.; et al. Rubber-Based Agroforestry Systems Associated with Food Crops: A Solution for Sustainable Rubber and Food Production? Agriculture 2024 , 14 , 1038. https://doi.org/10.3390/agriculture14071038

Cahyo AN, Dong Y, Taryono, Nugraha Y, Junaidi, Sahuri, Penot E, Hairmansis A, Purwestri YA, Akbar A, et al. Rubber-Based Agroforestry Systems Associated with Food Crops: A Solution for Sustainable Rubber and Food Production? Agriculture . 2024; 14(7):1038. https://doi.org/10.3390/agriculture14071038

Cahyo, Andi Nur, Ying Dong, Taryono, Yudhistira Nugraha, Junaidi, Sahuri, Eric Penot, Aris Hairmansis, Yekti Asih Purwestri, Andrea Akbar, and et al. 2024. "Rubber-Based Agroforestry Systems Associated with Food Crops: A Solution for Sustainable Rubber and Food Production?" Agriculture 14, no. 7: 1038. https://doi.org/10.3390/agriculture14071038

Article Metrics

Article access statistics, supplementary material.

ZIP-Document (ZIP, 74 KiB)

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Acta Crystallographica Section D
Acta Crystallographica
Section D
STRUCTURAL BIOLOGY

Journals Logo

1. Introduction

2. materials and methods, 4. discussion, 5. conclusion and outlook, supporting information.

sample discussion section of a research paper

Format BIBTeX
EndNote
RefMan
Refer
Medline
CIF
SGML
Plain Text
Text

sample discussion section of a research paper

research papers \(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

STRUCTURAL
BIOLOGY

Open Access

Factors affecting macromolecule orientations in thin films formed in cryo-EM

a National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Post, Bellary Road, Bengaluru 560 065, India * Correspondence e-mail: [email protected]

The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air–water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.

Keywords: cryo-EM ; thin films ; preferred macromolecular orientation ; surfactants ; temperature .

EMDB references: CRP pentamer with CTAB, EMD-37864 ; CRP decamer with CTAB, EMD-37865 ; PaaZ with CTAB at 4°C, EMD-37866 ; catalase with SLS, EMD-37952 ; spike with CTAB, EMD-37953 ; catalase at 20°C, EMD-37954 ; catalase at 4°C, EMD-37955 ; catalase with CTAB, EMD-37956 ; β-galactosidase, no tag, EMD-39808 ; β-galactosidase, with tag, EMD-39809

PDB references: CRP pentamer with CTAB, 8wv4 ; CRP decamer with CTAB, 8wv5 ; PaaZ with CTAB at 4°C, 8wv6 ; catalase with SLS, 8wzh ; spike with CTAB, 8wzi ; catalase at 20°C, 8wzj ; catalase at 4°C, 8wzk ; catalase with CTAB, 8wzm


Examples of anisotropic cryo-EM maps resulting from orientation bias. The upper panel shows the reference-free 2D class averages of ( ) SARS-CoV-2 spike protein and ( ) human erythrocyte catalase. For the spike protein, preferred bottom views are observed. In the case of catalase, a preference for the top/bottom view is evident. In the lower panel, 3D maps with anisotropic features are shown for the preferred and perpendicular views as labelled. The symmetries applied during reconstruction were 1 and 2 for the spike protein and catalase, respectively.

To achieve this goal, we tested some commonly used surfactants with different properties on a set of five proteins: C-reactive protein (CRP) pentamers, CRP decamers, catalase, PaaZ and spike. In addition, we explored the effect of the presence of the histidine tag for spike and β -galactosidase and of physical factors such as the temperature during the sample-application step for catalase and PaaZ. We also serendipitously observed an effect of the grid hole dimensions of the holey carbon grid on the orientation distribution of catalase and discuss this briefly. Through this analysis, we identified factors that affect and determine the behaviour of the macromolecule on grids before freezing and studied their effects with a focus on the preferred orientation problem. This account highlights the factors that contribute to orientation bias and provides valuable information that can assist in achieving the optimal freezing conditions for any given macromolecule.

2.1. Source of proteins

Human C-reactive protein (catalogue No. C4063) and human erythrocyte catalase (catalogue No. C3556) were obtained from Sigma–Aldrich. The protein samples were either concentrated using an Amicon 100 kDa concentrator or diluted in respective buffers for grid freezing. All detergent stocks were made in ultrapure water and dilutions were made and used on the day of the experiment.

The SARS-CoV-2 S plasmid was a kind gift from the Krammer laboratory at Icahn School of Medicine, Mount Sinai. The spike gene was amplified from the plasmid and subcloned in the BacMam vector with a C-terminal HRV 3C cleavage tag followed by a seven-histidine and twin Strep tag. Bacmid DNA and virus were prepared as described in the Invitrogen Bac-to-Bac manual. After two generations of amplification in Sf9 cells, the V2 virus was used for transfection of HEK293F cells at a density of 2 million per millilitre. Sodium butyrate (4 m M ) was added to enhance the production of protein 8 h post-infection. The medium supernatant containing the secreted spike protein was harvested on day 3 by centrifuging the cells at 150 g for 10 min. The medium was incubated with pre-equilibrated Ni–NTA (Qiagen) beads at room temperature for 1–2 h (1 ml of beads per 200 ml of medium). The Ni–NTA beads were washed with phosphate-buffered saline (PBS) containing 20 m M imidazole, followed by elution with 280 m M imidazole in PBS. The eluted protein was run on SDS–PAGE to assess its purity, further concentrated and injected onto a 24 ml Superdex 200 (Cytiva) size-exclusion column to exchange the buffer to 50 m M Tris pH 8, 200 m M NaCl, 1 m M DTT. To cleave the tag, the eluted fractions from Ni–NTA chromatography were diluted with 50 m M Tris pH 8, 200 m M NaCl, 1 m M DTT and incubated with HRV 3C protease overnight at 4°C, followed by reverse IMAC to obtain the spike protein without tag in the flowthrough. The flowthrough was concentrated using an Amicon 100 kDa concentrator, flash-frozen using liquid nitrogen and stored at −80°C until further use.

2.2. Grid preparation

6.3 µl of the protein was thawed on ice and 0.7 µl of 10× additive (surfactant) stock was added to obtain a final concentration of 1×. This sample was incubated on ice for 2–5 min and then centrifuged at 21 000 g for 20 min. Meanwhile, a Vitrobot Mark IV (Thermo Fisher Scientific) chamber was equilibrated at 20°C (unless stated otherwise) and 100% humidity. Quantifoil 1.2/1.3 or Quantifoil 0.6/1 grids were glow-discharged in a reduced-air environment with a PELCO easiGlow chamber using a standard setting of 25 mA current for 1 min. The grid was mounted on the Vitrobot Mark IV and 3 µl of sample was applied to the grid. A blotting time of 3–4 s, a wait time of 10 s and a blot force of 0 were used to obtain a thin film of the specimen. For data sets where grids were prepared at different temperatures, the protein was incubated on a thermal block at the required temperature for 3–7 min before applying it to the grid. The Vitrobot chamber was maintained at the required temperature and 100% humidity. The blot time, blot force and wait time were kept constant.

2.3. Grid screening and data collection


Summary of the parameters for data sets collected under different conditions

Protein Condition Grid type (Quantifoil) Buffer composition Protein concentration (mg ml ) Detector Box size (pixels) Pixel size
CRP pentamer and decamer No additive 1.2/1.3 20 m Tris pH 8, 280 m NaCl, 5 m CaCl , 0.03% NaN 2.1 Falcon 3 256 1.07
CTAB 1.2/1.3 2.6 Falcon 3 256 1.07
SLS 1.2/1.3 2.6 K2 320 1.08
Tween 20 1.2/1.3 3.6 K2 320 1.08
Tween 80 1.2/1.3 6.8 K2 320 1.08
A8-35 1.2/1.3 3.6 Falcon 3 320 1.07
Catalase No additive, 20°C 1.2/1.3 50 m Tris pH 8 0.625 Falcon 3 256 1.07
CTAB 1.2/1.3 3.4 K2 320 1.08
SLS 1.2/1.3 3.4 Falcon 3 256 1.07
Tween 20 1.2/1.3 3.4 K2 320 1.08
Tween 80 1.2/1.3 4.1 Falcon 3 320 1.07
A8-35 1.2/1.3 3.4 Falcon 3 320 1.07
4°C 1.2/1.3 0.625 Falcon 3 256 1.07
37°C 1.2/1.3 0.625 Falcon 3 320 1.38
4°C 0.6/1 0.625 Falcon 3 320 1.07
20°C 0.6/1 0.625 Falcon 3 256 1.07
PaaZ No additive, 4°C 0.6/1 25 m HEPES pH 7.4, 50 m NaCl 0.8 Falcon 3 320 1.07
No additive, 20°C 0.6/1 0.8 Falcon 3 256 1.07
No additive, 37°C 0.6/1 0.8 Falcon 3 1.38
CTAB, 4°C 0.6/1 0.8 Falcon 3 256 1.07
Spike With tag, no additive 0.6/1 50 m Tris pH 8, 200 m NaCl, 1 m DTT 1 Falcon 3 256 1.07
With tag, with CTAB 0.6/1 1.3 Falcon 3 320 1.07
Without tag, no additive 0.6/1 2 Falcon 3 256 1.07
Without tag, with CTAB 0.6/1 2 Falcon 3 256 1.07
β-Galactosidase With tag, no additive 0.6/1 100 m Tris pH 8, 200 m NaCl, 5 m CaCl 2.5 m MgCl , 2 m β-ME 5 Falcon 3 320 1.07
Without tag, no additive 0.6/1 5 Falcon 3 320 1.07

2.4. Data processing and model refinement

3.1. analysis of preferred views of selected macromolecules.


Representative micrographs, with a few selected particles indicated with red circles, and 2D class averages of the test proteins used in this study. ( ) The C-reactive protein (CRP) pentamer adopts a preferred bottom view, which shows the pentameric arrangement of the monomers. ( ) The CRP decamer adopts a preferred side view, which shows the staggered arrangement of two CRP pentamers stacked on top of each other. The same micrograph is used in ( ) and ( ). ( ) Catalase adopts a preferred top view, as seen in the micrograph and 2D class averages. ( ) SARS-CoV-2 spike adopts a preferred bottom view showing the trimeric arrangement. ( ) PaaZ adopts a preferred side view, as seen in the 2D class averages, and the micrograph shows occasional clumping of hexamers on the grids. ( ) β-Galactosidase with an N-terminal polyhistidine tag adopts a preferred side view, as seen in the 2D class averages, and the micrograph shows aggregation on grids. For the above data sets, the catalase and PaaZ grids were prepared at 4°C and all other grids were prepared at 20°C.

3.2. Surfactants affect macromolecule orientation distributions in a charge-dependent manner


Properties of the surfactants used in this study

Additive Charge Ionic or non-ionic CMC Concentration used Aggregation number Molecular weight (Da) Alkyl-chain length Saturation in alkyl chain
CTAB Positive Ionic 1 m (0.04%) 0.054 m (0.002%) 170 364 16 Saturated
SLS Negative Ionic 14.6 m (0.42%) 1.37 m (0.04%) 293 12 Saturated
Tween 20 Neutral Non-ionic 0.06 m (0.007%) 0.04 m (0.005%) 80 1228 12 Saturated
Tween 80 Neutral Non-ionic 0.012 m (0.002%) 0.038 m (0.005%) 58 1310 18 Unsaturated
A8-35 Negative Ionic NA 0.01% NA ∼9000 NA NA


Comparison of parameters for no-additive and surfactant-additive data sets

Protein Condition No. of particles Resolution (Å) (half-map FSC 0.143) Efficiency of Fourier space coverage Sphericity
CRP pentamer No additive 14601 18 0.78 NA
CTAB 36353 3.3 0.80 0.98
SLS 31699 4.2 0.80 0.97
Tween 20 25674 3.3 0.80 0.86
Tween 80 32330 7.5 0.69 NA
A8-35 26737 10 0.78 NA
CRP decamer No additive 9419 20 0.52 NA
CTAB 25992 3.5 0.85 0.98
SLS 59211 3.7 0.79 0.97
Tween 20 51784 4.0 0.78 0.92
Tween 80 36870 4.2 0.79 0.76
A8-35 104369 3.5 0.78 0.98
Catalase No additive 138000 2.7 0.72 0.96
CTAB 153336 2.8 0.76 0.97
SLS 33241 3.7 0.80 0.98
Tween 20 88395 2.9 0.78 0.98
Tween 80 92163 2.9 0.80 0.96
A8-35 122000 3.1 0.77 0.98
PaaZ No additive 51393 4.0 0.76 0.80
CTAB 89454 2.3 0.75 0.98

Orientation-distribution plots from (Scheres, 2012 ) of proteins upon the addition of surfactants with varying properties to the sample buffer before grid preparation. The reference structures of the respective proteins are generated by creating a surface representation in from models from PDB entries , , and . ( ) Changes in the CRP pentamer orientation distribution upon the addition of surfactants. The distributions are distinct from each other, except for Tween 20 and Tween 80, which have similar distributions. ( ) Changes in the CRP decamer orientation distribution upon addition; all surfactants lead to a similar even orientation distribution. ( ) Changes in the catalase orientation distribution upon the addition of surfactants, where the charged surfactants have distinct distributions (CTAB and SLS) and the neutral surfactants (Tween 20 and Tween 80) and A8-35 show similar distributions. ( ) Changes in PaaZ orientation distributions upon the addition of the cationic CTAB. The effects of SLS and Tween 20 on PaaZ were also tested, but visual inspection of the micrographs ( ) showed no improvement and no data were collected; therefore they are not included (marked by asterisks). The effects of Tween 80 and A8-35 on PaaZ were not tested.

3.3. The presence of a solvent-exposed polyhistidine tag affects protein orientations in thin films


The effect of a polyhistidine affinity tag on the SARS-CoV-2 spike protein and β-galactosidase orientation distributions. The different parameters that are used to analyse the quality of the maps are shown next to the orientation plots. indicates the number of particles used for reconstruction, indicates the final resolution of the map, indicates the sphericity and indicates the efficiency of Fourier space coverage. ( ) The locations of the tags on the protein models are indicated by black stars. The models used as references are PDB entries and for the spike protein and β-galactosidase, respectively. ( ) The orientation-distribution plots of the spike protein change upon removal of the affinity tag, but the change is not sufficient to obtain an isotropic map. The addition of the cationic CTAB further alters the orientations of the spike protein without tag and leads to a more isotropic map. β-Galactosidase enzyme (bottom panel) orientations change upon removal of the affinity tag and lead to an isotropic high-resolution map without any additive. The unsharpened final combined maps are shown in grey in ( ).

3.4. The temperature of the incubation chamber during freezing affects protein orientations


The effect of temperature during cryo-EM sample preparation of catalase and PaaZ. Micrographs, maps, orientation-distribution plots and the different parameters that are used to analyse the quality of the maps are shown. indicates the number of particles used for reconstruction, indicates the final resolution of the map, indicates the sphericity and indicates the efficiency of Fourier space coverage. ( ) Catalase orientation distributions change significantly when grids are blotted at different temperatures in the absence of any additive. ( ) PaaZ orientation distributions change slightly when grids are held and blotted at different temperatures in the absence of any additive. In the case of PaaZ, the condition with grids prepared at 4°C with CTAB as an additive is included for comparison as this combination led to a high-resolution isotropic map.

It is evident from these observations that physical factors, such as the grid-preparation temperature, can affect protein behaviour and should be considered as an important screening condition when dealing with orientation bias along with surfactants.

3.5. High-resolution map of E. coli PaaZ in ice


High-resolution cryo-EM map from PaaZ grids prepared at 4°C with CTAB additive. ( ) Comparison of the half-maps and map-versus-model FSCs of the PaaZ data set. ( ) The six coloured individually and in cartoon representation fitted into the cryo-EM map (transparent grey) of PaaZ. ( ) Electrostatic potential surface representation of the domain-swapped PaaZ dimer with waters modelled and shown as cyan spheres. ( ) ResLog plot of PaaZ with the experimental and theoretical numbers of particles required to reach a particular resolution. indicates the number of particles used for reconstruction, is the resolution and indicates the factor, as estimated by post-processing. 3 symmetry was applied for the reconstruction and the ResLog plot indicates the number of particles used, not the number of asymmetric units averaged.

Supplementary Figures and Tables. DOI: https://doi.org/10.1107/S2059798324005229/rr5238sup1.pdf

Acknowledgements

We acknowledge the National Cryo-EM Facility, Bangalore for data collection, which is supported by the Department of Biotechnology (DBT/PR12422/MED/31/287/2014), and the computing facility in the Bangalore Life Science Cluster. We thank Professor Ramaswamy S and all of the laboratory members for critical reading of the manuscript. KRV is part of the EMBO Global Investigator Network. KRV acknowledges the discussion with Drs Pamela Williams and Judith Reeks, Astex, UK on β -galactosidase and the effect of tags. The authors declare no conflicts of interest.

Funding information

KRV acknowledges the support of the Department of Atomic Energy, Government of India under Project Identification No. RTI4006. SY acknowledges the graduate fellowship from TIFR/NCBS.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence , which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Follow Acta Cryst. D

IMAGES

  1. How to Write a Discussion Section

    sample discussion section of a research paper

  2. How To Write The Discussion Section Of A Research Paper Apa Ee :

    sample discussion section of a research paper

  3. College essay: Apa paper discussion section

    sample discussion section of a research paper

  4. A Guide on Writing A Discussion Section Of A Research Paper

    sample discussion section of a research paper

  5. How To Write The Discussion Section Of A Research Paper Apa Ee

    sample discussion section of a research paper

  6. How To Write The Discussion Section Of A Research Paper Apa Ee

    sample discussion section of a research paper

VIDEO

  1. TOEFL Writing for an Academic Discussion (New Question Type)

  2. Dissertation discussion chapter

  3. How to write the discussion chapter in research paper? Single most important tip

  4. What to avoid in writing the methodology section of your research

  5. Overview of a Discussion Chapter

  6. How to write Your Methodology for the Dissertations || step by step Guide with Example

COMMENTS

  1. How to Write a Discussion Section

    Table of contents. What not to include in your discussion section. Step 1: Summarize your key findings. Step 2: Give your interpretations. Step 3: Discuss the implications. Step 4: Acknowledge the limitations. Step 5: Share your recommendations. Discussion section example. Other interesting articles.

  2. PDF Discussion Section for Research Papers

    The discussion section is one of the final parts of a research paper, in which an author describes, analyzes, and interprets their findings. They explain the significance of those results and tie everything back to the research question(s). In this handout, you will find a description of what a discussion section does, explanations of how to ...

  3. How to Write Discussions and Conclusions

    Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and ...

  4. PDF 7th Edition Discussion Phrases Guide

    Papers usually end with a concluding section, often called the "Discussion.". The Discussion is your opportunity to evaluate and interpret the results of your study or paper, draw inferences and conclusions from it, and communicate its contributions to science and/or society. Use the present tense when writing the Discussion section.

  5. How to Write the Discussion Section of a Research Paper

    The discussion section provides an analysis and interpretation of the findings, compares them with previous studies, identifies limitations, and suggests future directions for research. This section combines information from the preceding parts of your paper into a coherent story. By this point, the reader already knows why you did your study ...

  6. 8. The Discussion

    The discussion section is often considered the most important part of your research paper because it: Most effectively demonstrates your ability as a researcher to think critically about an issue, to develop creative solutions to problems based upon a logical synthesis of the findings, and to formulate a deeper, more profound understanding of the research problem under investigation;

  7. 6 Steps to Write an Excellent Discussion in Your Manuscript

    Conventionally, a discussion section has three parts: an introductory paragraph, a few intermediate paragraphs, and a conclusion¹. Please follow the steps below: 1.Introduction—mention gaps in previous research¹⁻ ². Here, you orient the reader to your study. In the first paragraph, it is advisable to mention the research gap your paper ...

  8. Discussion Section Examples and Writing Tips

    An example of research summary in discussion. 3.2. An example of result interpretation in discussion. 3.3. An example of literature comparison in discussion. 3.4. An example of research implications in discussion. 3.5. An example of limitations in discussion.

  9. How To Write A Dissertation Discussion Chapter

    Step 4: Acknowledge the limitations of your study. The fourth step in writing up your discussion chapter is to acknowledge the limitations of the study. These limitations can cover any part of your study, from the scope or theoretical basis to the analysis method (s) or sample.

  10. Research Guides: Writing a Scientific Paper: DISCUSSION

    Papers that are submitted to a journal for publication are sent out to several scientists (peers) who look carefully at the paper to see if it is "good science". These reviewers then recommend to the editor of a journal whether or not a paper should be published. Most journals have publication guidelines. Ask for them and follow them exactly.

  11. How to write a discussion section?

    The discussion section can be written in 3 parts: an introductory paragraph, intermediate paragraphs and a conclusion paragraph. For intermediate paragraphs, a "divide and conquer" approach, meaning a full paragraph describing each of the study endpoints, can be used. In conclusion, academic writing is similar to other skills, and practice ...

  12. Writing a discussion section: how to integrate substantive and

    After a research article has presented the substantive background, the methods and the results, the discussion section assesses the validity of results and draws conclusions by interpreting them. The discussion puts the results into a broader context and reflects their implications for theoretical (e.g. etiological) and practical (e.g ...

  13. How to Write a Discussion Section for a Research Paper

    Begin the Discussion section by restating your statement of the problem and briefly summarizing the major results. Do not simply repeat your findings. Rather, try to create a concise statement of the main results that directly answer the central research question that you stated in the Introduction section.

  14. PDF Discussion and Conclusion Sections for Empirical Research Papers

    In an empirical research paper, the purpose of the Discussion section is to interpret the results and discuss their implications, thereby establishing (and often qualifying) the practical and scholarly significance of the present study. It may be helpful to think of the Discussion section as the inverse of the introduction to an empirical ...

  15. Organizing Academic Research Papers: 8. The Discussion

    This section is often considered the most important part of a research paper because it most effectively demonstrates your ability as a researcher to think critically about an issue, to develop creative solutions to problems based on the findings, and to formulate a deeper, more profound understanding of the research problem you are studying.. The discussion section is where you explore the ...

  16. How to write the discussion section of a scientific article

    Statement of principal findings. Open the discussion by briefly restating the key finding (s) of your study as shown in examples 3, 4, and 5. The key finding (s) should address the research ...

  17. Discussion

    Discussion Section. The overall purpose of a research paper's discussion section is to evaluate and interpret results, while explaining both the implications and limitations of your findings. Per APA (2020) guidelines, this section requires you to "examine, interpret, and qualify the results and draw inferences and conclusions from them ...

  18. (PDF) How to Write an Effective Discussion

    The discussion section, a systematic critical appraisal of results, is a key part of a research paper, wherein the authors define, critically examine, describe and interpret their findings ...

  19. How to Write an Effective Discussion in a Research Paper; a Guide to

    Discussion is mainly the section in a research paper that makes the readers understand the exact meaning of the results achieved in a study by exploring the significant points of the research, its ...

  20. Discussion Section of a Research Paper: Guide & Example

    The discussion section of a research paper is where the author analyzes and explains the importance of the study's results. It presents the conclusions drawn from the study, compares them to previous research, and addresses any potential limitations or weaknesses. The discussion section should also suggest areas for future research.

  21. How to Write a Discussion Section

    What not to include in your discussion section. Step 1: Summarise your key findings. Step 2: Give your interpretations. Step 3: Discuss the implications. Step 4: Acknowledge the limitations. Step 5: Share your recommendations. Discussion section example.

  22. Writing a Discussion Section

    Writing a discussion section is where you really begin to add your interpretations to the work. In this critical part of the research paper, you start the process of explaining any links and correlations apparent in your data. If you left few interesting leads and open questions in the results section, the discussion is simply a matter of ...

  23. 8.2 An example template for Discussion sections

    There's no hard rule about what information types (d1 to d6) to include in each paragraph of the Discussion section. The only 'rule' is that the Discussion section of published papers contains all of the six information types (Cargill M and O'Connor P 2013 Writing Scientific Research Articles: Strategy and Steps), and your Discussion section probably should, too.

  24. Agriculture

    Only four papers are devoted to plant physiology and breeding. The Discussion Section has attempted to analyze the evolution of rubber agroforestry research, progress in the selection of food crop varieties adapted to agroforestry systems, and to draw some recommendations for rubber-based agroforestry systems associated with food crops.

  25. (IUCr) Factors affecting macromolecule orientations in thin films

    2.3. Grid screening and data collection. Grids were screened on a Titan Krios microscope operating at 300 kV using standard low-dose settings, and automated data collection was set up either on a Falcon 3 or Gatan K2 detector in counting mode with the EPU software (Thermo Fisher Scientific). A magnification of 59 000× was only used for the catalase 37°C data set, with a pixel size of 1.38 Å ...