University of the People Logo

Home > Blog > Tips for Online Students > Why Is Critical Thinking Important and How to Improve It

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important and How to Improve It

why is reasoning and problem solving important

Updated: July 8, 2024

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

Critical thinking is the process of analyzing facts to form a judgment. Essentially, it involves thinking about thinking. Historically, it dates back to the teachings of Socrates , as documented by Plato.

Today, it is seen as a complex concept understood best by philosophers and psychologists. Modern definitions include “reasonable, reflective thinking focused on deciding what to believe or do” and “deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Photo by Marcelo Chagas from Pexels

6. the basis of science & democracy.

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How To Improve Your Critical Thinking

Now that you know the benefits of thinking critically, how do you actually do it?

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do, but much of this essential skill is encouraged and practiced in school. Fostering a culture of inquiry is crucial, encouraging students to ask questions, analyze information, and evaluate evidence.

Teaching strategies like Socratic questioning, problem-based learning, and collaborative discussions help students think for themselves. When teachers ask questions, students can respond critically and reflect on their learning. Group discussions also expand their thinking, making them independent thinkers and effective problem solvers.

How Does Critical Thinking Apply To Your Career?

Critical thinking is a valuable asset in any career. Employers value employees who can think critically, ask insightful questions, and offer creative solutions. Demonstrating critical thinking skills can set you apart in the workplace, showing your ability to tackle complex problems and make informed decisions.

In many careers, from law and medicine to business and engineering, critical thinking is essential. Lawyers analyze cases, doctors diagnose patients, business analysts evaluate market trends, and engineers solve technical issues—all requiring strong critical thinking skills.

Critical thinking also enhances your ability to communicate effectively, making you a better team member and leader. By analyzing and evaluating information, you can present clear, logical arguments and make persuasive presentations.

Incorporating critical thinking into your career helps you stay adaptable and innovative. It encourages continuous learning and improvement, which are crucial for professional growth and success in a rapidly changing job market.

Photo by Oladimeji Ajegbile from Pexels

Critical thinking is a vital skill with far-reaching benefits for personal and professional success. It involves systematic skills such as analysis, evaluation, inference, interpretation, and explanation to assess information and arguments.

By gathering relevant data, considering alternative perspectives, and using logical reasoning, critical thinking enables informed decision-making. Reflecting on and refining these processes further enhances their effectiveness.

The future of critical thinking holds significant importance as it remains essential for adapting to evolving challenges and making sound decisions in various aspects of life.

What are the benefits of developing critical thinking skills?

Critical thinking enhances decision-making, problem-solving, and the ability to evaluate information critically. It helps in making informed decisions, understanding others’ perspectives, and improving overall cognitive abilities.

How does critical thinking contribute to problem-solving abilities?

Critical thinking enables you to analyze problems thoroughly, consider multiple solutions, and choose the most effective approach. It fosters creativity and innovative thinking in finding solutions.

What role does critical thinking play in academic success?

Critical thinking is crucial in academics as it allows you to analyze texts, evaluate evidence, construct logical arguments, and understand complex concepts, leading to better academic performance.

How does critical thinking promote effective communication skills?

Critical thinking helps you articulate thoughts clearly, listen actively, and engage in meaningful discussions. It improves your ability to argue logically and understand different viewpoints.

How can critical thinking skills be applied in everyday situations?

You can use critical thinking to make better personal and professional decisions, solve everyday problems efficiently, and understand the world around you more deeply.

What role does skepticism play in critical thinking?

Skepticism encourages questioning assumptions, evaluating evidence, and distinguishing between facts and opinions. It helps in developing a more rigorous and open-minded approach to thinking.

What strategies can enhance critical thinking?

Strategies include asking probing questions, engaging in reflective thinking, practicing problem-solving, seeking diverse perspectives, and analyzing information critically and logically.

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone. Read More

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

why is reasoning and problem solving important

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

why is reasoning and problem solving important

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Introduction to Problem Solving Skills

What is problem solving and why is it important.

Defining problem solving skills

The ability to solve problems is a basic life skill and is essential to our day-to-day lives, at home, at school, and at work. We solve problems every day without really thinking about how we solve them. For example: it’s raining and you need to go to the store. What do you do? There are lots of possible solutions. Take your umbrella and walk. If you don't want to get wet, you can drive, or take the bus. You might decide to call a friend for a ride, or you might decide to go to the store another day. There is no right way to solve this problem and different people will solve it differently.

Problem solving is the process of identifying a problem, developing possible solution paths, and taking the appropriate course of action.

Why is problem solving important? Good problem solving skills empower you not only in your personal life but are critical in your professional life. In the current fast-changing global economy, employers often identify everyday problem solving as crucial to the success of their organizations. For employees, problem solving can be used to develop practical and creative solutions, and to show independence and initiative to employers.

Throughout this case study you will be asked to jot down your thoughts in idea logs. These idea logs are used for reflection on concepts and for answering short questions. When you click on the "Next" button, your responses will be saved for that page. If you happen to close the webpage, you will lose your work on the page you were on, but previous pages will be saved. At the end of the case study, click on the "Finish and Export to PDF" button to acknowledge completion of the case study and receive a PDF document of your idea logs.

What Does Problem Solving Look Like?

IDEAL heuristic strategy for problem solving

The ability to solve problems is a skill, and just like any other skill, the more you practice, the better you get. So how exactly do you practice problem solving? Learning about different problem solving strategies and when to use them will give you a good start. Problem solving is a process. Most strategies provide steps that help you identify the problem and choose the best solution. There are two basic types of strategies: algorithmic and heuristic.

Algorithmic strategies are traditional step-by-step guides to solving problems. They are great for solving math problems (in algebra: multiply and divide, then add or subtract) or for helping us remember the correct order of things (a mnemonic such as “Spring Forward, Fall Back” to remember which way the clock changes for daylight saving time, or “Righty Tighty, Lefty Loosey” to remember what direction to turn bolts and screws). Algorithms are best when there is a single path to the correct solution.

But what do you do when there is no single solution for your problem? Heuristic methods are general guides used to identify possible solutions. A popular one that is easy to remember is IDEAL [ Bransford & Stein, 1993 ] :

  • I dentify the problem
  • D efine the context of the problem
  • E xplore possible strategies
  • A ct on best solution

IDEAL is just one problem solving strategy. Building a toolbox of problem solving strategies will improve your problem solving skills. With practice, you will be able to recognize and use multiple strategies to solve complex problems.

Watch the video

What is the best way to get a peanut out of a tube that cannot be moved? Watch a chimpanzee solve this problem in the video below [ Geert Stienissen, 2010 ].

[PDF transcript]

Describe the series of steps you think the chimpanzee used to solve this problem.

  • [Page 2: What does Problem Solving Look Like?] Describe the series of steps you think the chimpanzee used to solve this problem.

Think of an everyday problem you've encountered recently and describe your steps for solving it.

  • [Page 2: What does Problem Solving Look Like?] Think of an everyday problem you've encountered recently and describe your steps for solving it.

Developing Problem Solving Processes

Problem solving is a process that uses steps to solve problems. But what does that really mean? Let's break it down and start building our toolbox of problem solving strategies.

What is the first step of solving any problem? The first step is to recognize that there is a problem and identify the right cause of the problem. This may sound obvious, but similar problems can arise from different events, and the real issue may not always be apparent. To really solve the problem, it's important to find out what started it all. This is called identifying the root cause .

Example: You and your classmates have been working long hours on a project in the school's workshop. The next afternoon, you try to use your student ID card to access the workshop, but discover that your magnetic strip has been demagnetized. Since the card was a couple of years old, you chalk it up to wear and tear and get a new ID card. Later that same week you learn that several of your classmates had the same problem! After a little investigation, you discover that a strong magnet was stored underneath a workbench in the workshop. The magnet was the root cause of the demagnetized student ID cards.

The best way to identify the root cause of the problem is to ask questions and gather information. If you have a vague problem, investigating facts is more productive than guessing a solution. Ask yourself questions about the problem. What do you know about the problem? What do you not know? When was the last time it worked correctly? What has changed since then? Can you diagram the process into separate steps? Where in the process is the problem occurring? Be curious, ask questions, gather facts, and make logical deductions rather than assumptions.

Watch Adam Savage from Mythbusters, describe his problem solving process [ ForaTv, 2010 ]. As you watch this section of the video, try to identify the questions he asks and the different strategies he uses.

Adam Savage shared many of his problem solving processes. List the ones you think are the five most important. Your list may be different from other people in your class—that's ok!

  • [Page 3: Developing Problem Solving Processes] Adam Savage shared many of his problem solving processes. List the ones you think are the five most important.

“The ability to ask the right question is more than half the battle of finding the answer.” — Thomas J. Watson , founder of IBM

Voices From the Field: Solving Problems

In manufacturing facilities and machine shops, everyone on the floor is expected to know how to identify problems and find solutions. Today's employers look for the following skills in new employees: to analyze a problem logically, formulate a solution, and effectively communicate with others.

In this video, industry professionals share their own problem solving processes, the problem solving expectations of their employees, and an example of how a problem was solved.

Meet the Partners:

  • Taconic High School in Pittsfield, Massachusetts, is a comprehensive, fully accredited high school with special programs in Health Technology, Manufacturing Technology, and Work-Based Learning.
  • Berkshire Community College in Pittsfield, Massachusetts, prepares its students with applied manufacturing technical skills, providing hands-on experience at industrial laboratories and manufacturing facilities, and instructing them in current technologies.
  • H.C. Starck in Newton, Massachusetts, specializes in processing and manufacturing technology metals, such as tungsten, niobium, and tantalum. In almost 100 years of experience, they hold over 900 patents, and continue to innovate and develop new products.
  • Nypro Healthcare in Devens, Massachusetts, specializes in precision injection-molded healthcare products. They are committed to good manufacturing processes including lean manufacturing and process validation.

Making Decisions

Now that you have a couple problem solving strategies in your toolbox, let's practice. In this exercise, you are given a scenario and you will be asked to decide what steps you would take to identify and solve the problem.

Scenario: You are a new employee and have just finished your training. As your first project, you have been assigned the milling of several additional components for a regular customer. Together, you and your trainer, Bill, set up for the first run. Checking your paperwork, you gather the tools and materials on the list. As you are mounting the materials on the table, you notice that you didn't grab everything and hurriedly grab a few more items from one of the bins. Once the material is secured on the CNC table, you load tools into the tool carousel in the order listed on the tool list and set the fixture offsets.

Bill tells you that since this is a rerun of a job several weeks ago, the CAD/CAM model has already been converted to CNC G-code. Bill helps you download the code to the CNC machine. He gives you the go-ahead and leaves to check on another employee. You decide to start your first run.

What problems did you observe in the video?

  • [Page 5: Making Decisions] What problems did you observe in the video?
  • What do you do next?
  • Try to fix it yourself.
  • Ask your trainer for help.

As you are cleaning up, you think about what happened and wonder why it happened. You try to create a mental picture of what happened. You are not exactly sure what the end mill hit, but it looked like it might have hit the dowel pin. You wonder if you grabbed the correct dowel pins from the bins earlier.

You can think of two possible next steps. You can recheck the dowel pin length to make sure it is the correct length, or do a dry run using the CNC single step or single block function with the spindle empty to determine what actually happened.

screenshot of cnc problem

  • Check the dowel pins.
  • Use the single step/single block function to determine what happened.

You notice that your trainer, Bill, is still on the floor and decide to ask him for help. You describe the problem to him. Bill asks if you know what the end mill ran into. You explain that you are not sure but you think it was the dowel pin. Bill reminds you that it is important to understand what happened so you can fix the correct problem. He suggests that you start all over again and begin with a dry run using the single step/single block function, with the spindle empty, to determine what it hit. Or, since it happened at the end, he mentions that you can also check the G-code to make sure the Z-axis is raised before returning to the home position.

ask help from a more experienced person

  • Run the single step/single block function.
  • Edit the G-code to raise the Z-axis.

You finish cleaning up and check the CNC for any damage. Luckily, everything looks good. You check your paperwork and gather the components and materials again. You look at the dowel pins you used earlier, and discover that they are not the right length. As you go to grab the correct dowel pins, you have to search though several bins. For the first time, you are aware of the mess - it looks like the dowel pins and other items have not been put into the correctly labeled bins. You spend 30 minutes straightening up the bins and looking for the correct dowel pins.

Finally finding them, you finish setting up. You load tools into the tool carousel in the order listed on the tool list and set the fixture offsets. Just to make sure, you use the CNC single step/single block function, to do a dry run of the part. Everything looks good! You are ready to create your first part. The first component is done, and, as you admire your success, you notice that the part feels hotter than it should.

You wonder why? You go over the steps of the process to mentally figure out what could be causing the residual heat. You wonder if there is a problem with the CNC's coolant system or if the problem is in the G-code.

  • Look at the G-code.

After thinking about the problem, you decide that maybe there's something wrong with the setup. First, you clean up the damaged materials and remove the broken tool. You check the CNC machine carefully for any damage. Luckily, everything looks good. It is time to start over again from the beginning.

You again check your paperwork and gather the tools and materials on the setup sheet. After securing the new materials, you use the CNC single step/single block function with the spindle empty, to do a dry run of the part. You watch carefully to see if you can figure out what happened. It looks to you like the spindle barely misses hitting the dowel pin. You determine that the end mill was broken when it hit the dowel pin while returning to the start position.

idea at cnc machine

After conducting a dry run using the single step/single block function, you determine that the end mill was damaged when it hit the dowel pin on its return to the home position. You discuss your options with Bill. Together, you decide the best thing to do would be to edit the G-code and raise the Z-axis before returning to home. You open the CNC control program and edit the G-code. Just to make sure, you use the CNC single step/single block function, to do another dry run of the part. You are ready to create your first part. It works. You first part is completed. Only four more to go.

software or hardware problem

As you are cleaning up, you notice that the components are hotter than you expect and the end mill looks more worn than it should be. It dawns on you that while you were milling the component, the coolant didn't turn on. You wonder if it is a software problem in the G-code or hardware problem with the CNC machine.

It's the end of the day and you decide to finish the rest of the components in the morning.

  • You decide to look at the G-code in the morning.
  • You leave a note on the machine, just in case.

You decide that the best thing to do would be to edit the G-code and raise the Z-axis of the spindle before it returns to home. You open the CNC control program and edit the G-code.

While editing the G-code to raise the Z-axis, you notice that the coolant is turned off at the beginning of the code and at the end of the code. The coolant command error caught your attention because your coworker, Mark, mentioned having a similar issue during lunch. You change the coolant command to turn the mist on.

  • You decide to talk with your supervisor.
  • You discuss what happened with a coworker over lunch.

As you reflect on the residual heat problem, you think about the machining process and the factors that could have caused the issue. You try to think of anything and everything that could be causing the issue. Are you using the correct tool for the specified material? Are you using the specified material? Is it running at the correct speed? Is there enough coolant? Are there chips getting in the way?

Wait, was the coolant turned on? As you replay what happened in your mind, you wonder why the coolant wasn't turned on. You decide to look at the G-code to find out what is going on.

From the milling machine computer, you open the CNC G-code. You notice that there are no coolant commands. You add them in and on the next run, the coolant mist turns on and the residual heat issues is gone. Now, its on to creating the rest of the parts.

Have you ever used brainstorming to solve a problem? Chances are, you've probably have, even if you didn't realize it.

You notice that your trainer, Bill, is on the floor and decide to ask him for help. You describe the problem with the end mill breaking, and how you discovered that items are not being returned to the correctly labeled bins. You think this caused you to grab the incorrect length dowel pins on your first run. You have sorted the bins and hope that the mess problem is fixed. You then go on to tell Bill about the residual heat issue with the completed part.

Together, you go to the milling machine. Bill shows you how to check the oil and coolant levels. Everything looks good at the machine level. Next, on the CNC computer, you open the CNC G-code. While looking at the code, Bill points out that there are no coolant commands. Bill adds them in and when you rerun the program, it works.

Bill is glad you mentioned the problem to him. You are the third worker to mention G-code issues over the last week. You noticed the coolant problems in your G-code, John noticed a Z-axis issue in his G-code, and Sam had issues with both the Z-axis and the coolant. Chances are, there is a bigger problem and Bill will need to investigate the root cause .

Talking with Bill, you discuss the best way to fix the problem. Bill suggests editing the G-code to raise the Z-axis of the spindle before it returns to its home position. You open the CNC control program and edit the G-code. Following the setup sheet, you re-setup the job and use the CNC single step/single block function, to do another dry run of the part. Everything looks good, so you run the job again and create the first part. It works. Since you need four of each component, you move on to creating the rest of them before cleaning up and leaving for the day.

It's a new day and you have new components to create. As you are setting up, you go in search of some short dowel pins. You discover that the bins are a mess and components have not been put away in the correctly labeled bins. You wonder if this was the cause of yesterday's problem. As you reorganize the bins and straighten up the mess, you decide to mention the mess issue to Bill in your afternoon meeting.

You describe the bin mess and using the incorrect length dowels to Bill. He is glad you mentioned the problem to him. You are not the first person to mention similar issues with tools and parts not being put away correctly. Chances are there is a bigger safety issue here that needs to be addressed in the next staff meeting.

In any workplace, following proper safety and cleanup procedures is always important. This is especially crucial in manufacturing where people are constantly working with heavy, costly and sometimes dangerous equipment. When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost, and save money.

You now know that the end mill was damaged when it hit the dowel pin. It seems to you that the easiest thing to do would be to edit the G-code and raise the Z-axis position of the spindle before it returns to the home position. You open the CNC control program and edit the G-code, raising the Z-axis. Starting over, you follow the setup sheet and re-setup the job. This time, you use the CNC single step/single block function, to do another dry run of the part. Everything looks good, so you run the job again and create the first part.

At the end of the day, you are reviewing your progress with your trainer, Bill. After you describe the day's events, he reminds you to always think about safety and the importance of following work procedures. He decides to bring the issue up in the next morning meeting as a reminder to everyone.

In any workplace, following proper procedures (especially those that involve safety) is always important. This is especially crucial in manufacturing where people are constantly working with heavy, costly, and sometimes dangerous equipment. When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost, and save money. One tool to improve communication is the morning meeting or huddle.

The next morning, you check the G-code to determine what is wrong with the coolant. You notice that the coolant is turned off at the beginning of the code and also at the end of the code. This is strange. You change the G-code to turn the coolant on at the beginning of the run and off at the end. This works and you create the rest of the parts.

Throughout the day, you keep wondering what caused the G-code error. At lunch, you mention the G-code error to your coworker, John. John is not surprised. He said that he encountered a similar problem earlier this week. You decide to talk with your supervisor the next time you see him.

You are in luck. You see your supervisor by the door getting ready to leave. You hurry over to talk with him. You start off by telling him about how you asked Bill for help. Then you tell him there was a problem and the end mill was damaged. You describe the coolant problem in the G-code. Oh, and by the way, John has seen a similar problem before.

Your supervisor doesn't seem overly concerned, errors happen. He tells you "Good job, I am glad you were able to fix the issue." You are not sure whether your supervisor understood your explanation of what happened or that it had happened before.

The challenge of communicating in the workplace is learning how to share your ideas and concerns. If you need to tell your supervisor that something is not going well, it is important to remember that timing, preparation, and attitude are extremely important.

It is the end of your shift, but you want to let the next shift know that the coolant didn't turn on. You do not see your trainer or supervisor around. You decide to leave a note for the next shift so they are aware of the possible coolant problem. You write a sticky note and leave it on the monitor of the CNC control system.

How effective do you think this solution was? Did it address the problem?

In this scenario, you discovered several problems with the G-code that need to be addressed. When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring and avoid injury to personnel. The challenge of communicating in the workplace is learning how and when to share your ideas and concerns. If you need to tell your co-workers or supervisor that there is a problem, it is important to remember that timing and the method of communication are extremely important.

You are able to fix the coolant problem in the G-code. While you are glad that the problem is fixed, you are worried about why it happened in the first place. It is important to remember that if a problem keeps reappearing, you may not be fixing the right problem. You may only be addressing the symptoms.

You decide to talk to your trainer. Bill is glad you mentioned the problem to him. You are the third worker to mention G-code issues over the last week. You noticed the coolant problems in your G-code, John noticed a Z-axis issue in his G-code, and Sam had issues with both the Z-axis and the coolant. Chances are, there is a bigger problem and Bill will need to investigate the root cause .

Over lunch, you ask your coworkers about the G-code problem and what may be causing the error. Several people mention having similar problems but do not know the cause.

You have now talked to three coworkers who have all experienced similar coolant G-code problems. You make a list of who had the problem, when they had the problem, and what each person told you.

Person When Problem Description
Sam last week No coolant commands in G-code
John Yesterday Coolant was turned off and there were Z-axis problems
Me today Coolant was turned off at both beginning and end of program

When you see your supervisor later that afternoon, you are ready to talk with him. You describe the problem you had with your component and the damaged bit. You then go on to tell him about talking with Bill and discovering the G-code issue. You show him your notes on your coworkers' coolant issues, and explain that you think there might be a bigger problem.

You supervisor thanks you for your initiative in identifying this problem. It sounds like there is a bigger problem and he will need to investigate the root cause. He decides to call a team huddle to discuss the issue, gather more information, and talk with the team about the importance of communication.

Root Cause Analysis

flower root cause of a problem

Root cause analysis ( RCA ) is a method of problem solving that identifies the underlying causes of an issue. Root cause analysis helps people answer the question of why the problem occurred in the first place. RCA uses clear cut steps in its associated tools, like the "5 Whys Analysis" and the "Cause and Effect Diagram," to identify the origin of the problem, so that you can:

  • Determine what happened.
  • Determine why it happened.
  • Fix the problem so it won’t happen again.

RCA works under the idea that systems and events are connected. An action in one area triggers an action in another, and another, and so on. By tracing back these actions, you can discover where the problem started and how it developed into the problem you're now facing. Root cause analysis can prevent problems from recurring, reduce injury to personnel, reduce rework and scrap, and ultimately, reduce cost and save money. There are many different RCA techniques available to determine the root cause of a problem. These are just a few:

  • Root Cause Analysis Tools
  • 5 Whys Analysis
  • Fishbone or Cause and Effect Diagram
  • Pareto Analysis

5 whys diagram root cause

How Huddles Work

group huddle discussion meeting

Communication is a vital part of any setting where people work together. Effective communication helps employees and managers form efficient teams. It builds trusts between employees and management, and reduces unnecessary competition because each employee knows how their part fits in the larger goal.

One tool that management can use to promote communication in the workplace is the huddle . Just like football players on the field, a huddle is a short meeting where everyone is standing in a circle. A daily team huddle ensures that team members are aware of changes to the schedule, reiterated problems and safety issues, and how their work impacts one another. When done right, huddles create collaboration, communication, and accountability to results. Impromptu huddles can be used to gather information on a specific issue and get each team member's input.

The most important thing to remember about huddles is that they are short, lasting no more than 10 minutes, and their purpose is to communicate and identify. In essence, a huddle’s purpose is to identify priorities, communicate essential information, and discover roadblocks to productivity.

Who uses huddles? Many industries and companies use daily huddles. At first thought, most people probably think of hospitals and their daily patient update meetings, but lots of managers use daily meetings to engage their employees. Here are a few examples:

  • Brian Scudamore, CEO of 1-800-Got-Junk? , uses the daily huddle as an operational tool to take the pulse of his employees and as a motivational tool. Watch a morning huddle meeting .
  • Fusion OEM, an outsourced manufacturing and production company. What do employees take away from the daily huddle meeting .
  • Biz-Group, a performance consulting group. Tips for a successful huddle .

Brainstorming

brainstorming small lightbulbs combined become a big idea

One tool that can be useful in problem solving is brainstorming . Brainstorming is a creativity technique designed to generate a large number of ideas for the solution to a problem. The method was first popularized in 1953 by Alex Faickney Osborn in the book Applied Imagination . The goal is to come up with as many ideas as you can in a fixed amount of time. Although brainstorming is best done in a group, it can be done individually. Like most problem solving techniques, brainstorming is a process.

  • Define a clear objective.
  • Have an agreed a time limit.
  • During the brainstorming session, write down everything that comes to mind, even if the idea sounds crazy.
  • If one idea leads to another, write down that idea too.
  • Combine and refine ideas into categories of solutions.
  • Assess and analyze each idea as a potential solution.

When used during problem solving, brainstorming can offer companies new ways of encouraging staff to think creatively and improve production. Brainstorming relies on team members' diverse experiences, adding to the richness of ideas explored. This means that you often find better solutions to the problems. Team members often welcome the opportunity to contribute ideas and can provide buy-in for the solution chosen—after all, they are more likely to be committed to an approach if they were involved in its development. What's more, because brainstorming is fun, it helps team members bond.

  • Watch Peggy Morgan Collins, a marketing executive at Power Curve Communications discuss How to Stimulate Effective Brainstorming .
  • Watch Kim Obbink, CEO of Filter Digital, a digital content company, and her team share their top five rules for How to Effectively Generate Ideas .

Importance of Good Communication and Problem Description

talking too much when describing a problem

Communication is one of the most frequent activities we engage in on a day-to-day basis. At some point, we have all felt that we did not effectively communicate an idea as we would have liked. The key to effective communication is preparation. Rather than attempting to haphazardly improvise something, take a few minutes and think about what you want say and how you will say it. If necessary, write yourself a note with the key points or ideas in the order you want to discuss them. The notes can act as a reminder or guide when you talk to your supervisor.

Tips for clear communication of an issue:

  • Provide a clear summary of your problem. Start at the beginning, give relevant facts, timelines, and examples.
  • Avoid including your opinion or personal attacks in your explanation.
  • Avoid using words like "always" or "never," which can give the impression that you are exaggerating the problem.
  • If this is an ongoing problem and you have collected documentation, give it to your supervisor once you have finished describing the problem.
  • Remember to listen to what's said in return; communication is a two-way process.

Not all communication is spoken. Body language is nonverbal communication that includes your posture, your hands and whether you make eye contact. These gestures can be subtle or overt, but most importantly they communicate meaning beyond what is said. When having a conversation, pay attention to how you stand. A stiff position with arms crossed over your chest may imply that you are being defensive even if your words state otherwise. Shoving your hands in your pockets when speaking could imply that you have something to hide. Be wary of using too many hand gestures because this could distract listeners from your message.

The challenge of communicating in the workplace is learning how and when to share your ideas or concerns. If you need to tell your supervisor or co-worker about something that is not going well, keep in mind that good timing and good attitude will go a long way toward helping your case.

Like all skills, effective communication needs to be practiced. Toastmasters International is perhaps the best known public speaking organization in the world. Toastmasters is open to anyone who wish to improve their speaking skills and is willing to put in the time and effort to do so. To learn more, visit Toastmasters International .

Methods of Communication

different ways to communicate

Communication of problems and issues in any workplace is important, particularly when safety is involved. It is therefore crucial in manufacturing where people are constantly working with heavy, costly, and sometimes dangerous equipment. As issues and problems arise, they need to be addressed in an efficient and timely manner. Effective communication is an important skill because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost and save money.

There are many different ways to communicate: in person, by phone, via email, or written. There is no single method that fits all communication needs, each one has its time and place.

In person: In the workplace, face-to-face meetings should be utilized whenever possible. Being able to see the person you need to speak to face-to-face gives you instant feedback and helps you gauge their response through their body language. Be careful of getting sidetracked in conversation when you need to communicate a problem.

Email: Email has become the communication standard for most businesses. It can be accessed from almost anywhere and is great for things that don’t require an immediate response. Email is a great way to communicate non-urgent items to large amounts of people or just your team members. One thing to remember is that most people's inboxes are flooded with emails every day and unless they are hyper vigilant about checking everything, important items could be missed. For issues that are urgent, especially those around safety, email is not always be the best solution.

Phone: Phone calls are more personal and direct than email. They allow us to communicate in real time with another person, no matter where they are. Not only can talking prevent miscommunication, it promotes a two-way dialogue. You don’t have to worry about your words being altered or the message arriving on time. However, mobile phone use and the workplace don't always mix. In particular, using mobile phones in a manufacturing setting can lead to a variety of problems, cause distractions, and lead to serious injury.

Written: Written communication is appropriate when detailed instructions are required, when something needs to be documented, or when the person is too far away to easily speak with over the phone or in person.

There is no "right" way to communicate, but you should be aware of how and when to use the appropriate form of communication for your situation. When deciding the best way to communicate with a co-worker or manager, put yourself in their shoes, and think about how you would want to learn about the issue. Also, consider what information you would need to know to better understand the issue. Use your good judgment of the situation and be considerate of your listener's viewpoint.

Did you notice any other potential problems in the previous exercise?

  • [Page 6:] Did you notice any other potential problems in the previous exercise?

Summary of Strategies

In this exercise, you were given a scenario in which there was a problem with a component you were creating on a CNC machine. You were then asked how you wanted to proceed. Depending on your path through this exercise, you might have found an easy solution and fixed it yourself, asked for help and worked with your trainer, or discovered an ongoing G-code problem that was bigger than you initially thought.

When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost, and save money. Although, each path in this exercise ended with a description of a problem solving tool for your toolbox, the first step is always to identify the problem and define the context in which it happened.

There are several strategies that can be used to identify the root cause of a problem. Root cause analysis (RCA) is a method of problem solving that helps people answer the question of why the problem occurred. RCA uses a specific set of steps, with associated tools like the “5 Why Analysis" or the “Cause and Effect Diagram,” to identify the origin of the problem, so that you can:

Once the underlying cause is identified and the scope of the issue defined, the next step is to explore possible strategies to fix the problem.

If you are not sure how to fix the problem, it is okay to ask for help. Problem solving is a process and a skill that is learned with practice. It is important to remember that everyone makes mistakes and that no one knows everything. Life is about learning. It is okay to ask for help when you don’t have the answer. When you collaborate to solve problems you improve workplace communication and accelerates finding solutions as similar problems arise.

One tool that can be useful for generating possible solutions is brainstorming . Brainstorming is a technique designed to generate a large number of ideas for the solution to a problem. The method was first popularized in 1953 by Alex Faickney Osborn in the book Applied Imagination. The goal is to come up with as many ideas as you can, in a fixed amount of time. Although brainstorming is best done in a group, it can be done individually.

Depending on your path through the exercise, you may have discovered that a couple of your coworkers had experienced similar problems. This should have been an indicator that there was a larger problem that needed to be addressed.

In any workplace, communication of problems and issues (especially those that involve safety) is always important. This is especially crucial in manufacturing where people are constantly working with heavy, costly, and sometimes dangerous equipment. When issues and problems arise, it is important that they be addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost and save money.

One strategy for improving communication is the huddle . Just like football players on the field, a huddle is a short meeting with everyone standing in a circle. A daily team huddle is a great way to ensure that team members are aware of changes to the schedule, any problems or safety issues are identified and that team members are aware of how their work impacts one another. When done right, huddles create collaboration, communication, and accountability to results. Impromptu huddles can be used to gather information on a specific issue and get each team member's input.

To learn more about different problem solving strategies, choose an option below. These strategies accompany the outcomes of different decision paths in the problem solving exercise.

  • View Problem Solving Strategies Select a strategy below... Root Cause Analysis How Huddles Work Brainstorming Importance of Good Problem Description Methods of Communication

Communication is one of the most frequent activities we engage in on a day-to-day basis. At some point, we have all felt that we did not effectively communicate an idea as we would have liked. The key to effective communication is preparation. Rather than attempting to haphazardly improvise something, take a few minutes and think about what you want say and how you will say it. If necessary, write yourself a note with the key points or ideas in the order you want to discuss them. The notes can act as a reminder or guide during your meeting.

  • Provide a clear summary of the problem. Start at the beginning, give relevant facts, timelines, and examples.

In person: In the workplace, face-to-face meetings should be utilized whenever possible. Being able to see the person you need to speak to face-to-face gives you instant feedback and helps you gauge their response in their body language. Be careful of getting sidetracked in conversation when you need to communicate a problem.

There is no "right" way to communicate, but you should be aware of how and when to use the appropriate form of communication for the situation. When deciding the best way to communicate with a co-worker or manager, put yourself in their shoes, and think about how you would want to learn about the issue. Also, consider what information you would need to know to better understand the issue. Use your good judgment of the situation and be considerate of your listener's viewpoint.

"Never try to solve all the problems at once — make them line up for you one-by-one.” — Richard Sloma

Problem Solving: An Important Job Skill

Problem solving improves efficiency and communication on the shop floor. It increases a company's efficiency and profitability, so it's one of the top skills employers look for when hiring new employees. Recent industry surveys show that employers consider soft skills, such as problem solving, as critical to their business’s success.

The 2011 survey, "Boiling Point? The skills gap in U.S. manufacturing ," polled over a thousand manufacturing executives who reported that the number one skill deficiency among their current employees is problem solving, which makes it difficult for their companies to adapt to the changing needs of the industry.

In this video, industry professionals discuss their expectations and present tips for new employees joining the manufacturing workforce.

Quick Summary

  • [Quick Summary: Question1] What are two things you learned in this case study?
  • What question(s) do you still have about the case study?
  • [Quick Summary: Question2] What question(s) do you still have about the case study?
  • Is there anything you would like to learn more about with respect to this case study?
  • [Quick Summary: Question3] Is there anything you would like to learn more about with respect to this case study?

X

Importance of Reasoning: The Art of Thinking Well

Importance of Reasoning: The Art of Thinking Well

Post Highlight

In a world brimming with information and choices, reasoning and the art of thinking well hold immense importance. This article explores the significance of critical thinking, logical reasoning, and decision-making skills in today's context.

Incorporating reasoning into our lives is essential for making sound decisions and achieving success in various areas of life. Reasoning allows us to think critically, analyze information, and evaluate arguments, which are all crucial skills in both personal and professional contexts.

At its core, reasoning involves the ability to think logically and make rational decisions based on available information. It helps us to avoid making impulsive or emotional decisions, which can lead to negative consequences.

By incorporating reasoning into our lives, we can learn to approach problems and challenges with a more objective and rational mindset.

In addition to helping us make better decisions, reasoning can also improve our communication skills. When we are able to think critically and articulate our thoughts clearly, we are more likely to be taken seriously and to be able to persuade others.

This is especially important in professional settings, where clear communication can make the difference between success and failure.

Furthermore, reasoning can also lead to personal growth and development. When we are able to reflect on our own thoughts and beliefs, we can better understand ourselves and our motivations.

This self-awareness can help us to identify areas for improvement and to develop strategies for personal growth.

With this understanding, we can better design the world around us to promote better reasoning. Here are some ways to incorporate reasoning into your life.  

Discover how mastering these skills can enhance problem-solving abilities, foster adaptability, and contribute to personal and professional success.

You May Like

Simple Energy Healing Techniques Using Your Hands

Simple Energy Healing Techniques Using Your Hands

The One Word Game A Psychological Device Or Just A Fun Pastime

The One Word Game A Psychological Device Or Just A Fun Pastime

Health Is Wealth

Health Is Wealth

Power Of A Routine

Power Of A Routine

Continue reading...

Reasoning is more complicated than it seems at first glance. It is not merely an intellectual pursuit but a way of life that includes logic, belief, ethics, and emotion. With this new  understanding of mental processes , we can better design the world around us to promote better reasoning and more logical choices. Here are some ways to incorporate reasoning into your life. 

corporating reasoning into our lives is crucial for success in various areas of life. It helps us to make sound decisions, communicate effectively, and grow and develop as individuals. By cultivating this skill, we can become more confident and capable individuals who are better equipped to navigate the challenges of life.

What is reasoning?

Reasoning is the process of using logic and critical thinking to make informed decisions and solve problems. It involves analyzing and evaluating information, considering different perspectives and options, and making judgments based on evidence and reasoning. Reasoning is an important cognitive skill that is used in all areas of life, from personal decision-making to professional problem-solving.

It is essential for making sound judgments and developing effective solutions to complex problems. In essence, reasoning allows us to make sense of the world around us by applying logic and critical thinking to make informed decisions.

Reasoning is a vital component of living a happy and fulfilling life. We do it every day. Logic and rationality allow us to make decisions and solve problems. Reasoning is the tool we use to make sense of the world.

We use reasoning when we decide what to wear, where to live, how to spend our free time, and who to spend time with. It's a way of thinking that we use every day to figure out what we believe and want.

Reasoning is something we can improve through practice and education. When we improve our reasoning skills , we become better thinkers and feel more fulfilled in our lives. We can't avoid reasoning!

The Significance of Critical Thinking

Critical thinking is a fundamental aspect of reasoning that involves analyzing information, questioning assumptions, and evaluating arguments. In an era of misinformation and fake news, honing critical thinking skills is essential to distinguish fact from fiction.

Studies have shown that individuals with strong critical thinking abilities are better equipped to make sound judgments, solve problems effectively, and adapt to changing circumstances.

Enhancing Logical Reasoning

Logical reasoning is another integral component of the art of thinking well. It enables individuals to construct valid arguments, identify fallacies, and draw logical conclusions. Developing strong logical reasoning skills fosters clear and coherent thinking, facilitating effective communication and persuasive abilities.

Moreover, logical reasoning helps individuals identify potential biases and make informed decisions based on evidence and rationality.

The Role of Decision-Making

Skills Reasoning and decision-making go hand in hand, as the ability to make informed choices is an essential outcome of sound reasoning. Effective decision-making skills involve gathering relevant information, considering various perspectives, weighing pros and cons, and anticipating potential outcomes.

Individuals with well-honed decision-making skills are more likely to make thoughtful choices that align with their goals and values, leading to better outcomes and minimized regrets.

How do Emotions affect our Thinking?

How do emotions affect reasoning ? Emotions can distort how we think. When we feel an intense emotion, it's more difficult to think deeply about the topic at hand. This can lead to poor reasoning. For example, say you are in the middle of a heated debate with your spouse, and you find out that they have been a misunderstanding between both of you.

You might not be able to think about anything but the fact that they were unfaithful. Your anger distorts your reasoning and prevents you from thinking about other reasons why they might have cheated on you. You might think that you're never going to get married again because of this experience.

This is one of the instances of how emotions can affect our reasoning. If we want to reason better, we need to take emotional values into account. The more intensity you have in your emotion, the less likely you will think logically.

How does Limited Attention Impact our Reasoning?

With limited attention, we are in a constant state of information overload. And it shows in the way we think. There are so many stimuli bombarding us at any given moment that it is impossible to process them all. We need to pick and choose what to focus on. But when our attention is limited, it cannot be easy to make rational decisions.

For example, one study found that shoppers are less likely to buy healthy food when they are in a hurry. With limited attention, people are less likely to think critically about their choices.

For example, they are more likely to purchase fast food, even when they know it's not the healthiest option. If we want to make a proper decision, we need to be aware of how limited attention affects our reasoning process and avoid this mental trap.

One way to do this is by taking a break every once and a while and refocusing your attention on something else. It will be difficult to avoid the temptation of instant gratification, but taking time for yourself will accept you to make better decisions in the long run. To learn more about how little attention impacts reasoning and how it can be improved, read on!

What are the Consequences of these Observations for Designing a World that Promotes Better Reasoning?

The implication of these findings for designing a world that promotes better reasoning is to prioritize our ability to reason well. When designing a world that promotes better reasoning, it is essential to make it easier for people to make logical decisions . For example, you could make it easier for people to make clear and straightforward choices.

You can do this by taking benefit of our tendency for "choice paralysis" and creating limited options. Another way to design a world that promotes better reasoning is by providing space and time for people and minimizing distractions. This will allow people to think more clearly.

Also Read:   5 Rules for Developing a Digital Mindset

Tips for Incorporating More Reasoning into Your Life

1. Practice Active Listening: One of the most important skills for reasoning is the ability to listen actively. This means listening carefully to what others are saying, asking questions, and clarifying any misunderstandings. Active listening helps you to understand different perspectives and make more informed decisions.

2. Evaluate Evidence: Reasoning involves analyzing and evaluating evidence to make informed decisions. When presented with information, take the time to evaluate its reliability, validity, and relevance. Consider the source of the information, any biases or assumptions that may be present, and whether there is enough evidence to support a particular claim.

3. Consider Alternative Perspectives: When making decisions, it's important to consider alternative perspectives. This helps you to avoid confirmation bias and to evaluate all available options. Take the time to research different viewpoints, ask for feedback from others, and consider the potential consequences of different decisions.

4. Use Critical Thinking: Critical thinking involves questioning assumptions, analyzing information, and evaluating arguments. When faced with a problem or decision, use critical thinking to break it down into smaller parts, identify key issues, and develop logical solutions. This helps you to approach problems in a more objective and analytical way.

5. Practice Mindfulness: Mindfulness involves being present in the moment, paying attention to your thoughts and feelings, and observing them without judgment. By practicing mindfulness, you can improve your self-awareness and become more mindful of your thoughts and decisions.

6. Learn from Mistakes: Everyone makes mistakes, but it's important to learn from them. When you make a mistake, take the time to reflect on what went wrong and how you can avoid making the same mistake in the future. This helps you to develop a growth mindset and to continually improve your reasoning skills.

The Benefits of Mastering the Art of Thinking Well

Problem-Solving: Strong reasoning skills enhance problem-solving abilities by enabling individuals to approach challenges with a logical and systematic mindset. This leads to innovative solutions and better outcomes in various personal and professional scenarios.

Effective Communication : The art of thinking well improves communication skills, as individuals can articulate their thoughts clearly, present logical arguments, and engage in constructive discussions. This fosters effective collaboration and understanding in both personal and professional relationships.

Analytical Skills: Reasoning develops analytical thinking, allowing individuals to break down complex issues into manageable parts, identify patterns, and extract meaningful insights. This analytical mindset is highly valuable across different domains, such as business, science, and technology.

Adaptability: The ability to reason well equips individuals with adaptability and flexibility in the face of change. They can evaluate new information, reassess their beliefs, and adjust their strategies accordingly. This adaptability is crucial in an ever-evolving world.

Enhanced Decision-Making: By mastering the art of thinking well, individuals can make informed decisions based on evidence, logical reasoning, and a comprehensive understanding of the situation. This leads to better outcomes and reduced decision-making biases.

Conclusion 

The importance of reasoning and the art of thinking well cannot be overstated in today's world. By developing critical thinking, logical reasoning, and decision-making skills, individuals can navigate complex challenges, make sound judgments, and achieve personal and professional success.

The benefits of mastering this art extend beyond individual growth, positively impacting society as a whole. In a world driven by information, cultivating these skills becomes a valuable asset that empowers individuals to think critically, reason logically, and contribute meaningfully to their communities.

Reasoning is not merely a tool; it is an art that can transform the way we perceive and interact with the world. Embracing the art of thinking well opens doors to endless possibilities, allowing individuals to approach life's challenges with clarity, rationality, and wisdom.

Incorporating more reasoning into your life can help you to make more informed decisions, avoid biases, and approach problems in a more objective and analytical way. By actively listening, evaluating evidence, considering alternative perspectives, using critical thinking, practicing mindfulness, and learning from mistakes, you can develop your reasoning skills and improve your decision-making abilities.

These tips are designed to help you enhance your analytical thinking and problem-solving skills in all areas of your life. By incorporating more reasoning into your daily routine, you can develop a more balanced and rational approach to decision-making and become a more effective thinker overall.

EDITOR’S CHOICE

Top Fashion Brands: The Best Clothing Brands in the World

Editorial Segment

TWN_In-Focus

Why #SUBSCRIBE to Our #Newsletters?

#exclusive_access to all of #thinkwithniche's articles and posts as value added information for your knowledge building on topics such as: how to turn business into success, find a quick way to startup, the secret of successful synergy, the ultimate guide to entrepreneurship.

Module 1A: Problem Solving and Proportional Reasoning

Why it matters: problem solving and proportional reasoning, why understand the basics of problem solving, critical thinking.

Thinking comes naturally. You don’t have to make it happen—it just does. But you can make it happen in different ways. For example, you can think positively or negatively. You can think with “heart” and you can think with rational judgment. You can also think strategically and analytically, and mathematically and scientifically. These are a few of multiple ways in which the mind can process thought.

What are some forms of thinking you use? When do you use them, and why?

As a college student, you are tasked with engaging and expanding your thinking skills. One of the most important of these skills is critical thinking. Critical thinking is important because it relates to nearly all tasks, situations, topics, careers, environments, challenges, and opportunities. It’s a “domain-general” thinking skill—not a thinking skill that’s reserved for a one subject alone or restricted to a particular subject area.

Great leaders have highly attuned critical thinking skills, and you can, too. In fact, you probably have a lot of these skills already. Of all your thinking skills, critical thinking may have the greatest value.

What Is Critical Thinking?

Critical thinking is clear, reasonable, reflective thinking focused on deciding what to believe or do. It means asking probing questions like, “How do we know?” or “Is this true in every case or just in this instance?” It involves being skeptical and challenging assumptions, rather than simply memorizing facts or blindly accepting what you hear or read.

Who are critical thinkers, and what characteristics do they have in common? Critical thinkers are usually curious and reflective people. They like to explore and probe new areas and seek knowledge, clarification, and new solutions. They ask pertinent questions, evaluate statements and arguments, and they distinguish between facts and opinion. They are also willing to examine their own beliefs, possessing a manner of humility that allows them to admit lack of knowledge or understanding when needed. They are open to changing their mind. Perhaps most of all, they actively enjoy learning, and seeking new knowledge is a lifelong pursuit.

This may well be you!

Critical Thinking IS Critical Thinking is NOT
Skepticism Memorizing
Examining assumptions Group thinking
Challenging reasoning Blind acceptance of authority
Uncovering biases

The following video, from Lawrence Bland, presents the major concepts and benefits of critical thinking.

Critical Thinking and Logic

Critical thinking is fundamentally a process of questioning information and data. You may question the information you read in a textbook, or you may question what a politician or a professor or a classmate says. You can also question a commonly-held belief or a new idea. With critical thinking, anything and everything is subject to question and examination for the purpose of logically constructing reasoned perspectives.

Questions of Logic in Critical Thinking

Let’s use a simple example of applying logic to a critical-thinking situation. In this hypothetical scenario, a man has a PhD in political science, and he works as a professor at a local college. His wife works at the college, too. They have three young children in the local school system, and their family is well known in the community. The man is now running for political office. Are his credentials and experience sufficient for entering public office? Will he be effective in the political office? Some voters might believe that his personal life and current job, on the surface, suggest he will do well in the position, and they will vote for him. In truth, the characteristics described don’t guarantee that the man will do a good job. The information is somewhat irrelevant. What else might you want to know? How about whether the man had already held a political office and done a good job? In this case, we want to ask, How much information is adequate in order to make a decision based on logic instead of assumptions?

The following questions are ones you may apply to formulating a logical, reasoned perspective in the above scenario or any other situation:

  • What’s happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

Problem-Solving with Critical Thinking

For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying, selecting, and defending your solution.

Problem-Solving Action Checklist

Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of a hurdle, and you’ll be in a good position to find intelligent solutions.

STRATEGIES ACTION CHECKLIST
1 Define the problem
2 Identify available solutions
3 Select your solution

Critical Thinking, Problem Solving, and Math

In previous math courses, you’ve no doubt run into the infamous “word problems.” Unfortunately, these problems rarely resemble the type of problems we actually encounter in everyday life. In math books, you usually are told exactly which formula or procedure to use, and are given exactly the information you need to answer the question. In real life, problem solving requires identifying an appropriate formula or procedure, and determining what information you will need (and won’t need) to answer the question.

In this section, we will review several basic but powerful algebraic ideas: percents , rates , and proportions . We will then focus on the problem solving process, and explore how to use these ideas to solve problems where we don’t have perfect information.

  • "Student Success-Thinking Critically In Class and Online."  Critical Thinking Gateway . St Petersburg College, n.d. Web. 16 Feb 2016. ↵
  • Critical Thinking Skills. Authored by : Linda Bruce. Provided by : Lumen Learning. Located at : https://courses.lumenlearning.com/collegesuccess-lumen/chapter/critical-thinking-skills/ . Project : College Success. License : CC BY: Attribution
  • Critical Thinking. Authored by : Critical and Creative Thinking Program. Located at : http://cct.wikispaces.umb.edu/Critical+Thinking . License : CC BY: Attribution
  • Thinking Critically. Authored by : UBC Learning Commons. Provided by : The University of British Columbia, Vancouver Campus. Located at : http://www.oercommons.org/courses/learning-toolkit-critical-thinking/view . License : CC BY: Attribution
  • Problem Solving. Authored by : David Lippman. Located at : http://www.opentextbookstore.com/mathinsociety/ . Project : Math in Society. License : CC BY-SA: Attribution-ShareAlike
  • Critical Thinking.wmv. . Authored by : Lawrence Bland. Located at : https://youtu.be/WiSklIGUblo . License : All Rights Reserved . License Terms : Standard YouTube License

Footer Logo Lumen Candela

Privacy Policy

  • Campus Life
  • ...a student.
  • ...a veteran.
  • ...an alum.
  • ...a parent.
  • ...faculty or staff.
  • Class Schedule
  • Crisis Resources
  • People Finder
  • Change Password

UTC RAVE Alert

Critical thinking and problem-solving, jump to: , what is critical thinking, characteristics of critical thinking, why teach critical thinking.

  • Teaching Strategies to Help Promote Critical Thinking Skills

References and Resources

When examining the vast literature on critical thinking, various definitions of critical thinking emerge. Here are some samples:

  • "Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action" (Scriven, 1996).
  • "Most formal definitions characterize critical thinking as the intentional application of rational, higher order thinking skills, such as analysis, synthesis, problem recognition and problem solving, inference, and evaluation" (Angelo, 1995, p. 6).
  • "Critical thinking is thinking that assesses itself" (Center for Critical Thinking, 1996b).
  • "Critical thinking is the ability to think about one's thinking in such a way as 1. To recognize its strengths and weaknesses and, as a result, 2. To recast the thinking in improved form" (Center for Critical Thinking, 1996c).

Perhaps the simplest definition is offered by Beyer (1995) : "Critical thinking... means making reasoned judgments" (p. 8). Basically, Beyer sees critical thinking as using criteria to judge the quality of something, from cooking to a conclusion of a research paper. In essence, critical thinking is a disciplined manner of thought that a person uses to assess the validity of something (statements, news stories, arguments, research, etc.).

Back        

Wade (1995) identifies eight characteristics of critical thinking. Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking, "Ambiguity and doubt serve a critical-thinking function and are a necessary and even a productive part of the process" (p. 56).

Another characteristic of critical thinking identified by many sources is metacognition. Metacognition is thinking about one's own thinking. More specifically, "metacognition is being aware of one's thinking as one performs specific tasks and then using this awareness to control what one is doing" (Jones & Ratcliff, 1993, p. 10 ).

In the book, Critical Thinking, Beyer elaborately explains what he sees as essential aspects of critical thinking. These are:

  • Dispositions: Critical thinkers are skeptical, open-minded, value fair-mindedness, respect evidence and reasoning, respect clarity and precision, look at different points of view, and will change positions when reason leads them to do so.
  • Criteria: To think critically, must apply criteria. Need to have conditions that must be met for something to be judged as believable. Although the argument can be made that each subject area has different criteria, some standards apply to all subjects. "... an assertion must... be based on relevant, accurate facts; based on credible sources; precise; unbiased; free from logical fallacies; logically consistent; and strongly reasoned" (p. 12).
  • Argument: Is a statement or proposition with supporting evidence. Critical thinking involves identifying, evaluating, and constructing arguments.
  • Reasoning: The ability to infer a conclusion from one or multiple premises. To do so requires examining logical relationships among statements or data.
  • Point of View: The way one views the world, which shapes one's construction of meaning. In a search for understanding, critical thinkers view phenomena from many different points of view.
  • Procedures for Applying Criteria: Other types of thinking use a general procedure. Critical thinking makes use of many procedures. These procedures include asking questions, making judgments, and identifying assumptions.

Oliver & Utermohlen (1995) see students as too often being passive receptors of information. Through technology, the amount of information available today is massive. This information explosion is likely to continue in the future. Students need a guide to weed through the information and not just passively accept it. Students need to "develop and effectively apply critical thinking skills to their academic studies, to the complex problems that they will face, and to the critical choices they will be forced to make as a result of the information explosion and other rapid technological changes" (Oliver & Utermohlen, p. 1 ).

As mentioned in the section, Characteristics of Critical Thinking , critical thinking involves questioning. It is important to teach students how to ask good questions, to think critically, in order to continue the advancement of the very fields we are teaching. "Every field stays alive only to the extent that fresh questions are generated and taken seriously" (Center for Critical Thinking, 1996a ).

Beyer sees the teaching of critical thinking as important to the very state of our nation. He argues that to live successfully in a democracy, people must be able to think critically in order to make sound decisions about personal and civic affairs. If students learn to think critically, then they can use good thinking as the guide by which they live their lives.

Teaching Strategies to Help Promote Critical Thinking

The 1995, Volume 22, issue 1, of the journal, Teaching of Psychology , is devoted to the teaching critical thinking. Most of the strategies included in this section come from the various articles that compose this issue.

  • CATS (Classroom Assessment Techniques): Angelo stresses the use of ongoing classroom assessment as a way to monitor and facilitate students' critical thinking. An example of a CAT is to ask students to write a "Minute Paper" responding to questions such as "What was the most important thing you learned in today's class? What question related to this session remains uppermost in your mind?" The teacher selects some of the papers and prepares responses for the next class meeting.
  • Cooperative Learning Strategies: Cooper (1995) argues that putting students in group learning situations is the best way to foster critical thinking. "In properly structured cooperative learning environments, students perform more of the active, critical thinking with continuous support and feedback from other students and the teacher" (p. 8).
  • Case Study /Discussion Method: McDade (1995) describes this method as the teacher presenting a case (or story) to the class without a conclusion. Using prepared questions, the teacher then leads students through a discussion, allowing students to construct a conclusion for the case.
  • Using Questions: King (1995) identifies ways of using questions in the classroom:
  • Reciprocal Peer Questioning: Following lecture, the teacher displays a list of question stems (such as, "What are the strengths and weaknesses of...). Students must write questions about the lecture material. In small groups, the students ask each other the questions. Then, the whole class discusses some of the questions from each small group.
  • Reader's Questions: Require students to write questions on assigned reading and turn them in at the beginning of class. Select a few of the questions as the impetus for class discussion.
  • Conference Style Learning: The teacher does not "teach" the class in the sense of lecturing. The teacher is a facilitator of a conference. Students must thoroughly read all required material before class. Assigned readings should be in the zone of proximal development. That is, readings should be able to be understood by students, but also challenging. The class consists of the students asking questions of each other and discussing these questions. The teacher does not remain passive, but rather, helps "direct and mold discussions by posing strategic questions and helping students build on each others' ideas" (Underwood & Wald, 1995, p. 18 ).
  • Use Writing Assignments: Wade sees the use of writing as fundamental to developing critical thinking skills. "With written assignments, an instructor can encourage the development of dialectic reasoning by requiring students to argue both [or more] sides of an issue" (p. 24).
  • Written dialogues: Give students written dialogues to analyze. In small groups, students must identify the different viewpoints of each participant in the dialogue. Must look for biases, presence or exclusion of important evidence, alternative interpretations, misstatement of facts, and errors in reasoning. Each group must decide which view is the most reasonable. After coming to a conclusion, each group acts out their dialogue and explains their analysis of it.
  • Spontaneous Group Dialogue: One group of students are assigned roles to play in a discussion (such as leader, information giver, opinion seeker, and disagreer). Four observer groups are formed with the functions of determining what roles are being played by whom, identifying biases and errors in thinking, evaluating reasoning skills, and examining ethical implications of the content.
  • Ambiguity: Strohm & Baukus advocate producing much ambiguity in the classroom. Don't give students clear cut material. Give them conflicting information that they must think their way through.
  • Angelo, T. A. (1995). Beginning the dialogue: Thoughts on promoting critical thinking: Classroom assessment for critical thinking. Teaching of Psychology, 22(1), 6-7.
  • Beyer, B. K. (1995). Critical thinking. Bloomington, IN: Phi Delta Kappa Educational Foundation.
  • Center for Critical Thinking (1996a). The role of questions in thinking, teaching, and learning. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Center for Critical Thinking (1996b). Structures for student self-assessment. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univclass/trc.nclk
  • Center for Critical Thinking (1996c). Three definitions of critical thinking [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Cooper, J. L. (1995). Cooperative learning and critical thinking. Teaching of Psychology, 22(1), 7-8.
  • Jones, E. A. & Ratcliff, G. (1993). Critical thinking skills for college students. National Center on Postsecondary Teaching, Learning, and Assessment, University Park, PA. (Eric Document Reproduction Services No. ED 358 772)
  • King, A. (1995). Designing the instructional process to enhance critical thinking across the curriculum: Inquiring minds really do want to know: Using questioning to teach critical thinking. Teaching of Psychology, 22 (1) , 13-17.
  • McDade, S. A. (1995). Case study pedagogy to advance critical thinking. Teaching Psychology, 22(1), 9-10.
  • Oliver, H. & Utermohlen, R. (1995). An innovative teaching strategy: Using critical thinking to give students a guide to the future.(Eric Document Reproduction Services No. 389 702)
  • Robertson, J. F. & Rane-Szostak, D. (1996). Using dialogues to develop critical thinking skills: A practical approach. Journal of Adolescent & Adult Literacy, 39(7), 552-556.
  • Scriven, M. & Paul, R. (1996). Defining critical thinking: A draft statement for the National Council for Excellence in Critical Thinking. [On-line]. Available HTTP: http://www.criticalthinking.org/University/univlibrary/library.nclk
  • Strohm, S. M., & Baukus, R. A. (1995). Strategies for fostering critical thinking skills. Journalism and Mass Communication Educator, 50 (1), 55-62.
  • Underwood, M. K., & Wald, R. L. (1995). Conference-style learning: A method for fostering critical thinking with heart. Teaching Psychology, 22(1), 17-21.
  • Wade, C. (1995). Using writing to develop and assess critical thinking. Teaching of Psychology, 22(1), 24-28.

Other Reading

  • Bean, J. C. (1996). Engaging ideas: The professor's guide to integrating writing, critical thinking, & active learning in the classroom. Jossey-Bass.
  • Bernstein, D. A. (1995). A negotiation model for teaching critical thinking. Teaching of Psychology, 22(1), 22-24.
  • Carlson, E. R. (1995). Evaluating the credibility of sources. A missing link in the teaching of critical thinking. Teaching of Psychology, 22(1), 39-41.
  • Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44(1), 1-25.
  • Halpern, D. F., & Nummedal, S. G. (1995). Closing thoughts about helping students improve how they think. Teaching of Psychology, 22(1), 82-83.
  • Isbell, D. (1995). Teaching writing and research as inseparable: A faculty-librarian teaching team. Reference Services Review, 23(4), 51-62.
  • Jones, J. M. & Safrit, R. D. (1994). Developing critical thinking skills in adult learners through innovative distance learning. Paper presented at the International Conference on the practice of adult education and social development. Jinan, China. (Eric Document Reproduction Services No. ED 373 159)
  • Sanchez, M. A. (1995). Using critical-thinking principles as a guide to college-level instruction. Teaching of Psychology, 22(1), 72-74.
  • Spicer, K. L. & Hanks, W. E. (1995). Multiple measures of critical thinking skills and predisposition in assessment of critical thinking. Paper presented at the annual meeting of the Speech Communication Association, San Antonio, TX. (Eric Document Reproduction Services No. ED 391 185)
  • Terenzini, P. T., Springer, L., Pascarella, E. T., & Nora, A. (1995). Influences affecting the development of students' critical thinking skills. Research in Higher Education, 36(1), 23-39.

On the Internet

  • Carr, K. S. (1990). How can we teach critical thinking. Eric Digest. [On-line]. Available HTTP: http://ericps.ed.uiuc.edu/eece/pubs/digests/1990/carr90.html
  • The Center for Critical Thinking (1996). Home Page. Available HTTP: http://www.criticalthinking.org/University/
  • Ennis, Bob (No date). Critical thinking. [On-line], April 4, 1997. Available HTTP: http://www.cof.orst.edu/cof/teach/for442/ct.htm
  • Montclair State University (1995). Curriculum resource center. Critical thinking resources: An annotated bibliography. [On-line]. Available HTTP: http://www.montclair.edu/Pages/CRC/Bibliographies/CriticalThinking.html
  • No author, No date. Critical Thinking is ... [On-line], April 4, 1997. Available HTTP: http://library.usask.ca/ustudy/critical/
  • Sheridan, Marcia (No date). Internet education topics hotlink page. [On-line], April 4, 1997. Available HTTP: http://sun1.iusb.edu/~msherida/topics/critical.html

Walker Center for Teaching and Learning

  • 433 Library
  • Dept 4354
  • 615 McCallie Ave
  •   423-425-4188

loading

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Critical Thinking Is About Asking Better Questions

  • John Coleman

why is reasoning and problem solving important

Six practices to sharpen your inquiry.

Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep, different, and effective questions. For effective questioning, start by holding your hypotheses loosely. Be willing to fundamentally reconsider your initial conclusions — and do so without defensiveness. Second, listen more than you talk through active listening. Third, leave your queries open-ended, and avoid yes-or-no questions. Fourth, consider the counterintuitive to avoid falling into groupthink. Fifth, take the time to stew in a problem, rather than making decisions unnecessarily quickly. Last, ask thoughtful, even difficult, follow-ups.

Are you tackling a new and difficult problem at work? Recently promoted and trying to both understand your new role and bring a fresh perspective? Or are you new to the workforce and seeking ways to meaningfully contribute alongside your more experienced colleagues? If so, critical thinking — the ability to analyze and effectively break down an issue in order to make a decision or find a solution — will be core to your success. And at the heart of critical thinking is the ability to formulate deep, different, and effective questions.

why is reasoning and problem solving important

  • JC John Coleman is the author of the HBR Guide to Crafting Your Purpose . Subscribe to his free newsletter, On Purpose , or contact him at johnwilliamcoleman.com . johnwcoleman

Partner Center

What is problem solving and why is it important

why is reasoning and problem solving important

By Wayne Stottler , Kepner-Tregoe

  • Problem Solving & Decision Making Over time, developing and refining problem solving skills provides the ability to solve increasingly complex problems Learn More

For over 60 years, Kepner-Tregoe has been helping companies across industries and geographies to develop and mature their problem-solving capabilities through KT’s industry leading approach to training and the implementation of best practice processes. Considering that problem solving is a part of almost every person’s daily life (both at home and in the workplace), it is surprising how often we are asked to explain what problem solving is and why it is important.

Problem solving is at the core of human evolution. It is the methods we use to understand what is happening in our environment, identify things we want to change and then figure out the things that need to be done to create the desired outcome. Problem solving is the source of all new inventions, social and cultural evolution, and the basis for market based economies. It is the basis for continuous improvement, communication and learning.

If this problem-solving thing is so important to daily life, what is it?

Problem-solving is the process of observing what is going on in your environment; identifying things that could be changed or improved; diagnosing why the current state is the way it is and the factors and forces that influence it; developing approaches and alternatives to influence change; making decisions about which alternative to select; taking action to implement the changes; and observing impact of those actions in the environment.

Each step in the problem-solving process employs skills and methods that contribute to the overall effectiveness of influencing change and determine the level of problem complexity that can be addressed. Humans learn how to solve simple problems from a very early age (learning to eat, make coordinated movements and communicate) – and as a person goes through life problem-solving skills are refined, matured and become more sophisticated (enabling them to solve more difficult problems).

Problem-solving is important both to individuals and organizations because it enables us to exert control over our environment.

Fixing things that are broken

Some things wear out and break over time, others are flawed from day-1. Personal and business environments are full of things, activities, interactions and processes that are broken or not operating in the way they are desired to work. Problem-solving gives us a mechanism for identifying these things, figuring out why they are broken and determining a course of action to fix them.

Addressing risk

Humans have learned to identify trends and developed an awareness of cause-and-effect relationships in their environment. These skills not only enable us to fix things when they break but also anticipate what may happen in the future (based on past-experience and current events). Problem-solving can be applied to the anticipated future events and used to enable action in the present to influence the likelihood of the event occurring and/or alter the impact if the event does occur.

Improving performance

Individuals and organizations do not exist in isolation in the environment. There is a complex and ever-changing web of relationships that exist and as a result, the actions of one person will often have either a direct impact on others or an indirect impact by changing the environment dynamics. These interdependencies enable humans to work together to solve more complex problems but they also create a force that requires everyone to continuously improve performance to adapt to improvements by others. Problem-solving helps us understand relationships and implement the changes and improvements needed to compete and survive in a continually changing environment.

Seizing opportunity

Problem solving isn’t just about responding to (and fixing) the environment that exists today. It is also about innovating, creating new things and changing the environment to be more desirable. Problem-solving enables us to identify and exploit opportunities in the environment and exert (some level of) control over the future.

Problem solving skills and the problem-solving process are a critical part of daily life both as individuals and organizations. Developing and refining these skills through training, practice and learning can provide the ability to solve problems more effectively and over time address problems with a greater degree of complexity and difficulty. View KT’s Problem Solving workshop known to be the gold standard for over 60 years.

Blog Image 1

We are experts in:

For inquiries, details, or a proposal!

Subscribe to the KT Newsletter

Reasoning Skills

Developing opportunities and ensuring progression in the development of reasoning skills

Achieving the aims of the new National Curriculum:

Developing opportunities and ensuring progression in the development of reasoning skills.

The aims of the National Curriculum are to develop fluency and the ability to reason mathematically and solve problems. Reasoning is not only important in its own right but impacts on the other two aims. Reasoning about what is already known in order to work out what is unknown will improve fluency; for example if I know what 12 × 12 is, I can apply reasoning to work out 12 × 13. The ability to reason also supports the application of mathematics and an ability to solve problems set in unfamiliar contexts.

Research by Nunes (2009) identified the ability to reason mathematically as the most important factor in a pupil’s success in mathematics. It is therefore crucial that opportunities to develop mathematical reasoning skills are integrated fully into the curriculum. Such skills support deep and sustainable learning and enable pupils to make connections in mathematics.

This resource is designed to highlight opportunities and strategies that develop aspects of reasoning throughout the National Curriculum programmes of study. The intention is to offer suggestions of how to enable pupils to become more proficient at reasoning throughout all of their mathematics learning rather than just at the end of a particular unit or topic.

We take the Progression Map for each of the National Curriculum topics, and augment it with a variety of reasoning activities (shaded sections) underneath the relevant programme of study statements for each year group. The overall aim is to support progression in reasoning skills. The activities also offer the opportunity for children to demonstrate depth of understanding, and you might choose to use them for assessment purposes as well as regular classroom activities.

Place Value Reasoning

Addition and subtraction reasoning, multiplication and division reasoning, fractions reasoning, ratio and proportion reasoning, measurement reasoning, geometry - properties of shapes reasoning, geometry - position direction and movement reasoning, statistics reasoning, algebra reasoning.

The strategies embedded in the activities are easily adaptable and can be integrated into your classroom routines. They have been gathered from a range of sources including real lessons, past questions, children’s work and other classroom practice.

Strategies include:

  • Spot the mistake / Which is correct?
  • True or false?
  • What comes next?
  • Do, then explain
  • Make up an example / Write more statements / Create a question / Another and another
  • Possible answers / Other possibilities
  • What do you notice?
  • Continue the pattern
  • Missing numbers / Missing symbols / Missing information/Connected calculations
  • Working backwards / Use the inverse / Undoing / Unpicking
  • Hard and easy questions
  • What else do you know? / Use a fact
  • Fact families
  • Convince me / Prove it / Generalising / Explain thinking
  • Make an estimate / Size of an answer
  • Always, sometimes, never
  • Making links / Application
  • Can you find?
  • What’s the same, what’s different?
  • Odd one out
  • Complete the pattern / Continue the pattern
  • Another and another
  • Testing conditions
  • The answer is…
  • Visualising

These strategies are a very powerful way of developing pupils’ reasoning skills and can be used flexibly. Many are transferable to different areas of mathematics and can be differentiated through the choice of different numbers and examples.

Nunes, T. (2009) Development of maths capabilities and confidence in primary school, Research Report DCSF-RR118 (PDF)

Is there anything wrong with this page?

Subscribe to our newsletter

Problem-Solving

Child putting together the Wooden Wobble Puzzle from The Problem Solver Play Kit

Learning & Cognitive Skills

8 to 11 months

Sorting & Matching, Stacking, Executive Function, Concentration

From tackling a complex project at work to figuring out how to manage your busy schedule, every day you use problem-solving skills like critical thinking, reasoning, and creativity. How did you learn these skills? Just as your child will: through exploration and play. Support their problem-solving skills through activities that let them independently try new things, learn from their mistakes, and test out different ways of thinking.

In this article:

What is problem-solving?

What are examples of problem-solving skills, when do children develop problem-solving skills , why are problem-solving skills important in child development.

  • Problem-solving games & activities for babies and toddlers

Problem-solving and frustration tolerance

Developmental concerns with problem-solving.

Problem-solving is the process by which your child spots a problem and comes up with a solution to overcome it. Your child uses problem-solving skills in all sorts of contexts, from figuring out how to get a ball out of a cup to interacting with a child who took their toy. 

Children don’t inherently understand different approaches to solving problems—these skills develop gradually over time, starting in the earliest days of life. As your child gains experience, tests out strategies, plays with various materials, and watches people around them, they learn how to problem-solve. 

Think about strategies you might use to tackle a project at work—for example, creating an outline, breaking the project into steps, or delegating tasks. With your help, your child will develop problem-solving skills like these:

  • Breaking a large problem into smaller steps
  • Persevering through challenges or setbacks
  • Using creativity to think “outside the box” about different solutions
  • Being resourceful by using available items as tools to reach a goal 
  • Taking the initiative to try a possible solution and see if it works
  • Seeking help when you get stuck
  • Using compromise or negotiation to help resolve a conflict
  • Using critical thinking to discover what the next step should be

As early as 8 to 11 months, you may see the earliest signs of your child’s problem-solving skills at work. If you hide a toy under a blanket or basket, for example, they may use basic problem-solving to try to uncover it. 

As a toddler, your child will grow more experienced with different types of playthings and the challenges they offer. They’ll also develop more focus and patience to work through problems on their own. Support their emerging problem-solving skills by observing their efforts—without stepping in right away to help. It’s tempting to intervene when you see your toddler struggle to fit the pieces of a puzzle, align blocks so they won’t fall, or get a stuck car out of the Race & Chase Ramp . Banging, rotating, failing, and trying again are all important parts of the process. Your toddler gains more problem-solving experience with every attempt.

RELATED: Subtle signs of your toddler’s developing focus

By 3 years of age, your child will have more skills to help them solve a problem. They’ve learned how to communicate and follow directions. They also have more control over their emotions and their body. Not only are they ready to solve more complex puzzles and games, they’re  learning how to solve social problems, like working through conflict and negotiating with peers during play.

If your child is accustomed to tackling problems, they’re more likely to at least attempt to get the cup they need off the high shelf, or try to buckle those tricky sandal straps. Practicing problem-solving can help your child overcome challenges, try flexible ways of thinking, and become more confident and independent in the process.  

Problem-solving skills are also crucial to your child’s cognitive development. They encourage your child’s brain to make new connections and process information in new ways. This is why so many of the best games, toys, and activities for young children stress some element of problem-solving, critical thinking, or creativity. 

Your child can develop better social skills when they practice problem-solving, too: Understanding how to resolve conflicts and compromise with peers is a crucial problem-solving skill they’ll take with them into preschool and beyond.

Problem-solving activities & games

You don’t need elaborate planning or fancy equipment to help your child develop these skills. Many problem-solving activities for kids can be incorporated into daily life or during playtime.

Problem-solving activities for babies

It will be years before your baby is ready for advanced problem-solving skills, like compromising with others and project planning. For now, they’ll experiment with different ways to solve simple problems, showing initiative, perseverance, and creativity. Here are a few activities that help spark your baby’s problem-solving skills.

Reaching for a toy: Setting a goal is the very first step in problem-solving. Once your baby can sit independently, place toys one at a time in front of them, behind them, beside them, between their legs, or on a nearby shelf. This allows them to practice setting a goal—get the toy!—and making a plan to achieve it. 

Emptying a container: Dumping objects out of containers sounds like a mess, but it’s a valuable skill for babies to learn. Place a Wood Ball in a Nesting Stacking Drip Drop Cup and show your baby how to tip over the cup to empty it. Then, put the ball back into the cup and let your baby figure out how to get the ball out of the container on their own. 

See inside The Inspector Play Kit

The Inspector Play Kit

The Inspector Play Kit (Months 7-8)

Fuel your baby’s exploration with toys from The Inspector Play Kit

Finding hidden objects: Your baby practices problem-solving with the Sliding Top Box every time they work to figure out how to slide the top to reveal the ball inside. This also builds fine motor skills and hand-eye coordination.

Posting: The Wooden Peg Drop lets your baby experiment with “posting,” or fitting an object into its container, a much-loved fine motor activity. The tab release is an engaging problem-solving task for your baby, as they discover how to press down to release the pegs from their slots.

Explore playthings that encourage problem-solving

The Thinker Play Kit

The Thinker Play Kit (Months 11-12)

Boost your child’s problem-solving skills with toys from The Thinker Play Kit

Problem-solving activities for toddlers

At 12 to 18 months, your toddler’s problem-solving skills are still taking shape. But you may begin to see them work to figure out more complex problems, like pulling toys around obstacles or getting objects “unstuck.” Encourage your toddler through play with activities that challenge their creative thinking.

Object interactions: What happens when you push a squishy ball through a small opening? How does a bendy thing react when it hits something hard? Understanding how different objects interact helps your child learn to use tools for problem-solving. 

As you play with your toddler, demonstrate different ways playthings can interact. Two blocks can be banged together, stacked, or lined up side by side. The insects from the Fuzzy Bug Shrub can be stuck to the outside of the shrub or put inside. Give your child pieces from different playthings and see how they can make them interact. Perhaps the balls from the Slide and Seek Ball Run and the rings from the Wooden Stack & Slot can interact in some new, fun way?

The Babbler Play Kit

The Babbler Play Kit (Months 13-15)

Foster your toddler’s early communication skills with toys from The Babbler Play Kit.

The Adventurer Play Kit

The Adventurer Play Kit (Months 16-18)

Fuel your toddler’s sense of discovery with toys from The Adventurer Play Kit

Asking questions : Once your toddler learns how to push the Carrots through the Carrot Lid for the Coin Bank, the question becomes how to get them out. Ask your toddler simple questions to spark their problem-solving skills: “Where did the carrots go?” or “How can we get them out?” Encourage your child to explore the Coin Bank and give them time to discover a solution on their own.

Simple challenges: Your toddler may be ready for some problem-solving challenges with their playthings. For example, when your toddler can pick up a toy in each hand, offer a third toy and see if they can figure out how to carry all three at once. Or place parts of a toy—like the rings for the Wooden Stack & Slot—in different locations around the room, so your child needs to plan how to retrieve the pieces. Pack as many Quilted Critters as will fit in The Lockbox  and let your toddler discover how to get them out. This type of challenge may seem simple, but your child has to problem-solve how to navigate their hand into the box to pull out the Critters. 

Cause and effect: Your toddler may discover how to pull on a string attached to a toy to make it move. They understand that the toy and the string are linked, and use simple problem-solving skills to test—and re-test—what happens when they move the string differently. This type of problem-solving can be supported by pull toys such as The Pull Pup . As your toddler encounters different obstacles—like the corner of the couch—with The Pull Pup, they’ll have to problem-solve to keep the toy moving.

The Pull Pup by Lovevery

The Pull Pup

The perfect companion for pretend play, encouraging coordination and gross motor skills.

Child walking The Pull Pup by Lovevery

RELATED: Pull toys are classic for a reason

Puzzles are a classic childhood problem-solving activity for good reason. Your child learns  how things fit together, how to orient and rotate objects, and how to predict which shape might fit a particular space. Puzzles come in such a wide variety of difficulty levels, shapes, sizes, and formats, there’s a puzzle that’s right for almost every stage of development. 

Lovevery co-founder Jessica Rolph explains how Lovevery puzzles are designed to progress with your child’s problem-solving and fine motor skills:

Babies can begin exploring simple one-piece puzzles around 6 to 8 months of age. Puzzles that have round slots and easy-to-hold pieces with knobs, like the First Puzzle , are ideal for this age. Around 13 to 15 months of age, they can try simple puzzles with several pieces in the same shape, like the Circle of Friends Puzzle .

By 18 months, your toddler is probably ready to work with puzzle shapes that are geometric, animal, or organic, like the Community Garden Puzzle . This reinforces your toddler’s newfound understanding that different shapes fit in different places. As they progress, they may start to enjoy stacking and nesting puzzles, like the 3D Geo Shapes Puzzle . This type of puzzle requires problem-solving on a new level, since your child may have to turn the shapes in different directions to orient and place them correctly.

As your toddler approaches their second birthday, they may be ready for classic jigsaw puzzles. Puzzles with large pieces that are easy for your toddler to hold, like the Chunky Wooden Jigsaw Puzzle , are a great place to start. At this age, your toddler may also find 3D puzzles, like the Wooden Posting Stand , an engaging problem-solving challenge. Since the dowels are different diameters, your child will likely use trial and error to determine which size fits in the correct slot. At first, you may have to guide them a bit: Point out that the dowels need to go in straight in order to fit.

The Companion Play Kit

The Companion Play Kit (Months 22-24)

Nurture your toddler’s emotional intelligence with toys from The Companion Play Kit

How to encourage puzzle play for active toddlers

Depending on your toddler’s temperament, they may love to sit quietly and work on a puzzle—or they may be constantly on the move. Highly active toddlers may seem like they never sit still long enough to complete an activity. Here are a few ways to combine their love of movement with puzzle play:

  • Play “hide-and-seek” with toys (or puzzle pieces) by placing them on top of furniture that’s safe to cruise along or climb on.
  • Place puzzle pieces in different places around the room, so they have to retrieve them one by one to solve the puzzle. 
  • Place the puzzle pieces on stairs or in different rooms so your toddler has to walk or climb to find them.

Stacking toys

Stacking toys such as blocks or rings engage babies and toddlers in a challenging form of problem-solving play. Your child’s skills are put to the test as they plan where to place each item, work to balance their stack, and wrestle with gravity to keep the stack from toppling.  

You can introduce your baby to stacking play around 9 to 10 months with playthings that are easy to work with, like the Nesting Stacking Drip Drop Cups . Stacking takes coordination, precision, and patience, and if they try to stack items that are too difficult to keep upright, they may become frustrated and give up. 

You can also make basic blocks easier to stack by using a larger item as a base. Demonstrate how to stack a block on top of the base, then knock the tower down. Hand a block to your toddler and allow them to try stacking and knocking it down. As their movements become more controlled and purposeful, introduce another block to stack.  

Stacking a tower with the pegs from the Wooden Stacking Pegboard is a fun way to introduce goal-setting, an important aspect of problem-solving. The pegs nest together securely, allowing your toddler to build a higher, more stable tower than they could create with regular blocks. You can gently suggest a goal for your child—“Can we stack it higher?”—and see if they’re ready for the challenge. Then, sit and support them as they try to solve any problems that arise: “Is the tower too tall? Can we make it wider so it won’t fall so easily?”

Hide-and-seek

The classic childhood game of hide-and-seek offers your toddler many problem-solving opportunities. Your child has to use reasoning to figure out what would be a good hiding spot. They also use the process of elimination when they think about where they have and haven’t looked. They might even use creative thinking skills to discover a new place to hide.

The game doesn’t always have to involve you and your child hiding. When your child is around 12 months, you can introduce them to the concept using toys or other objects. Hide a small ball in one of two identical containers that you can’t see through, like upside-down cups. Make sure your child sees you put the ball under one of the containers, then mix them up. Lift the empty container to show your toddler that the ball isn’t inside and say, “Where is the ball?” If your toddler looks at the other container, say, “Yes! The ball is under this one.” Let your toddler lift the second container to find the ball. 

Your toddler might enjoy a game of hide-and-seek with The Lockbox . Hide a small toy, like one of the Quilted Critters or a small ball, inside The Lockbox. This activity challenges your toddler’s problem-solving skills on two levels: figuring out how to unlock the different mechanisms to open the doors, and feeling around inside to discover what’s hidden. Add another layer of fun to the challenge by letting your child try to guess the object just by touching it—no peeking.

See inside The Realist Play Kit

The Realist play Kit

The Realist Play Kit (Months 19-21)

Equip your toddler’s with real-world skills with toys from The Realist Play Kit

Using tools to solve problems

Around 17 to 24 months of age, your child may begin using tools to solve simple problems. For example, if you ask your child to pick up their toys, their hands may become full quickly. You can model how to load toys into a bucket or bag to carry them to another spot. This might seem like an obvious choice, but the ability to use a tool to make a task easier or solve a problem is an important cognitive skill.

Here are a few ways you and your toddler can explore using tools to solve a problem:

  • Show your child how to make a “shirt bowl” by using the upturned edge of their shirt as a cradle to hold toys or playthings.
  • If a toy gets stuck behind the sofa, model how you can use a broomstick to push the toy to a place where you can reach it.
  • Provide a child-size stool that your child can use to reach the sink or counter.

The Transfer Tweezers are a simple tool that your toddler can use to pick up other items besides the Felt Stars . They could try picking up the animals from the Quilted Critter Set or other child-safe items. Whenever you model how to use tools in everyday life, your child learns to think about new and different ways to solve problems.

Pretend play

Pretend play supports your child’s problem-solving skills in many ways. Research suggests that children’s pretend play is linked to different types of problem-solving and creativity. For example, one study showed that pretend play with peers was linked to better divergent problem-solving—meaning that children were able to “think outside the box” to solve problems. 

Pretend play is also a safe place for children to recreate—and practice solving—problems they’ve seen in their lives. Your 2- to 3-year-old may reenact an everyday challenge—for example, one doll might take away another doll’s toy. As practice for real-world problem-solving, you can then help them talk through how the dolls might solve their issue together

Pretend play may help children be more creative and open to new ideas. In pretend play, children put together play scenarios, act on them, and develop creative solutions. A 3- or 4-year-old child might be ready to explore creative problem-solving through pretend play that uses their playthings in new ways. Help your child start with an idea: “What do you want to pretend to be or recreate — a favorite storybook scene or someone from real life like a doctor or server at a restaurant?” Then encourage them to look for playthings they can use to pretend. Maybe a block can be a car or the beads from the Threadable Bead Set serve as “cups” in your child’s pretend restaurant. As your child gains practice with creative pretend play, they may start to form elaborate fantasy worlds.

Even if you don’t think of yourself as creative, you can model creative thinking by showing your child how a toy can be used in many different ways. Research finds that parents who model “out of the box” ways to play can encourage creative thinking and problem-solving in their children, starting in toddlerhood.

It can be difficult for young children to manage their frustration, but giving your child opportunities to solve problems on their own helps build both confidence and frustration tolerance . Research suggests that the ability to set goals and persist in them through challenges—sometimes called “grit”—is linked to school and career success. Here’s how you can play an important role in helping your child develop problem-solving persistence.

Model persistence. You know your toddler closely observes everything you do 🙃 A 2017 study shows that young children who watch their parents persist in their own challenge were more likely to show persistence themselves. Allow your toddler to see you attempting an activity, failing, and talking yourself through trying again. While playing with blocks, try stacking a few off balance so they fall. Notice aloud what went wrong and continue to narrate as you move slowly to carefully stack the blocks again.

Give them time. A little frustration can go a long way toward learning. It can take enormous restraint not to point out where to put the puzzle piece or how to slot the peg in place—but try to give them time to problem-solve on their own. You’re helping them feel capable and confident when faced with new challenges.

RELATED:  11 ways to build your toddler’s frustration tolerance

Ask questions to encourage new strategies. If your toddler gets frustrated with a problem, encourage their problem-solving process by asking questions: “Are you trying to race the car down the ramp but it got stuck? Is the car too long to go down sideways?” This may help your child refocus their attention on their goal instead of what they have already unsuccessfully tried. With a little time and creative problem-solving, your child may figure it out on their own.

Problem-solving skills are just one component of your child’s overall cognitive development. By around 12 months of age, you should see signs that your child is attempting to solve simple problems, like looking for a toy under a blanket. By about 30 months, your child may show slightly more advanced problem-solving skills, like using a stool to reach a high counter. Their attempts might not always be successful at this age, but the fact that they’re trying shows they’re thinking through different options. If you don’t see signs of your child trying to solve problems in these ways, talk to your pediatrician about your concerns. They can assess your child’s overall development and answer any questions.

Explore The Play Kits

The Senser Play Kit by Lovevery

The Play Kits

Unlock your child’s potential with our expertly designed toys from The Play Kits.

Posted in: 7 - 8 Months , 9 - 10 Months , 11 - 12 Months , 13 - 15 Months , 16 - 18 Months , 19 - 21 Months , 22 - 24 Months , 25 - 27 Months , 28 - 30 Months , Learning & Cognitive Skills , Cause and Effect , Problem Solving , Cognitive Development , STEM , Independent Play , Puzzles , Child Development , Learning & Cognitive Skills

Meet the Experts

Learn more about the lovevery child development experts who created this story..

Rachel Coley, MS, OT/L

Research & Resources

Alan, S., Boneva, T., & Ertac, S. (2019). Ever failed, try again, succeed better: Results from a randomized educational intervention on grit . The Quarterly Journal of Economics, 134 (3), 1121-1162.

Bergen, D. (2002). The role of pretend play in children’s cognitive development . Early Childhood Research & Practice , 4(1), n1.

Bruner, J. S. (1973). Organization of early skilled action . Child Development , 1-11.

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: perseverance and passion for long-term goals . Journal of Personality and Social Psychology, 92 (6), 1087.

Hoicka, E., Mowat, R., Kirkwood, J., Kerr, T., Carberry, M., & Bijvoet‐van den Berg, S. (2016). One‐year‐olds think creatively, just like their parents . Child Development , 87 (4), 1099-1105.

Keen, R. (2011). The development of problem solving in young children: A critical cognitive skill. Annual Review of Psychology , 62 , 1-21.

Mullineaux, P. Y., & Dilalla, L. F. (2009). Preschool pretend play behaviors and early adolescent creativity . The Journal of Creative Behavior , 43(1), 41-57.

Keep reading

Toddler playing with the Geo Shapes Puzzle by Lovevery

16 - 18 Months

Puzzling over puzzles—what the progression looks like

Puzzles build fine motor skills, hand-eye coordination, and problem-solving strategies. Here is the progression of puzzle solving for babies and toddlers.

Toddler playing with the Wooden Peg Drop by Lovevery

13 - 15 Months

Toddler independent play tips

When your toddler plays on their own, they develop concentration, problem-solving, and autonomy. Read these 4 tips for for supporting independent play.

Child playing with The Block Set by Lovevery

19 - 21 Months

22 - 24 Months

11 ways to build your toddler’s frustration tolerance 

Help your toddler work through feelings of disappointment, sadness, and frustration when their skills don't quite match their ambitions.

why is reasoning and problem solving important

How logical reasoning works

logical reasoning cognitive skill

What is logical reasoning?

Logical reasoning is the process of using rational and systematic series of steps to come to a conclusion for a given statement. The situations that ask for logical reasoning require structure, a relationship between given facts and chains of reasoning that are sensible. Because you have to study a problem objectively with logical reasoning, analysing is an important factor within the process. Logical reasoning starts with a proposition or statement. This statement can be both true or false.  

Why is logical reasoning important?

Logical reasoning, in combination with other cognitive skills, is an important skill you use during all kinds of daily situations. It helps you make important decisions, discern the truth, solve problems, come up with new ideas and set achievable goals. Logical reasoning is also an important aspect of measuring intelligence during an IQ-test.  

The three types of logical reasoning

Logical reasoning can be divided into deductive-, inductive- and abductive reasoning. While inductive reasoning starts with a specific instance and moves into a generalized conclusion, deductive reasoning goes from a generalized principle that is known to be true to a specific conclusion that is true. And abductive reasoning is making a probable conclusion from what you know.  

logical reasoning types

We’ll explain each type of logical reasoning further:

Inductive reasoning

With inductive reasoning, a number of specific observations lead to a general rule. With this method, the premises are viewed as supplying some evidence for the truth of a conclusion. With inductive reasoning, there is an element of probability. In other words, forming a generalization based on what is known or observed.   While this sounds like the theory you will use during a debate or discussion, this is something you do every day in much simpler situations as well. We’ll explain this type of logical reasoning with an example: There are 28 balls within a basket, which are either red or white. To estimate the amount of red and white balls, you take a sample of four balls. The sample you took, exists out of three red and one white ball. Using good inductive generalization would be that there are 21 red and 7 white balls in the basket. As already explained, the conclusion drawn from his type of reasoning isn’t certain but is probable based on the evidence given (the sample of balls you took). Questions which require to perform inductive reasoning are a part of IQ-tests. An example of a little more complex question like just explained with the balls is the one of the image below. To come to a conclusion to solve this problem, both inductive reasoning and pattern recognition skills are required. Looking at the sequence of tiles with different patterns of dots, which tile should be on the place of the question mark? A, B, C, D, E or F?  

inductive reasoning example question

Deductive reasoning

With deductive reasoning, factual statements are used to come to a logical conclusion. If all the premises (factual statements) are true, the terms are clear and all the rules of deductive logic are followed to come to a conclusion, then the conclusion will also be true. In this case, the conclusion isn’t probable, but certain. Deductive reasoning is also known as “top-down” logic, because it (in most cases) starts with a general statement and will end with a specific conclusion.

We’ll explain deductive reasoning with an example, with 2 given premises:

It’s dangerous to drive while it’s freezing (premise 1)

It is currently freezing outside (premise 2)

So, we now know that it is dangerous to drive when it is freezing, and it is currently freezing outside. Using deductive reasoning, these two premises can help us form necessarily true conclusion, which is:

It is currently dangerous to drive outside (conclusion)

Situations in which you use deductive reasoning can come in many forms, such as mathematics. Whether you are designing your own garden or managing your time, you use deductive reasoning while doing math daily. An example is solving the following math problem:

All corners of a rectangle are always 180° (premise 1)

The following rectangle has one right angle, which is always 90° (premise 2)

The second angle is 60° (premise 3)  

deductive example math

How much degrees is the third angle (X)? To answer this question, you can use the three premises to come to the conclusion how much degrees the third hook is. The conclusion should be 180° (premise 1) -90° (premise 2) - 60° (premise 3) = 30° (conclusion)

Abductive reasoning

With abductive reasoning, the major premise is evident but the minor premise(s) is probable. Therefore, defining a conclusion would also make this conclusion probable. You start with an observation, followed by finding the most likely explanation for the observations. In other words, it is a type of logical reasoning you use when you form a conclusion with the (little) information that is known. An example of using abductive reasoning to come to a conclusion is a decision made by a jury. In this case, a group of people have to come to a solution based on the available evidence and witness testimonies. Based on this possibly incomplete information, they form a conclusion. A more common example is when you wake up in the morning, and you head downstairs. In the kitchen, you find a plate on the table, a half-eaten sandwich and half a glass of milk. From the premises that are available, you will come up with the most likely explanation for this. Which could be that your partner woke up before you and left in a hurry, without finishing his or her breakfast.  

inductive deductive abductive reasoning example

How does logical thinking relate to problem-solving?

As previously mentioned, the different types of logical reasoning (inductive, deductive and abductive) help you to form conclusions based on the current situation and known facts. This very closely correlates to problem-solving, as finding the most probable solution to resolve a problem is a similar conclusion. Logical thinking, and thereby problem solving, goes through the following five steps to draw a conclusion and/or find a solution:

Collecting information about the current situation. Determining what the current problem is, and what premises apply. Let’s say you want to go out for a drive, but it’s freezing outside.

Analyzing this information. What information is relevant to the situation, and what isn’t. In this case, the fact that it’s freezing is relevant for your safety on the road. The fact that you might get cold isn’t, as you’d be in your car.

Forming a conclusion. What can you conclude from this information? The roads might be more dangerous because it’s freezing.

Support your conclusion. You might look at traffic information to see that there have been more accidents today, in which case, that supports the conclusion that driving is more dangerous today.

  • Defend your conclusion. Is this conclusion correct for your case? If you don’t have winter tires it would be more accurate than when you do.  

problem solving steps

How to improve logical thinking and problem-solving skills?

Because there are so many different situations in which you use logical thinking and problem-solving, this isn’t a cognitive skill you can train specifically. Luckily, there are many methods that might help you to improve your logical thinking skills. These include methods to keep your general cognitive abilities healthy as well as methods to train your logical thinking skills. These are:

Learning something new

Social interaction

Healthy nutrition

Ensure enough sleep

Avoid stress

Preferably no alcohol

Spend time on creative hobbies

Practice questioning

Try to anticipate the outcome of your decisions

Brain training to challenge your logical reasoning skills

improve logical thinking skill

Oxford Education Blog

The latest news and views on education from oxford university press., the role of reasoning in supporting problem solving and fluency.

why is reasoning and problem solving important

A recent webinar with Mike Askew explored the connection between reasoning, problem solving and fluency. This blog post summaries the key takeaways from this webinar.

Using reasoning to support fluency and problem solving 

You’ll probably be very familiar with the aims of the National Curriculum for mathematics in England: fluency, problem-solving and reasoning. An accepted logic of progression for these is for children to become fluent in the basics, apply this to problem-solving, and then reason about what they have done. However, this sequence tends towards treating reasoning as the icing on the cake, suggesting that it might be a final step that not all children in the class will reach. So let’s turn this logic on its head and consider the possibility that much mathematical reasoning is in actual fact independent of arithmetical fluency.

What does progress in mathematical reasoning look like?

Since we cannot actually ‘see’ children’s progression in learning, in the way we can see a journey’s progression on a SatNav, we often use metaphors to talk about progression in learning. One popular metaphor is to liken learning to ‘being on track’, with the implication that we can check if children going in the right direction, reaching ‘stations’ of fluency along the way. Or we talk about progression in learning as though it were similar to building up blocks, where some ideas provide the ‘foundations’ that can be ‘built upon’. 

Instead of thinking about reasoning as a series of stations along a train track or a pile of building blocks, we can instead take a gardening metaphor, and think about reasoning as an ‘unfolding’ of things. With this metaphor, just as the sunflower ‘emerges’ from the seed, so our mathematical reasoning is contained within our early experiences. A five-year-old may not be able to solve 3 divided by 4, but they will be able to share three chocolate bars between four friends – that early experience of ‘sharing chocolate’ contains the seeds of formal division leading to fractions. 1  

Of course, the five-year-old is not interested in how much chocolate each friend gets, but whether everyone gets the same amount – it’s the child’s interest in relationships between quantities, rather than the actual quantities that holds the seeds of thinking mathematically.  

The role of relationships in thinking mathematically

Quantitative relationships.

Quantitative relationships refer to how quantities relate to each other. Consider this example:

I have some friends round on Saturday for a tea party and buy a packet of biscuits, which we share equally. On Sunday, I have another tea party, we share a second, equivalent packet of the biscuits. We share out the same number of biscuits as yesterday, but there are more people at the table. Does each person get more or less biscuits? 2

Once people are reassured that this is not a trick question 3 then it is clear that if there are more people and the same quantity of biscuits, everyone must get a smaller amount to eat on Sunday than the Saturday crowd did. Note, importantly, we can reason this conclusion without knowing exact quantities, either of people or biscuits. 

This example had the change from Saturday to Sunday being that the number of biscuits stayed the same, while the number of people went up. As each of these quantities can do three things between Saturday and Sunday – go down, stay the same, go up – there are nine variations to the problem, summarised in this table, with the solution shown to the particular version above. 

why is reasoning and problem solving important

Before reading on, you might like to take a moment to think about which of the other cells in the table can be filled in. (The solution is at the end of this blog).

It turns out that in 7 out of 9 cases, we can reason what will happen without doing any arithmetic. 4 We can then use this reasoning to help us understand what happens when we do put numbers in. For example, what we essentially have here is a division – quantity of biscuits divided between number of friends – and we can record the changes in the quantities of biscuits and/or people as fractions:

why is reasoning and problem solving important

So, the two fractions represent 5 biscuits shared between 6 friends (5/6) and 5 biscuits shared between 8 (5/8). To reason through which of these fractions is bigger we can apply our quantitative reasoning here to see that everyone must get fewer biscuits on Sunday – there are more friends, but the same quantity of biscuits to go around. We do not need to generate images of each fraction to ‘see’ which is larger, and we certainly do not need to put them both over a common denominator of 48.  We can reason about these fractions, not as being static parts of an object, but as a result of a familiar action on the world and in doing so developing our understanding of fractions. This is exactly what MathsBeat does, using this idea of reasoning in context to help children understand what the abstract mathematics might look like.

Structural relationships : 

By   structural relationships,   I mean   how we can break up and deal with a quantity in structural ways. Try this:

Jot down a two-digit number (say, 32) Add the two digits (3 + 2 = 5) Subtract that sum from your original number (32 – 5 = 27) Do at least three more Do you notice anything about your answers?

If you’ve done this, then you’ll probably notice that all of your answers are multiples of nine (and, if like most folks, you just read on, then do check this is the case with a couple of numbers now).

This result might look like a bit of mathematical magic, but there must be a reason.

We might model this using three base tens, and two units, decomposing one of our tens into units in order to take away five units. But this probably gives us no sense of the underlying structure or any physical sensation of why we always end up with a multiple of nine.

why is reasoning and problem solving important

If we approach this differently, thinking about where our five came from –three tens and two units – rather than decomposing one of the tens into units, we could start by taking away two, which cancels out.

And then rather than subtracting three from one of our tens, we could take away one from each ten, leaving us with three nines. And a moment’s reflection may reveal that this will work for any starting number: 45 – (4 + 5), well the, five within the nine being subtracted clears the five ones in 45, and the 4 matches the number of tens, and that will always be the case. Through the concrete, we begin to get the sense that this will always be true.

why is reasoning and problem solving important

If we take this into more formal recording, we are ensuring that children have a real sense of what the structure is: a  structural sense , which complements their number sense. 

Decomposing and recomposing is one way of doing subtraction, but we’re going beyond this by really unpacking and laying bare the underlying structure: a really powerful way of helping children understand what’s going on.

So in summary, much mathematical reasoning is independent of arithmetical fluency.

This is a bold statement, but as you can see from the examples above, our reasoning doesn’t necessarily depend upon or change with different numbers. In fact, it stays exactly the same. We can even say something is true and have absolutely no idea how to do the calculation. (Is it true that 37.5 x 13.57 = 40 x 13.57 – 2.5 x 13.37?)

Maybe it’s time to reverse the logic and start to think about mathematics emerging from reasoning to problem-solving to fluency.

Head shot of the blog's author Mike Askew

Mike Askew:  Before moving into teacher education, Professor Mike Askew began his career as a primary school teacher. He now researches, speaks and writes on teaching and learning mathematics. Mike believes that all children can find mathematical activity engaging and enjoyable, and therefore develop the confidence in their ability to do maths. 

Mike is also the Series Editor of  MathsBeat , a new digitally-led maths mastery programme that has been designed and written to bring a consistent and coherent approach to the National Curriculum, covering all of the aims – fluency, problem solving and reasoning – thoroughly and comprehensively. MathsBeat’s clear progression and easy-to-follow sequence of tasks develops children’s knowledge, fluency and understanding with suggested prompts, actions and questions to give all children opportunities for deep learning. Find out more here .

You can watch Mike’s full webinar,  The role of reasoning in supporting problem solving and fluency , here . (Note: you will be taken to a sign-up page and asked to enter your details; this is so that we can email you a CPD certificate on competition of the webinar). 

Solution to  Changes from Saturday to Sunday and the result

why is reasoning and problem solving important

 1 If you would like to read more about this, I recommend Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.

2 Adapted from a problem in: Lamon, S. (2005). Teaching Fractions and Ratios for Understanding. Essential Content Knowledge and Instructional Strategies for Teachers, 2nd Edition. Routledge.

3 Because, of course in this mathematical world of friends, no one is on a diet or gluten intolerant!

4 The more/more and less/less solutions are determined by the actual quantities: biscuits going up by, say, 20 , but only one more friend turning up on Sunday is going to be very different by only having 1 more biscuit on Sunday but 20 more friends arriving. 

Share this:

One thought on “ the role of reasoning in supporting problem solving and fluency ”.

' src=

Hi Mike, I enjoyed reading your post, it has definitely given me a lot of insight into teaching and learning about mathematics, as I have struggled to understand generalisations and concepts when dealing solely with numbers, as a mathematics learner. I agree with you in that students’ ability to reason and develop an understanding of mathematical concepts, and retain a focus on mathematical ideas and why these ideas are important, especially when real-world connections are made, because this is relevant to students’ daily lives and it is something they are able to better understand rather than being presented with solely arithmetic problems and not being exposed to understanding the mathematics behind it. Henceforth, the ideas you have presented are ones I will take on when teaching: ensuring that students understand the importance of understanding mathematical ideas and use this to justify their responses, which I believe will help students develop confidence and strengthen their skills and ability to extend their thinking when learning about mathematics.

Comments are closed.

why is reasoning and problem solving important

Why is Problem Solving Important in Child Development?

Children develop problem-solving skills at different rates; nevertheless, it is imperative that children learn to tackle problems with grit and creativity, especially as they learn to cope with setbacks or resolve conflict. Moreover, problem solving is one of the most important skills children can develop, because it prepares them to face increasingly complex academic and interpersonal issues as they mature.

Experts agree that the ability to meet challenges confidently is “a critical skill for school readiness.” In many cases, children learn by watching parents or caregivers solve problems.

This article will explore three benefits of learning problem-solving skills at school:

Improved Academic Performance

Increased Confidence

Career Readiness

The earlier children begin solving problems, the more ready they are to deal with bigger challenges as they mature.

By introducing problem solving skills in the classroom, children learn to think in terms of manageable steps as they:

1.       Identify Problems

2.       Brainstorm Possible Solutions

3.       Test Appropriate Solutions

4.       Analyze Results

By viewing problems as opportunities to grow, children broaden their understanding while building confidence.

The classroom is a safe, controlled environment, with experienced teachers who direct students as they hone problem-solving skills.

Good schools know that problem solving is important in child development. Therefore, we incorporate problem-solving exercises into a wide range of classes. Marlborough’s goal is to ignite intellectual inquiry by combining problem solving with creativity, collaboration, and communication, thereby empowering our students to become actively engaged global citizens .

We ask our middle school girls to solve various types of problems; thus, they develop flexibility. Since our students regularly practice problem solving, they dramatically improve their academic performance.

Problem-Solving Skills Improve Academic Performance

One reason that problem solving is important in child development is that it teaches discernment, helping young people distinguish what is a solvable problem.

Problem solving also develops grit, a trait that successful students routinely display.

Often, it takes an entire team to solve a problem. Since it can feel intimidating to collaborate or ask for help , the classroom is a perfect space to take risks. Together, students learn how to ask determining questions, such as:

Why is this situation so challenging?

Do I know how to address the problem?

Who can help me find a workable solution?

Students who learn how to solve problems have a deeper understanding of cause and effect. Teachers often urge students to look for patterns or make predictions. Problem-solving skills, then, boost reflective, critical thinking.

At Marlborough, we foster practical, analytical thinking through individual and collaborative school projects. Here are two middle school elective courses that show how problem-solving skills lead to academic success:

Middle School Debate teaches the art of research, deliberation, and argument. Students consider both sides of a question, discussing realistic solutions, and presenting their findings with clarity and eloquence.

Crime Scene Investigation: CSI Marlborough synthesizes biology and chemistry as students learn about forensic science. Students systematically solve problems by investigating a fictional crime, securing the crime scene, gathering detailed evidence, testing hypotheses, identifying potential suspects, then solving the case.

Problem-Solving Skills Build Confidence

Solving problems means making choices. Typically, effective problem-solving skills result in “happier, more confident, and more independent” individuals.

When children tackle problems on their own, or in a group, they become resilient. They learn to look at challenges from a fresh perspective. Therefore, they take more calculated risks.

Problem solving is important in child development because confident, capable children usually grow into confident, capable adults. <

If students practice problem solving consistently, they can develop greater situational and social awareness. Additionally, they learn to manage time and develop patience.

As students mature, problems they face become more complex:

How do I make lasting friendships?

How can I bring justice to my community?

Which career suits my abilities and interests best?

Marlborough recognizes the need for practice; no one masters problem solving overnight. Consequently, we offer a wide range of courses that teach middle school girls how to solve problems in the real world.

Here are a few middle school electives that focus on critical thinking, thus enhancing students’ confidence:

Makers’ Space 1.0 introduces middle school girls to original, school projects that they design, then create with hand and power tools.

Tinkering and Making with Technology invites girls to play with electronics + code. They learn the basics of electronics, ultimately completing an interactive and/or wearable technology project.

Drawing and Animating with Code uses text-based computer programming to teach girls to write code and create computer graphics drawings or animations.

As students develop their problem-solving skills, they learn to rely on independent, creative thinking, which enhances their sense of independence; these skills, then, prepare students for life and future careers.

Problem-Solving Skills Prepare Students for Future Careers

Children who learn how to solve problems when they are young tend to appreciate lifelong learning. They are curious, motivated, and innovative.

Employers want new hires to think imaginatively, especially since many problems that society faces today are new.

The push for school STEM programs in schools reflects this trend. For instance, coding requires students to envision a goal, then identify logical steps, and plan ahead. Coding also requires persistence, which means that students must be able to power through failure.

Notwithstanding the need for personal excellence, employers also really want team members. Taking classes that encourage group problem solving can be invaluable as students look ahead to college and careers.

As a result, our students participate in academic teams that build leadership through problem-solving activities, including these middle school elective courses:

VR and Animation is a project-based class that invites middle school girls to create a virtual reality (VR) theme park attraction with interactive artwork and digital designs.

Robotics classes allow middle school girls to design, build, program, and operate a robot. Our students also participate in the national FIRST Tech Challenge.

Marlborough is preparing girls to enter the workforce. Problem solving is important in child development because it trains young people to think independently and to collaborate. Marlborough’s graduates are ready to enter adulthood because they know how to solve problems.

Why Choose Marlborough?  

Marlborough serves girls in grades 7 through 12. We are a private, college-preparatory secondary school, conveniently located in the heart of Los Angeles, California.  

Our goal is to ignite intellectual inquiry and to build the problem-solving, creativity, collaboration, and communication skills that our students will need to innovate, invent, and lead in college and beyond.

If you want your daughter to become a curious, agile thinker, consider Marlborough. We will enhance your daughter’s problem-solving skills, helping her gain an academic edge as she builds confidence and prepares for the future.

Want to know more about the Marlborough experience? 

Contact us today

Mastery-Aligned Maths Tutoring

“The best thing has been the increase in confidence and tutors being there to deal with any misunderstandings straight away."

FREE daily maths challenges

A new KS2 maths challenge every day. Perfect as lesson starters - no prep required!

FREE daily maths challenges

Fluency, Reasoning and Problem Solving: What This Looks Like In Every Maths Lesson

Neil Almond

Fluency reasoning and problem solving have been central to the new maths national curriculum for primary schools introduced in 2014. Here we look at how these three approaches or elements of maths can be interwoven in a child’s maths education through KS1 and KS2. We look at what fluency, reasoning and problem solving are, how to teach them, and how to know how a child is progressing in each – as well as what to do when they’re not, and what to avoid.

The hope is that this blog will help primary school teachers think carefully about their practice and the pedagogical choices they make around the teaching of reasoning and problem solving in particular.

Before we can think about what this would look like in practice however, we need to understand the background tothese terms.

What is fluency in maths?

Fluency in maths is a fairly broad concept. The basics of mathematical fluency – as defined by the KS1 / KS2 National Curriculum for maths – involve knowing key mathematical facts and being able to recall them quickly and accurately.

But true fluency in maths (at least up to Key Stage 2) means being able to apply the same skill to multiple contexts, and being able to choose the most appropriate method for a particular task.

Fluency in maths lessons means we teach the content using a range of representations, to ensure that all pupils understand and have sufficient time to practise what is taught.

Read more: How the best schools develop maths fluency at KS2 .

What is reasoning in maths?

Reasoning in maths is the process of applying logical thinking to a situation to derive the correct problem solving strategy for a given question, and using this method to develop and describe a solution.

Put more simply, mathematical reasoning is the bridge between fluency and problem solving. It allows pupils to use the former to accurately carry out the latter.

Read more: Developing maths reasoning at KS2: the mathematical skills required and how to teach them .

What is problem solving in maths?

It’s sometimes easier to start off with what problem solving is not. Problem solving is not necessarily just about answering word problems in maths. If a child already has a readily available method to solve this sort of problem, problem solving has not occurred. Problem solving in maths is finding a way to apply knowledge and skills you have to answer unfamiliar types of problems.

Read more: Maths problem solving: strategies and resources for primary school teachers .

We are all problem solvers

First off, problem solving should not be seen as something that some pupils can do and some cannot. Every single person is born with an innate level of problem-solving ability.

Early on as a species on this planet, we solved problems like recognising faces we know, protecting ourselves against other species, and as babies the problem of getting food (by crying relentlessly until we were fed).

All these scenarios are a form of what the evolutionary psychologist David Geary (1995) calls biologically primary knowledge. We have been solving these problems for millennia and they are so ingrained in our DNA that we learn them without any specific instruction.

image of baby crying used to illustrate ingrained problem solving skills.

Why then, if we have this innate ability, does actually teaching problem solving seem so hard?

Mathematical problem solving is a  learned skill

As you might have guessed, the domain of mathematics is far from innate. Maths doesn’t just happen to us; we need to learn it. It needs to be passed down from experts that have the knowledge to novices who do not.

This is what Geary calls biologically secondary knowledge. Solving problems (within the domain of maths) is a mixture of both primary and secondary knowledge.

The issue is that problem solving in domains that are classified as biologically secondary knowledge (like maths) can only be improved by practising elements of that domain.

So there is no generic problem-solving skill that can be taught in isolation and transferred to other areas.

This will have important ramifications for pedagogical choices, which I will go into more detail about later on in this blog.

The educationalist Dylan Wiliam had this to say on the matter: ‘for…problem solving, the idea that pupils can learn these skills in one context and apply them in another is essentially wrong.’ (Wiliam, 2018)So what is the best method of teaching problem solving to primary maths pupils?

The answer is that we teach them plenty of domain specific biological secondary knowledge – in this case maths. Our ability to successfully problem solve requires us to have a deep understanding of content and fluency of facts and mathematical procedures.

Here is what cognitive psychologist Daniel Willingham (2010) has to say:

‘Data from the last thirty years lead to a conclusion that is not scientifically challengeable: thinking well requires knowing facts, and that’s true not simply because you need something to think about.

The very processes that teachers care about most—critical thinking processes such as reasoning and problem solving—are intimately intertwined with factual knowledge that is stored in long-term memory (not just found in the environment).’

Colin Foster (2019), a reader in Mathematics Education in the Mathematics Education Centre at Loughborough University, says, ‘I think of fluency and mathematical reasoning, not as ends in themselves, but as means to support pupils in the most important goal of all: solving problems.’

In that paper he produces this pyramid:

pyramid diagram showing the link between fluency, reasoning and problem solving

This is important for two reasons:

1)    It splits up reasoning skills and problem solving into two different entities

2)    It demonstrates that fluency is not something to be rushed through to get to the ‘problem solving’ stage but is rather the foundation of problem solving.

In my own work I adapt this model and turn it into a cone shape, as education seems to have a problem with pyramids and gross misinterpretation of them (think Bloom’s taxonomy).

conical diagram showing the link between fluency, reasoning skills and problem solving

Notice how we need plenty of fluency of facts, concepts, procedures and mathematical language.

Having this fluency will help with improving logical reasoning skills, which will then lend themselves to solving mathematical problems – but only if it is truly learnt and there is systematic retrieval of this information carefully planned across the curriculum.

Performance vs learning: what to avoid when teaching fluency, reasoning, and problem solving

I mean to make no sweeping generalisation here; this was my experience both at university when training and from working in schools.

At some point schools become obsessed with the ridiculous notion of ‘accelerated progress’. I have heard it used in all manner of educational contexts while training and being a teacher. ‘You will need to show ‘ accelerated progress in maths ’ in this lesson,’ ‘Ofsted will be looking for ‘accelerated progress’ etc.

I have no doubt that all of this came from a good place and from those wanting the best possible outcomes – but it is misguided.

I remember being told that we needed to get pupils onto the problem solving questions as soon as possible to demonstrate this mystical ‘accelerated progress’.

This makes sense; you have a group of pupils and you have taken them from not knowing something to working out pretty sophisticated 2-step or multi-step word problems within an hour. How is that not ‘accelerated progress?’

This was a frequent feature of my lessons up until last academic year: teach a mathematical procedure; get the pupils to do about 10 of them in their books; mark these and if the majority were correct, model some reasoning/problem solving questions from the same content as the fluency content; set the pupils some reasoning and word problem questions and that was it.

I wondered if I was the only one who had been taught this while at university so I did a quick poll on Twitter and found that was not the case.

twitter poll regarding teaching of problem solving techniques in primary school

I know these numbers won’t be big enough for a representative sample but it still shows that others are familiar with this approach.

The issue with the lesson framework I mentioned above is that it does not take into account ‘performance vs learning.’

What IS performance vs learning’?

The premise is that performance in a lesson is not a good proxy for learning.

Yes, those pupils were performing well after I had modeled a mathematical procedure for them, and managed to get questions correct.

But if problem solving depends on a deep knowledge of mathematics, this approach to lesson structure is going to be very ineffective.

As mentioned earlier, the reasoning and problem solving questions were based on the same maths content as the fluency exercises, making it more likely that pupils would solve problems correctly whether they fully understood them or not.

Chances are that all they’d need to do is find the numbers in the questions and use the same method they used in the fluency section to get their answers – not exactly high level problem solving skills.

Teaching to “cover the curriculum” hinders development of strong problem solving skills.

This is one of my worries with ‘maths mastery schemes’ that block content so that, in some circumstances, it is not looked at again until the following year (and with new objectives).

The pressure for teachers to ‘get through the curriculum’ results in many opportunities to revisit content just not happening in the classroom.

Pupils are unintentionally forced to skip ahead in the fluency, reasoning, problem solving chain without proper consolidation of the earlier processes.

As David Didau (2019) puts it, ‘When novices face a problem for which they do not have a conveniently stored solution, they have to rely on the costlier means-end analysis.

This is likely to lead to cognitive overload because it involves trying to work through and hold in mind multiple possible solutions.

It’s a bit like trying to juggle five objects at once without previous practice. Solving problems is an inefficient way to get better at problem solving.’

Third Space's Ultimate Guide to Problem Solving Techniques

Third Space's Ultimate Guide to Problem Solving Techniques

Download our free guide to problem solving techniques and get a head start on ensuring learning over performance!

Fluency and reasoning – Best practice in a lesson, a unit, and a term

By now I hope you have realised that when it comes to problem solving, fluency is king. As such we should look to mastery maths based teaching to ensure that the fluency that pupils need is there.

The answer to what fluency looks like will obviously depend on many factors, including the content being taught and the year group you find yourself teaching.

But we should not consider rushing them on to problem solving or logical reasoning in the early stages of this new content as it has not been learnt, only performed.

I would say that in the early stages of learning, content that requires the end goal of being fluent should take up the majority of lesson time – approximately 60%. The rest of the time should be spent rehearsing and retrieving other knowledge that is at risk of being forgotten about.

This blog on mental maths strategies pupils should learn in each year group is a good place to start when thinking about the core aspects of fluency that pupils should achieve.

Little and often is a good mantra when we think about fluency, particularly when revisiting the key mathematical skills of number bond fluency or multiplication fluency. So when it comes to what fluency could look like throughout the day, consider all the opportunities to get pupils practicing.

They could chant multiplications when transitioning. If a lesson in another subject has finished earlier than expected, use that time to quiz pupils on number bonds. Have fluency exercises as part of the morning work.

Read more: How to teach times tables KS1 and KS2 for total recall .

What about best practice over a longer period?

Thinking about what fluency could look like across a unit of work would again depend on the unit itself.

Look at this unit below from a popular scheme of work.

example scheme of work

They recommend 20 days to cover 9 objectives. One of these specifically mentions problem solving so I will forget about that one at the moment – so that gives 8 objectives.

I would recommend that the fluency of this unit look something like this:

LY = Last Year

example first lesson of a unit of work targeted towards fluency

This type of structure is heavily borrowed from Mark McCourt’s phased learning idea from his book ‘Teaching for Mastery.’

This should not be seen as something set in stone; it would greatly depend on the needs of the class in front of you. But it gives an idea of what fluency could look like across a unit of lessons – though not necessarily all maths lessons.

When we think about a term, we can draw on similar ideas to the one above except that your lessons could also pull on content from previous units from that term.

So lesson one may focus 60% on the new unit and 40% on what was learnt in the previous unit.

The structure could then follow a similar pattern to the one above.

Best practice for problem solving in a lesson, a unit, and a term 

When an adult first learns something new, we cannot solve a problem with it straight away. We need to become familiar with the idea and practise before we can make connections, reason and problem solve with it.

The same is true for pupils. Indeed, it could take up to two years ‘between the mathematics a student can use in imitative exercises and that they have sufficiently absorbed and connected to use autonomously in non-routine problem solving.’ (Burkhardt, 2017).

Practise with facts that are secure

So when we plan for reasoning and problem solving, we need to be looking at content from 2 years ago to base these questions on.

Now given that much of the content of the KS2 SATs will come from years 5 and 6 it can be hard to stick to this two-year idea as pupils will need to solve problems with content that can be only weeks old to them.

But certainly in other year groups, the argument could be made that content should come from previous years.

You could get pupils in Year 4 to solve complicated place value problems with the numbers they should know from Year 2 or 3. This would lessen the cognitive load, freeing up valuable working memory so they can actually focus on solving the problems using content they are familiar with.

Read more: Cognitive load theory in the classroom

Increase complexity gradually.

Once they practise solving these types of problems, they can draw on this knowledge later when solving problems with more difficult numbers.

This is what Mark McCourt calls the ‘Behave’ phase. In his book he writes:

‘Many teachers find it an uncomfortable – perhaps even illogical – process to plan the ‘Behave’ phase as one that relates to much earlier learning rather than the new idea, but it is crucial to do so if we want to bring about optimal gains in learning, understanding and long term recall.’  (Mark McCourt, 2019)

This just shows the fallacy of ‘accelerated progress’; in the space of 20 minutes some teachers are taught to move pupils from fluency through to non-routine problem solving, or we are somehow not catering to the needs of the child.

When considering what problem solving lessons could look like, here’s an example structure based on the objectives above.

example lesson of a unit using fluency and reasoning to embed problem solving

Fluency, Reasoning and Problem Solving should NOT be taught by rote 

It is important to reiterate that this is not something that should be set in stone. Key to getting the most out of this teaching for mastery approach is ensuring your pupils (across abilities) are interested and engaged in their work.

Depending on the previous attainment and abilities of the children in your class, you may find that a few have come across some of the mathematical ideas you have been teaching, and so they are able to problem solve effectively with these ideas.

Equally likely is encountering pupils on the opposite side of the spectrum, who may not have fully grasped the concept of place value and will need to go further back than 2 years and solve even simpler problems.

In order to have the greatest impact on class performance, you will have to account for these varying experiences in your lessons.

Read more: 

  • Maths Mastery Toolkit : A Practical Guide To Mastery Teaching And Learning
  • Year 6 Maths Reasoning Questions and Answers
  • Get to Grips with Maths Problem Solving KS2
  • Mixed Ability Teaching for Mastery: Classroom How To
  • 21 Maths Challenges To Really Stretch Your More Able Pupils
  • Maths Reasoning and Problem Solving CPD Powerpoint
  • Why You Should Be Incorporating Stem Sentences Into Your Primary Maths Teaching

DO YOU HAVE STUDENTS WHO NEED MORE SUPPORT IN MATHS?

Every week Third Space Learning’s specialist online maths tutors support thousands of students across hundreds of schools with weekly online 1 to 1 maths lessons designed to plug gaps and boost progress.

Since 2013 these personalised one to 1 lessons have helped over 150,000 primary and secondary students become more confident, able mathematicians.

Learn how the programmes are aligned to maths mastery teaching or request a personalised quote for your school to speak to us about your school’s needs and how we can help.

Related articles

Maths Problem Solving: Engaging Your Students And Strengthening Their Mathematical Skills

Maths Problem Solving: Engaging Your Students And Strengthening Their Mathematical Skills

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

Free Year 7 Maths Test With Answers And Mark Scheme: Mixed Topic Questions

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is A Number Square? Explained For Primary School Teachers, Parents & Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

What Is Numicon? Explained For Primary School Teachers, Parents And Pupils

FREE Guide to Maths Mastery

All you need to know to successfully implement a mastery approach to mathematics in your primary school, at whatever stage of your journey.

Ideal for running staff meetings on mastery or sense checking your own approach to mastery.

Privacy Overview

  • Comment Comments
  • Save Article Read Later Read Later

How Chain-of-Thought Reasoning Helps Neural Networks Compute

March 21, 2024

why is reasoning and problem solving important

Writing out intermediate steps can make it easier to solve problems.

Nick Slater for Quanta Magazine

Introduction

Your grade school teacher probably didn’t show you how to add 20-digit numbers. But if you know how to add smaller numbers, all you need is paper and pencil and a bit of patience. Start with the ones place and work leftward step by step, and soon you’ll be stacking up quintillions with ease.

Problems like this are easy for humans, but only if we approach them in the right way. “How we humans solve these problems is not ‘stare at it and then write down the answer,’” said Eran Malach , a machine learning researcher at Harvard University. “We actually walk through the steps.”

That insight has inspired researchers studying the large language models that power chatbots like ChatGPT. While these systems might ace questions involving a few steps of arithmetic, they’ll often flub problems involving many steps, like calculating the sum of two large numbers. But in 2022, a team of Google researchers showed that asking language models to generate step-by-step solutions enabled the models to solve problems that had previously seemed beyond their reach. Their technique, called chain-of-thought prompting, soon became widespread, even as researchers struggled to understand what makes it work.

Now, several teams have explored the power of chain-of-thought reasoning by using techniques from an arcane branch of theoretical computer science called computational complexity theory. It’s the latest chapter in a line of research that uses complexity theory to study the intrinsic capabilities and limitations of language models. These efforts clarify where we should expect models to fail, and they might point toward new approaches to building them.

“They remove some of the magic,” said Dimitris Papailiopoulos , a machine learning researcher at the University of Wisconsin, Madison. “That’s a good thing.”

Training Transformers

Large language models are built around mathematical structures called artificial neural networks. The many “neurons” inside these networks perform simple mathematical operations on long strings of numbers representing individual words, transmuting each word that passes through the network into another. The details of this mathematical alchemy depend on another set of numbers called the network’s parameters, which quantify the strength of the connections between neurons.

To train a language model to produce coherent outputs, researchers typically start with a neural network whose parameters all have random values, and then feed it reams of data from around the internet. Each time the model sees a new block of text, it tries to predict each word in turn: It guesses the second word based on the first, the third based on the first two, and so on. It compares each prediction to the actual text, then tweaks its parameters to reduce the difference. Each tweak only changes the model’s predictions a tiny bit, but somehow their collective effect enables a model to respond coherently to inputs it has never seen.

Researchers have been training neural networks to process language for 20 years. But the work really took off in 2017, when researchers at Google introduced a new kind of network called a transformer.

“This was proposed seven years ago, which seems like prehistory,” said Pablo Barceló , a machine learning researcher at the Pontifical Catholic University of Chile.

What made transformers so transformative is that it’s easy to scale them up — to increase the number of parameters and the amount of training data — without making training prohibitively expensive. Before transformers, neural networks had at most a few hundred million parameters; today, the largest transformer-based models have more than a trillion. Much of the improvement in language-model performance over the past five years comes from simply scaling up.

Transformers made this possible by using special mathematical structures called attention heads, which give them a sort of bird’s-eye view of the text they’re reading. When a transformer reads a new block of text, its attention heads quickly scan the whole thing and identify relevant connections between words — perhaps noting that the fourth and eighth words are likely to be most useful for predicting the 10th. Then the attention heads pass words along to an enormous web of neurons called a feedforward network, which does the heavy number crunching needed to generate the predictions that help it learn.

Real transformers have multiple layers of attention heads separated by feedforward networks, and only spit out predictions after the last layer. But at each layer, the attention heads have already identified the most relevant context for each word, so the computationally intensive feedforward step can happen simultaneously for every word in the text. That speeds up the training process, making it possible to train transformers on increasingly large sets of data. Even more important, it allows researchers to spread the enormous computational load of training a massive neural network across many processors working in tandem.

To get the most out of massive data sets, “you have to make the models really large,” said David Chiang , a machine learning researcher at the University of Notre Dame. “It’s just not going to be practical to train them unless it’s parallelized.”

However, the parallel structure that makes it so easy to train transformers doesn’t help after training — at that point, there’s no need to predict words that already exist. During ordinary operation, transformers output one word at a time, tacking each output back onto the input before generating the next word, but they’re still stuck with an architecture optimized for parallel processing.

As transformer-based models grew and certain tasks continued to give them trouble, some researchers began to wonder whether the push toward more parallelizable models had come at a cost. Was there a way to understand the behavior of transformers theoretically?

The Complexity of Transformers

Theoretical studies of neural networks face many difficulties, especially when they try to account for training. Neural networks use a well-known procedure to tweak their parameters at each step of the training process. But it can be difficult to understand why this simple procedure converges on a good set of parameters.

Rather than consider what happens during training, some researchers study the intrinsic capabilities of transformers by imagining that it’s possible to adjust their parameters to any arbitrary values. This amounts to treating a transformer as a special type of programmable computer.

“You’ve got some computing device, and you want to know, ‘Well, what can it do? What kinds of functions can it compute?’” Chiang said.

These are the central questions in the formal study of computation. The field dates back to 1936, when Alan Turing first imagined a fanciful device , now called a Turing machine, that could perform any computation by reading and writing symbols on an infinite tape. Computational complexity theorists would later build on Turing’s work by proving that computational problems naturally fall into different complexity classes defined by the resources required to solve them.

In 2019, Barceló and two other researchers proved that an idealized version of a transformer with a fixed number of parameters could be just as powerful as a Turing machine. If you set up a transformer to repeatedly feed its output back in as an input and set the parameters to the appropriate values for the specific problem you want to solve, it will eventually spit out the correct answer.

That result was a starting point, but it relied on some unrealistic assumptions that would likely overestimate the power of transformers. In the years since, researchers have worked to develop more realistic theoretical frameworks.

One such effort began in 2021, when William Merrill , now a graduate student at New York University, was leaving a two-year fellowship at the Allen Institute for Artificial Intelligence in Seattle. While there, he’d analyzed other kinds of neural networks using techniques that seemed like a poor fit for transformers’ parallel architecture. Shortly before leaving, he struck up a conversation with the Allen Institute for AI researcher Ashish Sabharwal , who’d studied complexity theory before moving into AI research. They began to suspect that complexity theory might help them understand the limits of transformers.

“It just seemed like it’s a simple model; there must be some limitations that one can just nail down,” Sabharwal said.

The pair analyzed transformers using a branch of computational complexity theory, called circuit complexity, that is often used to study parallel computation and had recently been applied to simplified versions of transformers. Over the following year, they refined several of the unrealistic assumptions in previous work. To study how the parallel structure of transformers might limit their capabilities, the pair considered the case where transformers didn’t feed their output back into their input — instead, their first output would have to be the final answer. They proved that the transformers in this theoretical framework couldn’t solve any computational problems that lie outside a specific complexity class. And many math problems, including relatively simple ones like solving linear equations, are thought to lie outside this class.

Basically, they showed that parallelism did come at a cost — at least when transformers had to spit out an answer right away. “Transformers are quite weak if the way you use them is you give an input, and you just expect an immediate answer,” Merrill said.

Thought Experiments

Merrill and Sabharwal’s results raised a natural question — how much more powerful do transformers become when they’re allowed to recycle their outputs? Barceló and his co-authors had studied this case in their 2019 analysis of idealized transformers, but with more realistic assumptions the question remained open. And in the intervening years, researchers had discovered chain-of-thought prompting, giving the question a newfound relevance.

Merrill and Sabharwal knew that their purely mathematical approach couldn’t capture all aspects of chain-of-thought reasoning in real language models, where the wording in the prompt can be very important . But no matter how a prompt is phrased, as long as it causes a language model to output step-by-step solutions, the model can in principle reuse the results of intermediate steps on subsequent passes through the transformer. That could provide a way to evade the limits of parallel computation.

Meanwhile, a team from Peking University had been thinking along similar lines, and their preliminary results were positive. In a May 2023 paper, they identified some math problems that should be impossible for ordinary transformers in Merrill and Sabharwal’s framework, and showed that intermediate steps enabled the transformers to solve these problems.

In October, Merrill and Sabharwal followed up their earlier work with a detailed theoretical study of the computational power of chain of thought. They quantified how that extra computational power depends on the number of intermediate steps a transformer is allowed to use before it must spit out a final answer. In general, researchers expect the appropriate number of intermediate steps for solving any problem to depend on the size of the input to the problem. For example, the simplest strategy for adding two 20-digit numbers requires twice as many intermediate addition steps as the same approach to adding two 10-digit numbers.

Examples like this suggest that transformers wouldn’t gain much from using just a few intermediate steps. Indeed, Merrill and Sabharwal proved that chain of thought only really begins to help when the number of intermediate steps grows in proportion to the size of the input, and many problems require the number of intermediate steps to grow much larger still.

The thoroughness of the result impressed researchers. “They really pinned this down,” said Daniel Hsu , a machine learning researcher at Columbia University.

Merrill and Sabharwal’s recent work indicates that chain of thought isn’t a panacea — in principle, it can help transformers solve harder problems, but only at the cost of a lot of computational effort.

“We’re interested in different ways of getting around the limitations of transformers with one step,” Merrill said. “Chain of thought is one way, but this paper shows that it might not be the most economical way.”

Back to Reality

Still, researchers caution that this sort of theoretical analysis can only reveal so much about real language models. Positive results — proofs that transformers can in principle solve certain problems — don’t imply that a language model will actually learn those solutions during training.

And even results that address the limitations of transformers come with caveats: They indicate that no transformer can solve certain problems perfectly in all cases. Of course, that’s a pretty high bar. “There might be special cases of the problem that it could handle just fine,” Hsu said.

Despite these caveats, the new work offers a template for analyzing different kinds of neural network architectures that might eventually replace transformers. If a complexity theory analysis suggests that certain types of networks are more powerful than others, that would be evidence that those networks might fare better in the real world as well.

Chiang also stressed that research on the limitations of transformers is all the more valuable as language models are increasingly used in a wide range of real-world applications, making it easy to overestimate their abilities.

“There’s actually a lot of things that they don’t do that well, and we need to be very, very cognizant of what the limitations are,” Chiang said. “That’s why this kind of work is really important.”

Get highlights of the most important news delivered to your email inbox

Comment on this article

Quanta Magazine moderates comments to facilitate an informed, substantive, civil conversation. Abusive, profane, self-promotional, misleading, incoherent or off-topic comments will be rejected. Moderators are staffed during regular business hours (New York time) and can only accept comments written in English. 

why is reasoning and problem solving important

Next article

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Learning a New Language Is Hard, But Your Brain Will Thank You

Building a stronger brain, one lesson at a time

Oleh_Slobodeniuk / E+ / Getty

Why Learning a New Language Is So Hard

  • How It Changes the Brain
  • Practical Tips

Every night, no matter how exhausted I am, I carve out at least 5 to 10 minutes for a quick lesson on my language learning app. I might not be fluent yet, but according to the experts, my daily lessons have serious brain-boosting benefits.

"Learning a new language can be immensely helpful for cognitive health, particularly as we age. This is because language learning engages a wide range of complex cognitive abilities, including memory, attention, and problem-solving, which can help to create and strengthen connections in the brain," explains Dr. Roy Hamilton, MD , trustee of the McKnight Brain Research Foundation. 

The benefits go beyond protecting the brain against the effects of aging. Experts also note that language learning can help foster social connections and empathy . We are all citizens of the world, and it’s important for us to stay connected with other cultures and people from different backgrounds.

Of course, knowing the benefits doesn’t necessarily make the process easy. Learning a new language takes time, practice, and diligence. Even if you stick with it every day for a long time, it can still be a struggle. But that’s exactly why learning a new language can be so beneficial. It challenges your brain in unique ways that, ultimately, help your mind stay healthy and strong.

At a Glance

People learn new languages for all kinds of reasons. Sometimes, it’s for work or school. Others enjoy the thrill of chatting with the locals when they’re on vacation. And sometimes, it’s just for fun.

However, it can also be a powerful way to boost your cognitive skills and maintain your brain’s health. It can build your cognitive reserve, stave off the effects of brain aging, and have helpful social and emotional benefits. Learning a new language as an adult is certainly more challenging, but your brain will thank you.

My daily Duolingo sessions aren’t my first foray into trying to learn a new language. But, like many people, my motivation dwindled once my high school foreign language credits were completed. Time and dedication are two common challenges when it comes to learning a new language. But a big part of the reason it’s so tough comes down to how your brain is wired.

Dr. Hamilton explains that there is an optimal developmental period–usually spanning infancy to around puberty–when the brain is particularly receptive to language. During this age, the brain's language networks possess a high degree of neuroplasticity , which is the brain's ability to adapt and change.

"Because of this, [children] can easily organize and reinforce themselves in response to being exposed to language. This allows children to learn languages naturally and efficiently—essentially automatically—if they are regularly exposed to those languages," Dr. Hamilton says.

Other factors that might affect your ability to pick up a new language as an adult include:

  • Language complexity : Sometimes, other languages have linguistic complexities that can be challenging, especially if they’re very different from those of your native tongue. Dr. Hamilton notes that adults tend to rely on the thoughts and structures of their native language, which makes learning the sounds and grammatical rules of a new language trickier.
  • Anxiety and self-consciousness: Dr. Hamilton explains that adults are more likely to feel anxious or self-conscious about learning a new language, which can stand in the way of their progress. Being scared to practice or embarrassed about making mistakes certainly doesn’t make it any easier!
  • Learning methods : How you learn and practice is also important. Traditional learning methods may focus more on things like memorization and vocabulary, which may work for some people. However, others may find that approach tedious and difficult to stick with.
  • Age : Let’s face it, it really can be harder to teach an old dog (or brain) new tricks. Experts suggest that the ability to learn new languages starts to decline once someone reaches adolescence and adulthood. “While the adult brain remains plastic, the rate at which new connections form slows down over time, making it harder to acquire new skills, including language,” Dr. Hamilton says. Plus, the stress and busyness of everyday life can make it difficult to find time to practice.

The Benefits of Learning a New Language

Learning a new language can definitely be a challenge–but that’s exactly why it can be so rewarding!

According to psychotherapist Kristie Tse, LMHC , clinical director and founder of Uncover Mental Health Counseling, “Learning a new language has profound benefits for brain health. It encourages the brain to be flexible and adaptable, as it requires quick thinking and problem-solving skills to comprehend and construct new sentences.”

Cognitive Benefits

Learning a new language doesn't just make you *sound* smarter. In one analysis, 90% of the studies they examined found that learning a new language leads to improvements in other academic subjects as well.

Such benefits don't just stem from increased literacy skills. Other research has found that second language learners also appear to make gains in their working memory, concentration, and creativity .

Dr. Hamilton also points to research findings showing that people who speak two or more languages have a delayed onset of dementia compared to those who only speak one.

"Speaking more than one language may improve so-called executive functions , such as the ability to switch fluidly between mental tasks, and may even positively impact other cognitive skills like visual-spatial abilities and reasoning," Dr. Hamilton says.

Emotional Benefits

On an emotional level, developing new language skills can also give you a greater sense of confidence and purpose . Such benefits can spill over into other areas of your life. You might not be a polyglot yet , but tackling one language can give you the boost in self-efficacy you need to keep working toward your language-learning goals.

Social Advantages 

Hint: Knowing more than one language can be a great conversation starter . People are often interested in learning more about your learning journey. Plus, learning a new language can be a great opportunity to meet new people and forge new friendships over your shared interests.

Building these meaningful connections not only helps widen your social circle (and improves your social support system ), but it also brings a deeper sense of cultural perspective.

It not only enriches cognitive abilities but also serves as a bridge to understanding cultural complexities and enhancing emotional resilience . 

How the Brain Changes When You Learn a New Language

So, what exactly is going on inside your head when you're conjugating verbs and learning how to roll your Rs? Learning a new language does a lot more than just expand your linguistic skills–it actually leads to significant changes in your brain. 

Researchers have found that the brain actually starts to rewire itself in response to learning a new language. Such changes not only challenge your brain, but they can also help you stay more adaptable as you age.

What other kinds of brain-boosting benefits can you expect?

It Can Protect Your White Matter

White matter is the fatty substance that covers brain axons, which allows signals to travel through the brain quickly and efficiently. Evidence suggests that learning a second language helps protect white matter from the effects of aging, which can help you keep your brain healthier as you grow older.

It Can Increase Grey Matter Volume

Grey matter is the brain material associated with learning, movement, emotions, and memory. Learning and using a new language helps to increase grey matter volume in important areas of the brain.

It Leads to Changes in Brain Structure

One study found that bilingualism increases the size of certain brain regions. Such increases also tend to grow as people gain more bilingual experience. The findings suggest that learning a new language creates complex changes in brain structures that are similar to those of other cognitively demanding tasks.

No single activity is a one-size-fits-all solution to maintaining healthy cognition throughout one’s brain span, but language learning is certainly a really great way to contribute to the health of one’s brain.

Practical Tips for Learning a New Language

Learning a new language as an adult can be really challenging. Fortunately, there are plenty of effective (and fun) ways to achieve your language-learning goals:

Try a Language App

Language-learning apps can be a great way to get started with a new language. Babbel, Duolingo, and Memrise are a few options you might consider.

Practice Daily

Consistency is the key! Even just 5 to 10 minutes a day can help.

"Being exposed to and using the target language on a daily basis, even in small amounts, can significantly boost retention and fluency," Dr. Hamilton says.

Be sure to turn on app notifications and use app widgets if they are available on your device. These regular reminders can help you stay on track.

Immerse Yourself

Don't just limit your daily learning to your lessons. "It's important to immerse oneself as much as possible in the language one wants to acquire. This can be done through media, such as movies, music, and podcasts, which helps to build listening skills and exposes the learner to the language being used in its natural context," Dr. Hamilton suggests.

Memorize Vocabulary

Rote memorization may not be the most exciting part of learning, but it’s important for laying the foundation you'll need to succeed when learning a new language. Flashcards, whether you’re using an app or making them yourself, can be a great tool for nailing those basic vocabulary terms.

Learn Grammar

Getting used to the grammatical structure of a new language can be tough. Start with the basics, like verb conjugations and sentence structure. Then, challenge yourself with more complex sentences. A grammar book or app can be a helpful tool.

Find a Conversation Partner

Getting actual experience speaking your target language is vital! "Finding a language partner or joining a conversation group can provide the necessary practice in speaking and listening, which are critical components of language proficiency," says Dr. Hamilton.

Integrate Other Learning Tools

As you gain more skill and experience, start looking for other tools and resources that can help you build your language abilities. Listening to podcasts or radio broadcasts in your target language can be a great way to gain a greater appreciation and understanding of the nuances of the language.

Try reading a book in your target language! Kids' books can be perfect for beginners, and as you get more advanced, you might try reading a book you already know and love in your new language.

Tip: Try Spaced Repetition System (SRS)

Dr. Hamilton recommends spaced repetition system (SRS) when learning a new language. "This is a learning technique grounded in memory research that helps one to remember new vocabulary items by rehearsing them in a systematic manner. Reviews of words one remembers well are gradually spaced out, focusing effort on more on challenging items; this makes one’s study time more efficient and helps vocabulary to stick in long-term memory," he explains.

Learning new things is good for your brain, and experts suggest that learning a new language, in particular, can have numerous important benefits for your cognitive functioning and health. Dr. Hamilton recommends managing your expectations as an adult language learner.

"Language learning is a gradual process," he says, "and embracing mistakes as part of the learning journey and staying motivated through setting achievable goals can make the experience both effective and enjoyable."

Woll B, Wei L. Cognitive benefits of language learning: Broadening our perspectives . The British Academy.

Bialystok E. The bilingual adaptation: How minds accommodate experience .  Psychol Bull . 2017;143(3):233-262. doi:10.1037/bul0000099

Mendez MF, Chavez D, Akhlaghipour G. Bilingualism delays expression of Alzheimer's clinical syndrome .  Dement Geriatr Cogn Disord . 2019;48(5-6):281-289. doi:10.1159/000505872

Klimova B. Learning a foreign language: A review on recent findings about its effect on the enhancement of cognitive functions among healthy older individuals .  Front Hum Neurosci . 2018;12:305. doi:10.3389/fnhum.2018.00305

Wei X, Gunter TC, Adamson H, et al. White matter plasticity during second language learning within and across hemispheres . Proc Natl Acad Sci USA . 2024;121(2):e2306286121. doi:10.1073/pnas.2306286121

Anderson JAE, Grundy JG, De Frutos J, Barker RM, Grady C, Bialystok E. Effects of bilingualism on white matter integrity in older adults . Neuroimage . 2018;167:143-150. doi:10.1016/j.neuroimage.2017.11.038

Ehling R, Amprosi M, Kremmel B, et al. Second language learning induces grey matter volume increase in people with multiple sclerosis . PLoS One . 2019;14(12):e0226525. doi:10.1371/journal.pone.0226525

Korenar M, Treffers-Daller J, Pliatsikas C. Dynamic effects of bilingualism on brain structure map onto general principles of experience-based neuroplasticity . Sci Rep . 2023;13(1):3428. doi:10.1038/s41598-023-30326-3

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

How to Improve Problem Solving Skills

how to improve problem solving skills

Quick Summary

  • Problem-solving skills are essential for personal growth, career advancement, and tackling life’s challenges. 62% of recruiters seek people who can solve complex problems.
  • Learning how to improve problem solving skills will help you applying these skills to various situations from debugging to organizing schedules.
  • Core techniques include breaking problems down, analyzing systematically, and applying creative thinking are essential strategies in different fields. Continuous practice, embracing challenges, and learning from mistakes helps to improve problem-solving abilities.

Table of Contents

Picture this situation

“You’re faced with a tricky situation at work, a challenging coding problem, or a complex personal decision. Your heart races, your palms get sweaty, and your mind goes completely blank. Sound familiar?”

That’s where solid problem-solving skills come in handy. They’re not just for math whzzes or tech gurus – they’re essential tools for everyone, every day.

According to Abraham Lincoln “ Give me six hours to chop down a tree and I will spend the first four sharpening the axe. “  

This famous quote depicts the importance of problem solving skills. 

How to improve problem solving skills isn’t just about acing tests or impressing your boss (though those are nice perks). It’s about growing as a person, boosting your confidence, and opening doors to new opportunities you might never have imagined. Currently, 62% of recruiters are seeking people who can solve complex things. 

Whether you’re debugging code that refuses to cooperate, engineering the next big thing that could change the world, or just figuring out how to organise your chaotic schedule, these skills are your trusty sidekick.

So, let’s roll up our sleeves and get into the nitty-gritty of becoming a problem-solving pro.

Core Problem Solving Techniques

At the heart of how to improve problem solving skills lies a set of core techniques. These are your go-to strategies, applicable across various fields and situations. Think of them as the Swiss Army knife in your mental toolkit – versatile, reliable, and always ready when you need them.

  • Break it down

When faced with a big, scary problem, your first instinct might be to run for the hills. Instead, take a deep breath and start slicing that monster into smaller, more manageable chunks. It’s like eating an elephant – one bite at a time. This approach makes even the most daunting tasks seem doable.

Here’s where you let your imagination run wild. Let your ideas flow freely, no matter how crasy they might seem. No judgment, just pure creativity. You never know which wild idea might lead to the perfect solution. Remember, some of the world’s greatest inventions started as “crasy” ideas.

Once you have a list of potential solutions, it’s time to put on your critic’s hat. Weigh the pros and cons of each option. Consider factors like feasibility, resources required, potential outcomes, and possible obstacles. This step helps you separate the wheat from the chaff.

Choose the best solution and put it into action. Remember, a good plan today is better than a perfect plan tomorrow. Don’t get stuck in analysis paralysis – sometimes, you need to take the plunge and learn as you go.

After implementing your solution, take a step back and assess the results. What worked? What didn’t? This reflection is crucial for continuous improvement. It’s not just about solving the current problem, but also about becoming better at problem-solving in general.

Problem-solving is rarely a one-and-done deal. Use what you’ve learned to refine your approach and tackle similar problems more effectively in the future. Each problem you solve is a stepping stone to becoming a better problem solver.

Improving Problem Solving Skills in Different Fields

Now, let’s explore how to improve problem solving skills in specific areas. Whether you’re a budding programmer dreaming of creating the next big app, an aspiring engineer with visions of innovative designs, or a student preparing for competitive exams, we’ve got you covered.

Programming Problem Solving Skills

In the fast-paced world of technology, knowing how to improve problem solving skills in programming is like having a superpower. Here’s how you can level up your coding game:

  • Code regularly: Practice makes perfect, and coding is no exception. Set aside time each day to write code, even if it’s just for fun. The more you code, the more natural it becomes.
  • Take on challenges: Platforms like LeetCode, HackerRank, and CodeWars offer coding pussles that will put your skills to the test. Start with easier problems and gradually work your way up to more complex ones.
  • Learn algorithms: Understanding different algorithms and data structures is like adding new tools to your programming toolkit. They help you solve problems more efficiently and elegantly.
  • Pair program: Two heads are better than one. Collaborate with fellow coders to tackle problems together. You’ll learn new approaches and perspectives while improving your communication skills .
  • Review and refactor: Look back at your old code. Can you make it more efficient? Cleaner? This process will sharpen your skills over time and help you develop a keen eye for quality code.

Engineering Problem Solving Skills

For those wondering how to improve problem solving skills in engineering , here are some targeted strategies:

  • Think analytically: Break down complex engineering problems into smaller, solvable components. This approach helps you tackle even the most daunting projects step by step.
  • Use simulations: Leverage software tools to model and test your solutions before implementation. This can save time, resources, and prevent costly mistakes.
  • Stay updated: Engineering practices evolve rapidly. Keep learning to stay ahead of the curve. Attend workshops, read journals, and engage with the engineering community.
  • Cross-disciplinary approach: Don’t limit yourself to one field. Often, the best engineering solutions come from combining knowledge from different areas. Biology might inspire a mechanical design, or psychology could inform a user interface.

Tips to Improve General Problem-Solving Skills

Wondering how to improve solving problem skills in general? Here are some universal tips that apply across all fields:

  • Identify and define the problem clearly: Start by pinpointing the exact issue at hand. Ask yourself, “What’s the real problem here?” Often, what seems to be the problem is just a symptom of a deeper issue. Take time to articulate the problem in clear, specific terms. This clarity will guide your entire problem-solving process.
  • Gather all relevant information and data: Before jumping to solutions, collect as much pertinent information as possible. This might involve research, asking questions, or analysing data. The more informed you are, the better equipped you’ll be to find an effective solution.
  • Brainstorm multiple solutions without judgment: Let your creativity flow freely. Generate as many potential solutions as you can, no matter how outlandish they might seem at first. This divergent thinking can lead to innovative approaches you might not have considered otherwise.
  • Evaluate and compare potential solutions: Once you have a list of possible solutions, critically assess each one. Consider factors such as feasibility, resources required, potential outcomes, and possible obstacles. This analytical approach helps you narrow down your options to the most promising ones.
  • Break the problem down into smaller, manageable steps: Large, complex problems can be overwhelming. By breaking them down into smaller components, you make them more approachable and easier to tackle. This method also helps you identify specific areas that might need more attention or resources.
  • Develop a step-by-step action plan: Once you’ve chosen a solution, create a detailed plan for implementation. Outline the specific steps you’ll take, set deadlines, and allocate resources. This roadmap will keep you focused and organised throughout the problem-solving process.
  • Implement the chosen solution with confidence: With your plan in place, it’s time to take action. Move forward decisively, trusting in the thought process that led you to this solution. Remember, even if things don’t go perfectly, you can always adjust your approach.
  • Monitor progress and make adjustments as needed: Regularly assess how well your solution is working. Be prepared to make tweaks or even significant changes if you encounter unexpected challenges. Flexibility is key in effective problem-solving.
  • Reflect on the outcome to learn from the experience: Once you’ve resolved the problem, take time to review the entire process. What worked well? What could have been done differently? This reflection helps you refine your problem-solving skills for future challenges.
  • Practice problem-solving regularly to build skills and confidence: Like any skill, problem-solving improves with practice. Seek out opportunities to solve problems in your daily life, work, or even through pussles and brain teasers. The more you practice, the more natural and effective your problem-solving abilities will become.

Specific Techniques for Enhancing Problem Solving Skills

Let’s dive deeper into how to improve analytical and problem solving skills, how to improve complex problem solving skills, and more.

Analytical and Logical Reasoning

To learn how to improve logical reasoning and problem solving skills, and boost your analytical prowess, follow the tips below:

  • Play strategy games: Chess, Sudoku, and similar games can sharpen your analytical skills. They force you to think several steps ahead and consider multiple possibilities.
  • Practice logical pussles: Engage in logic problems regularly to strengthen your reasoning abilities. Crosswords, riddles, and brain teasers are great for this.
  • Study mathematics: Math is the language of logic. Improving your math skills will naturally enhance your analytical thinking. Even if you’re not a “math person,” basic mathematical concepts can significantly boost your problem-solving abilities.

Creative Problem Solving

Wondering how to improve creative problem solving skills? Try these techniques:

  • Brainstorm without limits: Let your imagination run wild. The crasiest ideas often lead to innovative solutions. Use techniques like mind mapping or free writing to get your creative juices flowing.
  • Use mind mapping: Visualise problems and potential solutions to spark creativity. This technique helps you see connections you might have missed otherwise.
  • Take breaks: Sometimes, stepping away from a problem allows your subconscious to work its magic. Ever noticed how great ideas often come to you in the shower or while taking a walk? That’s your subconscious at work.

Critical Thinking and Decision Making

For those pondering how to improve critical thinking and problem solving skills or how to improve decision making and problem solving skills, consider these strategies:

  • Question assumptions: Don’t take things at face value. Always ask “why?” Challenging assumptions can lead to breakthrough solutions.
  • Consider multiple perspectives: Look at problems from different angles to develop a well-rounded view. Try to put yourself in others’ shoes to gain new insights.
  • Use decision-making frameworks: Tools like SWOT analysis, decision matrices, or the Eisenhower Box can help structure your thinking and lead to better decisions.

Enhancing Problem Solving Skills for Specific Exams

Preparing for exams requires a targeted approach. Here’s how to fine-tune your skills for specific tests:

If you’re wondering how to improve problem solving skills for JEE, try these tips:

  • Understand the syllabus: Know what topics are covered and focus your efforts accordingly. This will help you prioritise your study time effectively.
  • Practice time management: JEE is as much about speed as it is about accuracy. Learn to pace yourself and know when to move on from a difficult question.
  • Join study groups: Collaborative learning can expose you to different problem-solving approaches. Explaining concepts to others can also reinforce your own understanding.

For those wondering how to improve problem solving skills in physics:

  • Master the fundamentals: A strong grasp of basic principles will help you tackle complex problems. Make sure you have a solid foundation before moving on to advanced topics.
  • Use mnemonics: Create memory aids to recall important formulas and concepts quickly. This can be a lifesaver during exams when time is of the essence.
  • Solve problems daily: Consistent practice is key to improving your physics problem-solving skills. Set aside time each day to work on physics problems, gradually increasing the difficulty level.

Mastering Problem-Solving Skills: A Lifelong Journey

Mastering how to improve problem solving skills is a lifelong journey. It’s not just about acing exams or excelling at work – it’s about equipping yourself with the tools to navigate life’s challenges with confidence and creativity.

Remember, every problem you face is an opportunity to grow. Whether you’re debugging stubborn code, tackling a tough engineering problem, or just figuring out your daily schedule, each challenge helps you build your problem-solving muscles.

So, keep practicing, stay curious, and don’t be afraid to make mistakes. Embrace challenges as opportunities to learn and grow. After all, some of the world’s greatest discoveries came from problem-solving gone “wrong.” Who knows? Your next “failed” solution might just lead to an incredible breakthrough that changes the world.

As you continue on your journey to become a master problem solver, remember that the skills you’re developing are invaluable in every aspect of life. They’ll help you in your career, in your personal relationships, and in achieving your goals. So keep pushing yourself, keep learning, and never stop asking “How can I solve this?”

Frequently Added Questions (FAQs)

What are the key techniques to improve problem-solving skills.

The core techniques include breaking down problems into manageable parts, brainstorming a wide range of solutions, carefully evaluating options, implementing the best solution, reviewing the outcomes, and iterating based on what you’ve learned. Regular practice and exposure to diverse problems also play a crucial role.

How can I enhance my problem-solving skills in programming?

To improve your programming problem-solving skills, practice coding regularly, tackle coding challenges on platforms like LeetCode or HackerRank, learn and apply various algorithms and data structures, engage in pair programming, and regularly review and refactor your code. Additionally, working on personal projects can provide real-world problem-solving experience.

What role do problem-solving skills play in the workplace?

Problem-solving skills are crucial in the workplace for handling daily tasks, managing projects, resolving conflicts, and driving innovation. They help employees navigate challenges, make informed decisions, and contribute to the overall success of the organisation. Strong problem-solving skills can also lead to career advancement opportunities.

How can I improve my analytical and logical reasoning abilities?

To boost analytical and logical reasoning skills, engage in activities like solving pussles (e.g., Sudoku, crosswords), playing strategy games (e.g., chess), practicing logical reasoning problems, and studying mathematics. Reading books on logic and critical thinking can also be beneficial. Regular practice and challenging yourself with increasingly difficult problems is key.

What are some ways to boost creative problem-solving skills?

To enhance creative problem-solving, engage in open-ended brainstorming sessions, use mind mapping techniques to visualise problems and solutions, practice lateral thinking exercises, and allow time for ideas to incubate. Exposing yourself to diverse experiences and perspectives can also stimulate creativity. Remember, sometimes the most innovative solutions come from combining ideas from different fields.

Top 15 Communication Skills for Today’s Leaders – Mastering the Enhanced Communication

Top Engineering Courses After 12th for Sure Success 

Top 10 psychology Colleges in India

Learn On-the-job

To read more related articles, click here.

Got a question on this topic?

Related Articles

  • Privacy Policy
  • Chegg Study
  • Learn a language
  • Writing Support
  • Expert Hiring and Payment Dashboard
  • ज्ञानकोश Earn Online
  • Career Guidance
  • General Knowledge
  • Web Stories

Chegg India does not ask for money to offer any opportunity with the company. We request you to be vigilant before sharing your personal and financial information with any third party. Beware of fraudulent activities claiming affiliation with our company and promising monetary rewards or benefits. Chegg India shall not be responsible for any losses resulting from such activities.

  • Chegg Inc. Compliance

© 2024 Chegg Inc. All rights reserved.

More From Forbes

The power of diversity and inclusion: driving innovation and success.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Jason Miller helps influential brands and celebrities create generational wealth with their businesses | CEO, Strategic Advisor Board .

Diversity and inclusion is a strategic advantage that promotes innovation in organizations, better decision making and stronger workplace cultures. See the strategies for building a diverse and inclusive organization to achieve long-term business success.

The value of diversity and inclusion has become increasingly recognized in society and in business. Organizations that promote diversity and cultivate inclusive environments are reaping huge rewards in terms of innovation, better decision making and better performance overall. The positive impact of diversity and inclusion extends beyond social responsibility; it is a strategic imperative that drives success and positions companies for long-term sustainability.

The Business Case For Diversity And Inclusion

Diversity can stimulate innovation by challenging conventional thinking, encouraging fresh ideas and promoting creative problem-solving. In research studies, diverse groups with people who have different backgrounds, genders, experiences and perspectives consistently generate more innovative solutions than homogeneous groups. Embracing diversity unlocks the potential for innovative products, services and approaches.

Enhanced Decision Making And Problem-Solving

Organizations can make better decisions by leveraging their workforce's diverse expertise and knowledge. Individuals are empowered to share their opinions and unique insights in inclusive environments. Organizations can benefit from well-rounded discussions and comprehensive evaluations by valuing and incorporating diverse perspectives. As a result of considering a wider range of possibilities and challenging groupthink, diverse teams are more effective at solving complex problems.

Benefits Of Diversity And Inclusion For Organizations

The financial performance of companies prioritizing diversity and inclusion consistently outperforms their peers. Financial returns are strongly correlated with diverse executive boards. Although, it’s important to note that diversity and inclusion should come from a place of increasing better work environments and employee satisfaction, and not firstly from a financially charged approach.

Increasing market share and customer loyalty is easier for companies that focus on diversity since they are better equipped to understand and connect with a broader customer base. Diversity can also foster a competitive advantage for companies attracting and retaining rockstar employees.

Enhanced Employee Engagement And Productivity

An inclusive culture cultivates a sense of belonging, respect and psychological safety, which increases employee engagement and productivity . This is because employees are more likely to feel valued for their unique contributions when they are celebrated and recognized. This type of environment encourages collaboration and innovation, as individuals from a variety of backgrounds bring with them different skills, perspectives and life experiences.

Strengthened Employer Brand And Reputation

Companies prioritizing diversity and inclusion are considered employers of choice by top talent. In today's socially conscious world, committed and dedicated employees are more likely to feel valued for their unique contributions if they are committed and dedicated to achieving organizational culture and promoting diversity in their workforce. This positive perception attracts diverse talent and strengthens relationships with customers, partners and the community.

Benefits Of Diversity And Inclusion For Employees

Creating a diversified workforce provides equal opportunities for all employees to grow and advance in their careers. Employees can then be inspired to push harder if they are celebrated for achieving organizational goals and given the ability to continue developing as staff members and individuals.

To strive towards an inclusive workspace, promote employees' sense of belonging, acceptance and well-being. In addition, you can promote improved mental health by creating supportive environments that encourage open communication, empathy and work-life balance. If employees associate good feelings with their workplaces, they can perform better.

Expanded Cultural Competence And Global Perspective

Diversity and inclusion can expose employees to various cultures, traditions and perspectives. This exposure can foster cultural competence. In my opinion, employees must be motivated, committed and dedicated to achieving organizational goals to feel valued for their unique contributions. Employees can learn and benefit from one another, better navigate diverse markets and build relationships based on cultural understanding and empathy. This cultural competence goes far beyond the workplace and creates stronger communities and a better world.

Strategies For Embracing Diversity And Fostering Inclusion

Creating a diverse and inclusive organization begins with leadership commitment and accountability. Senior leaders must champion diversity and inclusion as strategic priorities and set the tone for the organization. By leading by example, they can inspire others and strive to ensure diversity and inclusion initiatives are integrated into business strategies and practices.

Inclusive Recruitment And Hiring Practices

Organizations can promote diversity by adopting inclusive recruitment and hiring practices. This includes widening the candidate pool, leveraging diverse sourcing channels and hiring individuals from underrepresented communities. Establishing clear diversity goals and promoting diverse representation in all levels of the organization, including leadership positions, is essential and demonstrates the organization's commitment to inclusive practices.

Building Inclusive Work Cultures

Organizational culture can take some time to cultivate, but the effort is worth it. Organizations can achieve this by encouraging collaboration on projects across departments, honest communication and teamwork, and providing opportunities and resources. Training programs and workshops on unconscious bias, cultural competence and inclusive leadership can also help cultivate understanding and awareness.

Continuous Evaluation And Improvement

Building a diverse and inclusive organization is an ongoing journey. It is essential to continuously evaluate diversity and inclusion efforts through metrics, surveys and feedback mechanisms. By gathering data and insights, organizations can identify areas for improvement and develop targeted strategies. Your employees are one of your greatest resources as a business owner. Ask for feedback regularly and work to incorporate new ideas and suggestions generated by employees from all levels of the organization.

Inclusivity is not only the right thing to do, but it is a strategic advantage for organizations aiming to thrive in today's evolving workplace. By building diverse workforces, organizations can propel innovation, improve company decision-making and create an engaging and supportive work environment. Through leadership commitment, inclusive recruitment practices and cultural development, organizations can unlock the full potential of their teams and position themselves for long-term success. Let us embrace diversity and foster inclusion, not just for the benefit of our organizations but society at large.

Forbes Business Council is the foremost growth and networking organization for business owners and leaders. Do I qualify?

Jason Miller

  • Editorial Standards
  • Reprints & Permissions

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    why is reasoning and problem solving important

  2. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    why is reasoning and problem solving important

  3. Fluency, Reasoning and Problem Solving: What They REALLY Look Like

    why is reasoning and problem solving important

  4. thinking concept formation reasoning and problem solving

    why is reasoning and problem solving important

  5. Problem Solving Reasoning

    why is reasoning and problem solving important

  6. Introduction to Problem Solving Skills

    why is reasoning and problem solving important

COMMENTS

  1. What Are Critical Thinking Skills and Why Are They Important?

    Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. ... Develop your logic and reasoning. This is perhaps a more abstract task that requires practice and long-term development ...

  2. The Importance Of Critical Thinking, and how to improve it

    Critical thinkers' enhanced problem-solving skills makes them better at their jobs and better at solving the world's biggest problems. Like Einstein, they have the potential to literally change the world. 10. An Activity For The Mind. Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged.

  3. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Module 7: Thinking, Reasoning, and Problem-Solving. This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure ...

  4. Introduction to Problem Solving Skills

    Problem solving is the process of identifying a problem, developing possible solution paths, and taking the appropriate course of action. Why is problem solving important? Good problem solving skills empower you not only in your personal life but are critical in your professional life. In the current fast-changing global economy, employers ...

  5. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  6. Importance of Reasoning: The Art of Thinking Well

    The Benefits of Mastering the Art of Thinking Well. Problem-Solving: Strong reasoning skills enhance problem-solving abilities by enabling individuals to approach challenges with a logical and systematic mindset. This leads to innovative solutions and better outcomes in various personal and professional scenarios.

  7. Fluency, Reasoning & Problem Solving: What They REALLY Are

    This is important for two reasons: 1) It splits up reasoning skills and problem solving into two different entities. 2) It demonstrates that fluency is not something to be rushed through to get to the 'problem solving' stage but is rather the foundation of problem solving.

  8. Why It Matters: Problem Solving and Proportional Reasoning

    Problem-solving can be an efficient and rewarding process, especially if you are organized and mindful of critical steps and strategies. Remember, too, to assume the attributes of a good critical thinker. If you are curious, reflective, knowledge-seeking, open to change, probing, organized, and ethical, your challenge or problem will be less of ...

  9. Critical Thinking and Problem-Solving

    Critical thinking involves asking questions, defining a problem, examining evidence, analyzing assumptions and biases, avoiding emotional reasoning, avoiding oversimplification, considering other interpretations, and tolerating ambiguity. Dealing with ambiguity is also seen by Strohm & Baukus (1995) as an essential part of critical thinking ...

  10. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  11. Critical Thinking and Decision-Making

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  12. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  13. Critical Thinking Is About Asking Better Questions

    Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep ...

  14. What is problem solving and why is it important

    Problem-solving enables us to identify and exploit opportunities in the environment and exert (some level of) control over the future. Problem solving skills and the problem-solving process are a critical part of daily life both as individuals and organizations. Developing and refining these skills through training, practice and learning can ...

  15. Problem-Solving Skills: What They Are and How to Improve Yours

    Problem-solving skills defined. Problem-solving skills are skills that allow individuals to efficiently and effectively find solutions to issues. This attribute is a primary skill that employers look for in job candidates and is essential in a variety of careers. This skill is considered to be a soft skill, or an individual strength, as opposed ...

  16. The Power Of Critical Thinking: Enhancing Decision-Making And Problem

    Critical thinking enhances decision-making, problem-solving and communication abilities by fostering logical reasoning, analytical skills and an open mindset. It enables individuals to overcome ...

  17. Reasoning Skills

    Achieving the aims of the new National Curriculum: Developing opportunities and ensuring progression in the development of reasoning skills. The aims of the National Curriculum are to develop fluency and the ability to reason mathematically and solve problems. Reasoning is not only important in its own right but impacts on the other two aims.

  18. Problem-solving: Why is it important and how to practice it

    Reaching for a toy: Setting a goal is the very first step in problem-solving. Once your baby can sit independently, place toys one at a time in front of them, behind them, beside them, between their legs, or on a nearby shelf. This allows them to practice setting a goal—get the toy!—and making a plan to achieve it.

  19. How logical reasoning works

    Logical reasoning, in combination with other cognitive skills, is an important skill you use during all kinds of daily situations. It helps you make important decisions, discern the truth, solve problems, come up with new ideas and set achievable goals. Logical reasoning is also an important aspect of measuring intelligence during an IQ-test.

  20. The role of reasoning in supporting problem solving and fluency

    A recent webinar with Mike Askew explored the connection between reasoning, problem solving and fluency. This blog post summaries the key takeaways from this webinar. ... and retain a focus on mathematical ideas and why these ideas are important, especially when real-world connections are made, because this is relevant to students' daily ...

  21. PDF Problem Solving: What is it and Why is it Important?

    The "Official" Definition. Students develop the ability to make choices, interpret, formulate, model and investigate problem situations, and communicate solutions effectively. Students formulate and solve problems when they use mathematics to represent unfamiliar or meaningful situations, when they design investigations and plan their ...

  22. Why is Problem Solving Important in Child Development?

    Problem solving is important in child development because confident, capable children usually grow into confident, capable adults. <. If students practice problem solving consistently, they can develop greater situational and social awareness. Additionally, they learn to manage time and develop patience. As students mature, problems they face ...

  23. Fluency, Reasoning and Problem Solving: What They REALLY Look Like

    In that paper he produces this pyramid: This is important for two reasons: 1) It splits up reasoning skills and problem solving into two different entities. 2) It demonstrates that fluency is not something to be rushed through to get to the 'problem solving' stage but is rather the foundation of problem solving.

  24. How Chain-of-Thought Reasoning Helps Neural Networks Compute

    In general, researchers expect the appropriate number of intermediate steps for solving any problem to depend on the size of the input to the problem. For example, the simplest strategy for adding two 20-digit numbers requires twice as many intermediate addition steps as the same approach to adding two 10-digit numbers.

  25. The Mental Benefits of Learning a New Language

    Of course, knowing the benefits doesn't necessarily make the process easy. Learning a new language takes time, practice, and diligence. Even if you stick with it every day for a long time, it can still be a struggle. But that's exactly why learning a new language can be so beneficial. It challenges your brain in unique ways that, ultimately ...

  26. How to Improve Problem Solving Skills

    To learn how to improve logical reasoning and problem solving skills, and boost your analytical prowess, follow the tips below: Play strategy games: Chess, Sudoku, and similar games can sharpen your analytical skills. ... Use mnemonics: Create memory aids to recall important formulas and concepts quickly. This can be a lifesaver during exams ...

  27. Why AI Makes Educators More Important Than Ever

    Brain Literacy: Develop critical thinking, emotional intelligence, and problem-solving skills. Use AI as a complement, like AI-driven writing assistants that suggest improvements while allowing ...

  28. The Power Of Diversity And Inclusion: Driving Innovation And ...

    Enhanced Decision Making And Problem-Solving. ... it's important to note that diversity and inclusion should come from a place of increasing better work environments and employee satisfaction ...