Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Methods | Definition, Types, Examples

Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs quantitative : Will your data take the form of words or numbers?
  • Primary vs secondary : Will you collect original data yourself, or will you use data that have already been collected by someone else?
  • Descriptive vs experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyse the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analysing data, examples of data analysis methods, frequently asked questions about methodology.

Data are the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative
Quantitative .

You can also take a mixed methods approach, where you use both qualitative and quantitative research methods.

Primary vs secondary data

Primary data are any original information that you collect for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary data are information that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data. But if you want to synthesise existing knowledge, analyse historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary
Secondary

Descriptive vs experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive
Experimental

Prevent plagiarism, run a free check.

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare them for analysis.

Data can often be analysed both quantitatively and qualitatively. For example, survey responses could be analysed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that were collected:

  • From open-ended survey and interview questions, literature reviews, case studies, and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions.

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that were collected either:

  • During an experiment.
  • Using probability sampling methods .

Because the data are collected and analysed in a statistically valid way, the results of quantitative analysis can be easily standardised and shared among researchers.

Research methods for analysing data
Research method Qualitative or quantitative? When to use
Quantitative To analyse data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyse the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyse data collected from interviews, focus groups or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyse large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

More interesting articles.

  • A Quick Guide to Experimental Design | 5 Steps & Examples
  • Between-Subjects Design | Examples, Pros & Cons
  • Case Study | Definition, Examples & Methods
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | A Step-by-Step Guide with Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Controlled Experiments | Methods & Examples of Control
  • Correlation vs Causation | Differences, Designs & Examples
  • Correlational Research | Guide, Design & Examples
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definitions, Uses & Examples
  • Data Cleaning | A Guide with Examples & Steps
  • Data Collection Methods | Step-by-Step Guide & Examples
  • Descriptive Research Design | Definition, Methods & Examples
  • Doing Survey Research | A Step-by-Step Guide & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Explanatory vs Response Variables | Definitions & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Types, Threats & Examples
  • Extraneous Variables | Examples, Types, Controls
  • Face Validity | Guide with Definition & Examples
  • How to Do Thematic Analysis | Guide & Examples
  • How to Write a Strong Hypothesis | Guide & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs Deductive Research Approach (with Examples)
  • Internal Validity | Definition, Threats & Examples
  • Internal vs External Validity | Understanding Differences & Examples
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide, & Examples
  • Multistage Sampling | An Introductory Guide with Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalisation | A Guide with Examples, Pros & Cons
  • Population vs Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs Quantitative Research | Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Reliability vs Validity in Research | Differences, Types & Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Research Design | Step-by-Step Guide with Examples
  • Sampling Methods | Types, Techniques, & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Stratified Sampling | A Step-by-Step Guide with Examples
  • Structured Interview | Definition, Guide & Examples
  • Systematic Review | Definition, Examples & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity | Types, Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Examples
  • Types of Variables in Research | Definitions & Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Are Control Variables | Definition & Examples
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Double-Barrelled Question?
  • What Is a Double-Blind Study? | Introduction & Examples
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What is a Literature Review? | Guide, Template, & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Meaning, Guide & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition & Methods
  • What Is Quota Sampling? | Definition & Examples
  • What is Secondary Research? | Definition, Types, & Examples
  • What Is Snowball Sampling? | Definition & Examples
  • Within-Subjects Design | Explanation, Approaches, Examples

Service update: Some parts of the Library’s website will be down for maintenance on August 11.

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Research methods--quantitative, qualitative, and more: overview.

  • Quantitative Research
  • Qualitative Research
  • Data Science Methods (Machine Learning, AI, Big Data)
  • Text Mining and Computational Text Analysis
  • Evidence Synthesis/Systematic Reviews
  • Get Data, Get Help!

About Research Methods

This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. 

As Patten and Newhart note in the book Understanding Research Methods , "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge. The accumulation of knowledge through research is by its nature a collective endeavor. Each well-designed study provides evidence that may support, amend, refute, or deepen the understanding of existing knowledge...Decisions are important throughout the practice of research and are designed to help researchers collect evidence that includes the full spectrum of the phenomenon under study, to maintain logical rules, and to mitigate or account for possible sources of bias. In many ways, learning research methods is learning how to see and make these decisions."

The choice of methods varies by discipline, by the kind of phenomenon being studied and the data being used to study it, by the technology available, and more.  This guide is an introduction, but if you don't see what you need here, always contact your subject librarian, and/or take a look to see if there's a library research guide that will answer your question. 

Suggestions for changes and additions to this guide are welcome! 

START HERE: SAGE Research Methods

Without question, the most comprehensive resource available from the library is SAGE Research Methods.  HERE IS THE ONLINE GUIDE  to this one-stop shopping collection, and some helpful links are below:

  • SAGE Research Methods
  • Little Green Books  (Quantitative Methods)
  • Little Blue Books  (Qualitative Methods)
  • Dictionaries and Encyclopedias  
  • Case studies of real research projects
  • Sample datasets for hands-on practice
  • Streaming video--see methods come to life
  • Methodspace- -a community for researchers
  • SAGE Research Methods Course Mapping

Library Data Services at UC Berkeley

Library Data Services Program and Digital Scholarship Services

The LDSP offers a variety of services and tools !  From this link, check out pages for each of the following topics:  discovering data, managing data, collecting data, GIS data, text data mining, publishing data, digital scholarship, open science, and the Research Data Management Program.

Be sure also to check out the visual guide to where to seek assistance on campus with any research question you may have!

Library GIS Services

Other Data Services at Berkeley

D-Lab Supports Berkeley faculty, staff, and graduate students with research in data intensive social science, including a wide range of training and workshop offerings Dryad Dryad is a simple self-service tool for researchers to use in publishing their datasets. It provides tools for the effective publication of and access to research data. Geospatial Innovation Facility (GIF) Provides leadership and training across a broad array of integrated mapping technologies on campu Research Data Management A UC Berkeley guide and consulting service for research data management issues

General Research Methods Resources

Here are some general resources for assistance:

  • Assistance from ICPSR (must create an account to access): Getting Help with Data , and Resources for Students
  • Wiley Stats Ref for background information on statistics topics
  • Survey Documentation and Analysis (SDA) .  Program for easy web-based analysis of survey data.

Consultants

  • D-Lab/Data Science Discovery Consultants Request help with your research project from peer consultants.
  • Research data (RDM) consulting Meet with RDM consultants before designing the data security, storage, and sharing aspects of your qualitative project.
  • Statistics Department Consulting Services A service in which advanced graduate students, under faculty supervision, are available to consult during specified hours in the Fall and Spring semesters.

Related Resourcex

  • IRB / CPHS Qualitative research projects with human subjects often require that you go through an ethics review.
  • OURS (Office of Undergraduate Research and Scholarships) OURS supports undergraduates who want to embark on research projects and assistantships. In particular, check out their "Getting Started in Research" workshops
  • Sponsored Projects Sponsored projects works with researchers applying for major external grants.
  • Next: Quantitative Research >>
  • Last Updated: Aug 6, 2024 3:06 PM
  • URL: https://guides.lib.berkeley.edu/researchmethods
  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Choosing the Right Research Methodology: A Guide for Researchers

  • 3 minute read
  • 50.6K views

Table of Contents

Choosing an optimal research methodology is crucial for the success of any research project. The methodology you select will determine the type of data you collect, how you collect it, and how you analyse it. Understanding the different types of research methods available along with their strengths and weaknesses, is thus imperative to make an informed decision.

Understanding different research methods:

There are several research methods available depending on the type of study you are conducting, i.e., whether it is laboratory-based, clinical, epidemiological, or survey based . Some common methodologies include qualitative research, quantitative research, experimental research, survey-based research, and action research. Each method can be opted for and modified, depending on the type of research hypotheses and objectives.

Qualitative vs quantitative research:

When deciding on a research methodology, one of the key factors to consider is whether your research will be qualitative or quantitative. Qualitative research is used to understand people’s experiences, concepts, thoughts, or behaviours . Quantitative research, on the contrary, deals with numbers, graphs, and charts, and is used to test or confirm hypotheses, assumptions, and theories. 

Qualitative research methodology:

Qualitative research is often used to examine issues that are not well understood, and to gather additional insights on these topics. Qualitative research methods include open-ended survey questions, observations of behaviours described through words, and reviews of literature that has explored similar theories and ideas. These methods are used to understand how language is used in real-world situations, identify common themes or overarching ideas, and describe and interpret various texts. Data analysis for qualitative research typically includes discourse analysis, thematic analysis, and textual analysis. 

Quantitative research methodology:

The goal of quantitative research is to test hypotheses, confirm assumptions and theories, and determine cause-and-effect relationships. Quantitative research methods include experiments, close-ended survey questions, and countable and numbered observations. Data analysis for quantitative research relies heavily on statistical methods.

Analysing qualitative vs quantitative data:

The methods used for data analysis also differ for qualitative and quantitative research. As mentioned earlier, quantitative data is generally analysed using statistical methods and does not leave much room for speculation. It is more structured and follows a predetermined plan. In quantitative research, the researcher starts with a hypothesis and uses statistical methods to test it. Contrarily, methods used for qualitative data analysis can identify patterns and themes within the data, rather than provide statistical measures of the data. It is an iterative process, where the researcher goes back and forth trying to gauge the larger implications of the data through different perspectives and revising the analysis if required.

When to use qualitative vs quantitative research:

The choice between qualitative and quantitative research will depend on the gap that the research project aims to address, and specific objectives of the study. If the goal is to establish facts about a subject or topic, quantitative research is an appropriate choice. However, if the goal is to understand people’s experiences or perspectives, qualitative research may be more suitable. 

Conclusion:

In conclusion, an understanding of the different research methods available, their applicability, advantages, and disadvantages is essential for making an informed decision on the best methodology for your project. If you need any additional guidance on which research methodology to opt for, you can head over to Elsevier Author Services (EAS). EAS experts will guide you throughout the process and help you choose the perfect methodology for your research goals.

Why is data validation important in research

Why is data validation important in research?

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

Writing a good review article

Scholarly Sources What are They and Where can You Find Them

Scholarly Sources: What are They and Where can You Find Them?

Input your search keywords and press Enter.

Research Methods: What are research methods?

  • What are research methods?
  • Searching specific databases

What are research methods

Research methods are the strategies, processes or techniques utilized in the collection of data or evidence for analysis in order to uncover new information or create better understanding of a topic.

There are different types of research methods which use different tools for data collection.

Types of research

  • Qualitative Research
  • Quantitative Research
  • Mixed Methods Research

Qualitative Research gathers data about lived experiences, emotions or behaviours, and the meanings individuals attach to them. It assists in enabling researchers to gain a better understanding of complex concepts, social interactions or cultural phenomena. This type of research is useful in the exploration of how or why things have occurred, interpreting events and describing actions.

Quantitative Research gathers numerical data which can be ranked, measured or categorised through statistical analysis. It assists with uncovering patterns or relationships, and for making generalisations. This type of research is useful for finding out how many, how much, how often, or to what extent.

Mixed Methods Research integrates both Q ualitative and Quantitative Research . It provides a holistic approach combining and analysing the statistical data with deeper contextualised insights. Using Mixed Methods also enables Triangulation,  or verification, of the data from two or more sources.

Finding Mixed Methods research in the Databases 

“mixed model*” OR “mixed design*” OR “multiple method*” OR multimethod* OR triangulat*

Data collection tools

Techniques or tools used for gathering research data include:

Qualitative Techniques or Tools Quantitative Techniques or Tools
: these can be structured, semi-structured or unstructured in-depth sessions with the researcher and a participant. Surveys or questionnaires: which ask the same questions to large numbers of participants or use Likert scales which measure opinions as numerical data.
: with several participants discussing a particular topic or a set of questions. Researchers can be facilitators or observers. Observation: which can either involve counting the number of times a specific phenomenon occurs, or the coding of observational data in order to translate it into numbers.
: On-site, in-context or role-play options. Document screening: sourcing numerical data from financial reports or counting word occurrences.
: Interrogation of correspondence (letters, diaries, emails etc) or reports. Experiments: testing hypotheses in laboratories, testing cause and effect relationships, through field experiments, or via quasi- or natural experiments.
: Remembrances or memories of experiences told to the researcher.  

SAGE research methods

  • SAGE research methods online This link opens in a new window Research methods tool to help researchers gather full-text resources, design research projects, understand a particular method and write up their research. Includes access to collections of video, business cases and eBooks,

Help and Information

Help and information

  • Next: Finding qualitative research >>
  • Last Updated: Aug 19, 2024 3:39 PM
  • URL: https://libguides.newcastle.edu.au/researchmethods

ResearchMethodology.org

Home » What are Research Methods?

What are Research Methods?

Imagine you’re starting on a journey of discovery, and research methods are your compass, map, and tools. These methods guide us in exploring the vast landscape of knowledge, ensuring our journey is structured, reliable, and fruitful.

Table of Contents

Research Methods

Research Methods

Research Methods are systematic strategies, steps, and tools that researchers use to gather, analyze, and interpret data about a particular topic. It’s like cooking a new recipe; you need the right ingredients (data), a good method (research design), and the proper tools (instruments like surveys or experiments) to create a delightful dish (knowledge).

Types of Research Methods

Qualitative research.

This is akin to painting a portrait. It focuses on understanding concepts, thoughts, and experiences through detailed, descriptive data. Imagine sitting down with someone and listening to their story to grasp the depth of their experiences. Tools for this might include interviews , observations , and textual analysis .

Quantitative Research

Now, imagine yourself counting stars in the sky. This method deals with numbers and statistical analysis. It seeks to quantify the problem by generating numerical data or data that can be transformed into usable statistics. Surveys with multiple-choice questions or experiments where you measure and compare are typical tools here.

Mixed Methods

Sometimes, a single perspective isn’t enough. Mixed methods blend the colors of both qualitative and quantitative research, offering a more comprehensive picture. It’s like using both a microscope and a telescope; you get the detail and the big picture.

Steps in the Research Process

Identifying the Problem : Every journey begins with recognizing where you want to go. What’s the question you’re burning to answer? This step involves defining the scope and purpose of your research.

Literature Review : Before you set out, you need to map the terrain by exploring what others have discovered before you. This involves reading and summarizing existing research on your topic.

Designing the Study : Here’s where you plan your route. Will you conduct interviews? Send out surveys? Observe behaviors? This step involves deciding on your research method, participants, and tools.

Collecting Data : Time to hit the road and gather your data. This is the hands-on part of your research, where you implement your chosen methods to collect information.

Analyzing Data : With your treasures in hand, you now sift through your findings, looking for patterns, themes, or statistical relationships. This step often involves software for qualitative or quantitative analysis.

Interpreting Results : What have you discovered? This stage is about making sense of your data, connecting the dots, and understanding what your findings mean in the context of your research question.

Reporting and Sharing Findings : The final step is to share your journey’s story. This could be a research paper, a presentation, or any format that communicates your discoveries to others.

Ethics in Research

Imagine you’re a guest in someone’s home; you must be respectful and considerate. Similarly, ethical considerations are paramount in research. This means ensuring confidentiality, obtaining informed consent, and treating all subjects (people, animals, the environment) with respect and dignity.

Research methods are the compass, map, and tools that guide us through the terrain of knowledge. They enable us to ask important questions, systematically gather and analyze data, and contribute valuable insights to our understanding of the world. As you start on your research journey, embrace the adventure, respect the process, and look forward to the discoveries that await you.

You may also like

Types of Mixed Research Methods

Types of Mixed Research Methods

Mixed Research Methods

What is Mixed Research Methods

Types of Quantitative Research Methods

Types of Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods

Types of Qualitative Research Methods

Types of Qualitative Research Methods

Qualitative Research Methods

Qualitative Research Methods

helpful professor logo

15 Types of Research Methods

15 Types of Research Methods

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

types of research methods, explained below

Research methods refer to the strategies, tools, and techniques used to gather and analyze data in a structured way in order to answer a research question or investigate a hypothesis (Hammond & Wellington, 2020).

Generally, we place research methods into two categories: quantitative and qualitative. Each has its own strengths and weaknesses, which we can summarize as:

  • Quantitative research can achieve generalizability through scrupulous statistical analysis applied to large sample sizes.
  • Qualitative research achieves deep, detailed, and nuance accounts of specific case studies, which are not generalizable.

Some researchers, with the aim of making the most of both quantitative and qualitative research, employ mixed methods, whereby they will apply both types of research methods in the one study, such as by conducting a statistical survey alongside in-depth interviews to add context to the quantitative findings.

Below, I’ll outline 15 common research methods, and include pros, cons, and examples of each .

Types of Research Methods

Research methods can be broadly categorized into two types: quantitative and qualitative.

  • Quantitative methods involve systematic empirical investigation of observable phenomena via statistical, mathematical, or computational techniques, providing an in-depth understanding of a specific concept or phenomenon (Schweigert, 2021). The strengths of this approach include its ability to produce reliable results that can be generalized to a larger population, although it can lack depth and detail.
  • Qualitative methods encompass techniques that are designed to provide a deep understanding of a complex issue, often in a specific context, through collection of non-numerical data (Tracy, 2019). This approach often provides rich, detailed insights but can be time-consuming and its findings may not be generalizable.

These can be further broken down into a range of specific research methods and designs:

Primarily Quantitative MethodsPrimarily Qualitative methods
Experimental ResearchCase Study
Surveys and QuestionnairesEthnography
Longitudinal StudiesPhenomenology
Cross-Sectional StudiesHistorical research
Correlational ResearchContent analysis
Causal-Comparative ResearchGrounded theory
Meta-AnalysisAction research
Quasi-Experimental DesignObservational research

Combining the two methods above, mixed methods research mixes elements of both qualitative and quantitative research methods, providing a comprehensive understanding of the research problem . We can further break these down into:

  • Sequential Explanatory Design (QUAN→QUAL): This methodology involves conducting quantitative analysis first, then supplementing it with a qualitative study.
  • Sequential Exploratory Design (QUAL→QUAN): This methodology goes in the other direction, starting with qualitative analysis and ending with quantitative analysis.

Let’s explore some methods and designs from both quantitative and qualitative traditions, starting with qualitative research methods.

Qualitative Research Methods

Qualitative research methods allow for the exploration of phenomena in their natural settings, providing detailed, descriptive responses and insights into individuals’ experiences and perceptions (Howitt, 2019).

These methods are useful when a detailed understanding of a phenomenon is sought.

1. Ethnographic Research

Ethnographic research emerged out of anthropological research, where anthropologists would enter into a setting for a sustained period of time, getting to know a cultural group and taking detailed observations.

Ethnographers would sometimes even act as participants in the group or culture, which many scholars argue is a weakness because it is a step away from achieving objectivity (Stokes & Wall, 2017).

In fact, at its most extreme version, ethnographers even conduct research on themselves, in a fascinating methodology call autoethnography .

The purpose is to understand the culture, social structure, and the behaviors of the group under study. It is often useful when researchers seek to understand shared cultural meanings and practices in their natural settings.

However, it can be time-consuming and may reflect researcher biases due to the immersion approach.

Pros of Ethnographic ResearchCons of Ethnographic Research
1. Provides deep cultural insights1. Time-consuming
2. Contextually relevant findings2. Potential researcher bias
3. Explores dynamic social processes3. May

Example of Ethnography

Liquidated: An Ethnography of Wall Street  by Karen Ho involves an anthropologist who embeds herself with Wall Street firms to study the culture of Wall Street bankers and how this culture affects the broader economy and world.

2. Phenomenological Research

Phenomenological research is a qualitative method focused on the study of individual experiences from the participant’s perspective (Tracy, 2019).

It focuses specifically on people’s experiences in relation to a specific social phenomenon ( see here for examples of social phenomena ).

This method is valuable when the goal is to understand how individuals perceive, experience, and make meaning of particular phenomena. However, because it is subjective and dependent on participants’ self-reports, findings may not be generalizable, and are highly reliant on self-reported ‘thoughts and feelings’.

Pros of Phenomenological ResearchCons of Phenomenological Research
1. Provides rich, detailed data1. Limited generalizability
2. Highlights personal experience and perceptions2. Data collection can be time-consuming
3. Allows exploration of complex phenomena3. Requires highly skilled researchers

Example of Phenomenological Research

A phenomenological approach to experiences with technology  by Sebnem Cilesiz represents a good starting-point for formulating a phenomenological study. With its focus on the ‘essence of experience’, this piece presents methodological, reliability, validity, and data analysis techniques that phenomenologists use to explain how people experience technology in their everyday lives.

3. Historical Research

Historical research is a qualitative method involving the examination of past events to draw conclusions about the present or make predictions about the future (Stokes & Wall, 2017).

As you might expect, it’s common in the research branches of history departments in universities.

This approach is useful in studies that seek to understand the past to interpret present events or trends. However, it relies heavily on the availability and reliability of source materials, which may be limited.

Common data sources include cultural artifacts from both material and non-material culture , which are then examined, compared, contrasted, and contextualized to test hypotheses and generate theories.

Pros of Historical ResearchCons of Historical Research
1. 1. Dependent on available sources
2. Can help understand current events or trends2. Potential bias in source materials
3. Allows the study of change over time3. Difficult to replicate

Example of Historical Research

A historical research example might be a study examining the evolution of gender roles over the last century. This research might involve the analysis of historical newspapers, advertisements, letters, and company documents, as well as sociocultural contexts.

4. Content Analysis

Content analysis is a research method that involves systematic and objective coding and interpreting of text or media to identify patterns, themes, ideologies, or biases (Schweigert, 2021).

A content analysis is useful in analyzing communication patterns, helping to reveal how texts such as newspapers, movies, films, political speeches, and other types of ‘content’ contain narratives and biases.

However, interpretations can be very subjective, which often requires scholars to engage in practices such as cross-comparing their coding with peers or external researchers.

Content analysis can be further broken down in to other specific methodologies such as semiotic analysis, multimodal analysis , and discourse analysis .

Pros of Content AnalysisCons of Content Analysis
1. Unobtrusive data collection1. Lacks contextual information
2. Allows for large sample analysis2. Potential coder bias
3. Replicable and reliable if done properly3. May overlook nuances

Example of Content Analysis

How is Islam Portrayed in Western Media?  by Poorebrahim and Zarei (2013) employs a type of content analysis called critical discourse analysis (common in poststructuralist and critical theory research ). This study by Poorebrahum and Zarei combs through a corpus of western media texts to explore the language forms that are used in relation to Islam and Muslims, finding that they are overly stereotyped, which may represent anti-Islam bias or failure to understand the Islamic world.

5. Grounded Theory Research

Grounded theory involves developing a theory  during and after  data collection rather than beforehand.

This is in contrast to most academic research studies, which start with a hypothesis or theory and then testing of it through a study, where we might have a null hypothesis (disproving the theory) and an alternative hypothesis (supporting the theory).

Grounded Theory is useful because it keeps an open mind to what the data might reveal out of the research. It can be time-consuming and requires rigorous data analysis (Tracy, 2019).

Pros of Grounded Theory ResearchCons of Grounded Theory Research
1. Helps with theory development1. Time-consuming
2. Rigorous data analysis2. Requires iterative data collection and analysis
3. Can fill gaps in existing theories3. Requires skilled researchers

Grounded Theory Example

Developing a Leadership Identity   by Komives et al (2005) employs a grounded theory approach to develop a thesis based on the data rather than testing a hypothesis. The researchers studied the leadership identity of 13 college students taking on leadership roles. Based on their interviews, the researchers theorized that the students’ leadership identities shifted from a hierarchical view of leadership to one that embraced leadership as a collaborative concept.

6. Action Research

Action research is an approach which aims to solve real-world problems and bring about change within a setting. The study is designed to solve a specific problem – or in other words, to take action (Patten, 2017).

This approach can involve mixed methods, but is generally qualitative because it usually involves the study of a specific case study wherein the researcher works, e.g. a teacher studying their own classroom practice to seek ways they can improve.

Action research is very common in fields like education and nursing where practitioners identify areas for improvement then implement a study in order to find paths forward.

Pros of Action ResearchCons of Action Research
1. Addresses real-world problems and seeks to find solutions.1. It is time-consuming and often hard to implement into a practitioner’s already busy schedule
2. Integrates research and action in an action-research cycle.2. Requires collaboration between researcher, practitioner, and research participants.
3. Can bring about positive change in isolated instances, such as in a school or nursery setting.3. Complexity of managing dual roles (where the researcher is also often the practitioner)

Action Research Example

Using Digital Sandbox Gaming to Improve Creativity Within Boys’ Writing   by Ellison and Drew was a research study one of my research students completed in his own classroom under my supervision. He implemented a digital game-based approach to literacy teaching with boys and interviewed his students to see if the use of games as stimuli for storytelling helped draw them into the learning experience.

7. Natural Observational Research

Observational research can also be quantitative (see: experimental research), but in naturalistic settings for the social sciences, researchers tend to employ qualitative data collection methods like interviews and field notes to observe people in their day-to-day environments.

This approach involves the observation and detailed recording of behaviors in their natural settings (Howitt, 2019). It can provide rich, in-depth information, but the researcher’s presence might influence behavior.

While observational research has some overlaps with ethnography (especially in regard to data collection techniques), it tends not to be as sustained as ethnography, e.g. a researcher might do 5 observations, every second Monday, as opposed to being embedded in an environment.

Pros of Qualitative Observational ResearchCons of Qualitative Observational Research
1. Captures behavior in natural settings, allowing for interesting insights into authentic behaviors. 1. Researcher’s presence may influence behavior
2. Can provide rich, detailed data through the researcher’s vignettes.2. Can be time-consuming
3. Non-invasive because researchers want to observe natural activities rather than interfering with research participants.3. Requires skilled and trained observers

Observational Research Example

A researcher might use qualitative observational research to study the behaviors and interactions of children at a playground. The researcher would document the behaviors observed, such as the types of games played, levels of cooperation , and instances of conflict.

8. Case Study Research

Case study research is a qualitative method that involves a deep and thorough investigation of a single individual, group, or event in order to explore facets of that phenomenon that cannot be captured using other methods (Stokes & Wall, 2017).

Case study research is especially valuable in providing contextualized insights into specific issues, facilitating the application of abstract theories to real-world situations (Patten, 2017).

However, findings from a case study may not be generalizable due to the specific context and the limited number of cases studied (Walliman, 2021).

Pros of Case Study ResearchCons of Case Study Research
1. Provides detailed insights1. Limited generalizability
2. Facilitates the study of complex phenomena2. Can be time-consuming
3. Can test or generate theories3. Subject to observer bias

See More: Case Study Advantages and Disadvantages

Example of a Case Study

Scholars conduct a detailed exploration of the implementation of a new teaching method within a classroom setting. The study focuses on how the teacher and students adapt to the new method, the challenges encountered, and the outcomes on student performance and engagement. While the study provides specific and detailed insights of the teaching method in that classroom, it cannot be generalized to other classrooms, as statistical significance has not been established through this qualitative approach.

Quantitative Research Methods

Quantitative research methods involve the systematic empirical investigation of observable phenomena via statistical, mathematical, or computational techniques (Pajo, 2022). The focus is on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

9. Experimental Research

Experimental research is a quantitative method where researchers manipulate one variable to determine its effect on another (Walliman, 2021).

This is common, for example, in high-school science labs, where students are asked to introduce a variable into a setting in order to examine its effect.

This type of research is useful in situations where researchers want to determine causal relationships between variables. However, experimental conditions may not reflect real-world conditions.

Pros of Experimental ResearchCons of Experimental Research
1. Allows for determination of causality1. Might not reflect real-world conditions
2. Allows for the study of phenomena in highly controlled environments to minimize research contamination.2. Can be costly and time-consuming to create a controlled environment.
3. Can be replicated so other researchers can test and verify the results.3. Ethical concerns need to be addressed as the research is directly manipulating variables.

Example of Experimental Research

A researcher may conduct an experiment to determine the effects of a new educational approach on student learning outcomes. Students would be randomly assigned to either the control group (traditional teaching method) or the experimental group (new educational approach).

10. Surveys and Questionnaires

Surveys and questionnaires are quantitative methods that involve asking research participants structured and predefined questions to collect data about their attitudes, beliefs, behaviors, or characteristics (Patten, 2017).

Surveys are beneficial for collecting data from large samples, but they depend heavily on the honesty and accuracy of respondents.

They tend to be seen as more authoritative than their qualitative counterparts, semi-structured interviews, because the data is quantifiable (e.g. a questionnaire where information is presented on a scale from 1 to 10 can allow researchers to determine and compare statistical means, averages, and variations across sub-populations in the study).

Pros of Surveys and QuestionnairesCons of Surveys and Questionnaires
1. Data can be gathered from larger samples than is possible in qualitative research. 1. There is heavy dependence on respondent honesty
2. The data is quantifiable, allowing for comparison across subpopulations2. There is limited depth of response as opposed to qualitative approaches.
3. Can be cost-effective and time-efficient3. Static with no flexibility to explore responses (unlike semi- or unstrcutured interviewing)

Example of a Survey Study

A company might use a survey to gather data about employee job satisfaction across its offices worldwide. Employees would be asked to rate various aspects of their job satisfaction on a Likert scale. While this method provides a broad overview, it may lack the depth of understanding possible with other methods (Stokes & Wall, 2017).

11. Longitudinal Studies

Longitudinal studies involve repeated observations of the same variables over extended periods (Howitt, 2019). These studies are valuable for tracking development and change but can be costly and time-consuming.

With multiple data points collected over extended periods, it’s possible to examine continuous changes within things like population dynamics or consumer behavior. This makes a detailed analysis of change possible.

a visual representation of a longitudinal study demonstrating that data is collected over time on one sample so researchers can examine how variables change over time

Perhaps the most relatable example of a longitudinal study is a national census, which is taken on the same day every few years, to gather comparative demographic data that can show how a nation is changing over time.

While longitudinal studies are commonly quantitative, there are also instances of qualitative ones as well, such as the famous 7 Up study from the UK, which studies 14 individuals every 7 years to explore their development over their lives.

Pros of Longitudinal StudiesCons of Longitudinal Studies
1. Tracks changes over time allowing for comparison of past to present events.1. Is almost by definition time-consuming because time needs to pass between each data collection session.
2. Can identify sequences of events, but causality is often harder to determine.2. There is high risk of participant dropout over time as participants move on with their lives.

Example of a Longitudinal Study

A national census, taken every few years, uses surveys to develop longitudinal data, which is then compared and analyzed to present accurate trends over time. Trends a census can reveal include changes in religiosity, values and attitudes on social issues, and much more.

12. Cross-Sectional Studies

Cross-sectional studies are a quantitative research method that involves analyzing data from a population at a specific point in time (Patten, 2017). They provide a snapshot of a situation but cannot determine causality.

This design is used to measure and compare the prevalence of certain characteristics or outcomes in different groups within the sampled population.

A visual representation of a cross-sectional group of people, demonstrating that the data is collected at a single point in time and you can compare groups within the sample

The major advantage of cross-sectional design is its ability to measure a wide range of variables simultaneously without needing to follow up with participants over time.

However, cross-sectional studies do have limitations . This design can only show if there are associations or correlations between different variables, but cannot prove cause and effect relationships, temporal sequence, changes, and trends over time.

Pros of Cross-Sectional StudiesCons of Cross-Sectional Studies
1. Quick and inexpensive, with no long-term commitment required.1. Cannot determine causality because it is a simple snapshot, with no time delay between data collection points.
2. Good for descriptive analyses.2. Does not allow researchers to follow up with research participants.

Example of a Cross-Sectional Study

Our longitudinal study example of a national census also happens to contain cross-sectional design. One census is cross-sectional, displaying only data from one point in time. But when a census is taken once every few years, it becomes longitudinal, and so long as the data collection technique remains unchanged, identification of changes will be achievable, adding another time dimension on top of a basic cross-sectional study.

13. Correlational Research

Correlational research is a quantitative method that seeks to determine if and to what degree a relationship exists between two or more quantifiable variables (Schweigert, 2021).

This approach provides a fast and easy way to make initial hypotheses based on either positive or  negative correlation trends  that can be observed within dataset.

While correlational research can reveal relationships between variables, it cannot establish causality.

Methods used for data analysis may include statistical correlations such as Pearson’s or Spearman’s.

Pros of Correlational ResearchCons of Correlational Research
1. Reveals relationships between variables1. Cannot determine causality
2. Can use existing data2. May be
3. Can guide further experimental research3. Correlation may be coincidental

Example of Correlational Research

A team of researchers is interested in studying the relationship between the amount of time students spend studying and their academic performance. They gather data from a high school, measuring the number of hours each student studies per week and their grade point averages (GPAs) at the end of the semester. Upon analyzing the data, they find a positive correlation, suggesting that students who spend more time studying tend to have higher GPAs.

14. Quasi-Experimental Design Research

Quasi-experimental design research is a quantitative research method that is similar to experimental design but lacks the element of random assignment to treatment or control.

Instead, quasi-experimental designs typically rely on certain other methods to control for extraneous variables.

The term ‘quasi-experimental’ implies that the experiment resembles a true experiment, but it is not exactly the same because it doesn’t meet all the criteria for a ‘true’ experiment, specifically in terms of control and random assignment.

Quasi-experimental design is useful when researchers want to study a causal hypothesis or relationship, but practical or ethical considerations prevent them from manipulating variables and randomly assigning participants to conditions.

Pros Cons
1. It’s more feasible to implement than true experiments.1. Without random assignment, it’s harder to rule out confounding variables.
2. It can be conducted in real-world settings, making the findings more applicable to the real world.2. The lack of random assignment may of the study.
3. Useful when it’s unethical or impossible to manipulate the independent variable or randomly assign participants.3. It’s more difficult to establish a cause-effect relationship due to the potential for confounding variables.

Example of Quasi-Experimental Design

A researcher wants to study the impact of a new math tutoring program on student performance. However, ethical and practical constraints prevent random assignment to the “tutoring” and “no tutoring” groups. Instead, the researcher compares students who chose to receive tutoring (experimental group) to similar students who did not choose to receive tutoring (control group), controlling for other variables like grade level and previous math performance.

Related: Examples and Types of Random Assignment in Research

15. Meta-Analysis Research

Meta-analysis statistically combines the results of multiple studies on a specific topic to yield a more precise estimate of the effect size. It’s the gold standard of secondary research .

Meta-analysis is particularly useful when there are numerous studies on a topic, and there is a need to integrate the findings to draw more reliable conclusions.

Some meta-analyses can identify flaws or gaps in a corpus of research, when can be highly influential in academic research, despite lack of primary data collection.

However, they tend only to be feasible when there is a sizable corpus of high-quality and reliable studies into a phenomenon.

Pros Cons
Increased Statistical Power: By combining data from multiple studies, meta-analysis increases the statistical power to detect effects.Publication Bias: Studies with null or negative findings are less likely to be published, leading to an overestimation of effect sizes.
Greater Precision: It provides more precise estimates of effect sizes by reducing the influence of random error.Quality of Studies: of a meta-analysis depends on the quality of the studies included.
Resolving Discrepancies: Meta-analysis can help resolve disagreements between different studies on a topic.Heterogeneity: Differences in study design, sample, or procedures can introduce heterogeneity, complicating interpretation of results.

Example of a Meta-Analysis

The power of feedback revisited (Wisniewski, Zierer & Hattie, 2020) is a meta-analysis that examines 435 empirical studies research on the effects of feedback on student learning. They use a random-effects model to ascertain whether there is a clear effect size across the literature. The authors find that feedback tends to impact cognitive and motor skill outcomes but has less of an effect on motivational and behavioral outcomes.

Choosing a research method requires a lot of consideration regarding what you want to achieve, your research paradigm, and the methodology that is most valuable for what you are studying. There are multiple types of research methods, many of which I haven’t been able to present here. Generally, it’s recommended that you work with an experienced researcher or research supervisor to identify a suitable research method for your study at hand.

Hammond, M., & Wellington, J. (2020). Research methods: The key concepts . New York: Routledge.

Howitt, D. (2019). Introduction to qualitative research methods in psychology . London: Pearson UK.

Pajo, B. (2022). Introduction to research methods: A hands-on approach . New York: Sage Publications.

Patten, M. L. (2017). Understanding research methods: An overview of the essentials . New York: Sage

Schweigert, W. A. (2021). Research methods in psychology: A handbook . Los Angeles: Waveland Press.

Stokes, P., & Wall, T. (2017). Research methods . New York: Bloomsbury Publishing.

Tracy, S. J. (2019). Qualitative research methods: Collecting evidence, crafting analysis, communicating impact . London: John Wiley & Sons.

Walliman, N. (2021). Research methods: The basics. London: Routledge.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

methods of research to be used

What Is Research Methodology?

methods of research to be used

I f you’re new to formal academic research, it’s quite likely that you’re feeling a little overwhelmed by all the technical lingo that gets thrown around. And who could blame you – “research methodology”, “research methods”, “sampling strategies”… it all seems never-ending!

In this post, we’ll demystify the landscape with plain-language explanations and loads of examples (including easy-to-follow videos), so that you can approach your dissertation, thesis or research project with confidence. Let’s get started.

Research Methodology 101

  • What exactly research methodology means
  • What qualitative , quantitative and mixed methods are
  • What sampling strategy is
  • What data collection methods are
  • What data analysis methods are
  • How to choose your research methodology
  • Example of a research methodology

Free Webinar: Research Methodology 101

What is research methodology?

Research methodology simply refers to the practical “how” of a research study. More specifically, it’s about how  a researcher  systematically designs a study  to ensure valid and reliable results that address the research aims, objectives and research questions . Specifically, how the researcher went about deciding:

  • What type of data to collect (e.g., qualitative or quantitative data )
  • Who  to collect it from (i.e., the sampling strategy )
  • How to  collect  it (i.e., the data collection method )
  • How to  analyse  it (i.e., the data analysis methods )

Within any formal piece of academic research (be it a dissertation, thesis or journal article), you’ll find a research methodology chapter or section which covers the aspects mentioned above. Importantly, a good methodology chapter explains not just   what methodological choices were made, but also explains  why they were made. In other words, the methodology chapter should justify  the design choices, by showing that the chosen methods and techniques are the best fit for the research aims, objectives and research questions. 

So, it’s the same as research design?

Not quite. As we mentioned, research methodology refers to the collection of practical decisions regarding what data you’ll collect, from who, how you’ll collect it and how you’ll analyse it. Research design, on the other hand, is more about the overall strategy you’ll adopt in your study. For example, whether you’ll use an experimental design in which you manipulate one variable while controlling others. You can learn more about research design and the various design types here .

Need a helping hand?

methods of research to be used

What are qualitative, quantitative and mixed-methods?

Qualitative, quantitative and mixed-methods are different types of methodological approaches, distinguished by their focus on words , numbers or both . This is a bit of an oversimplification, but its a good starting point for understanding.

Let’s take a closer look.

Qualitative research refers to research which focuses on collecting and analysing words (written or spoken) and textual or visual data, whereas quantitative research focuses on measurement and testing using numerical data . Qualitative analysis can also focus on other “softer” data points, such as body language or visual elements.

It’s quite common for a qualitative methodology to be used when the research aims and research questions are exploratory  in nature. For example, a qualitative methodology might be used to understand peoples’ perceptions about an event that took place, or a political candidate running for president. 

Contrasted to this, a quantitative methodology is typically used when the research aims and research questions are confirmatory  in nature. For example, a quantitative methodology might be used to measure the relationship between two variables (e.g. personality type and likelihood to commit a crime) or to test a set of hypotheses .

As you’ve probably guessed, the mixed-method methodology attempts to combine the best of both qualitative and quantitative methodologies to integrate perspectives and create a rich picture. If you’d like to learn more about these three methodological approaches, be sure to watch our explainer video below.

What is sampling strategy?

Simply put, sampling is about deciding who (or where) you’re going to collect your data from . Why does this matter? Well, generally it’s not possible to collect data from every single person in your group of interest (this is called the “population”), so you’ll need to engage a smaller portion of that group that’s accessible and manageable (this is called the “sample”).

How you go about selecting the sample (i.e., your sampling strategy) will have a major impact on your study.  There are many different sampling methods  you can choose from, but the two overarching categories are probability   sampling and  non-probability   sampling .

Probability sampling  involves using a completely random sample from the group of people you’re interested in. This is comparable to throwing the names all potential participants into a hat, shaking it up, and picking out the “winners”. By using a completely random sample, you’ll minimise the risk of selection bias and the results of your study will be more generalisable  to the entire population. 

Non-probability sampling , on the other hand,  doesn’t use a random sample . For example, it might involve using a convenience sample, which means you’d only interview or survey people that you have access to (perhaps your friends, family or work colleagues), rather than a truly random sample. With non-probability sampling, the results are typically not generalisable .

To learn more about sampling methods, be sure to check out the video below.

What are data collection methods?

As the name suggests, data collection methods simply refers to the way in which you go about collecting the data for your study. Some of the most common data collection methods include:

  • Interviews (which can be unstructured, semi-structured or structured)
  • Focus groups and group interviews
  • Surveys (online or physical surveys)
  • Observations (watching and recording activities)
  • Biophysical measurements (e.g., blood pressure, heart rate, etc.)
  • Documents and records (e.g., financial reports, court records, etc.)

The choice of which data collection method to use depends on your overall research aims and research questions , as well as practicalities and resource constraints. For example, if your research is exploratory in nature, qualitative methods such as interviews and focus groups would likely be a good fit. Conversely, if your research aims to measure specific variables or test hypotheses, large-scale surveys that produce large volumes of numerical data would likely be a better fit.

What are data analysis methods?

Data analysis methods refer to the methods and techniques that you’ll use to make sense of your data. These can be grouped according to whether the research is qualitative  (words-based) or quantitative (numbers-based).

Popular data analysis methods in qualitative research include:

  • Qualitative content analysis
  • Thematic analysis
  • Discourse analysis
  • Narrative analysis
  • Interpretative phenomenological analysis (IPA)
  • Visual analysis (of photographs, videos, art, etc.)

Qualitative data analysis all begins with data coding , after which an analysis method is applied. In some cases, more than one analysis method is used, depending on the research aims and research questions . In the video below, we explore some  common qualitative analysis methods, along with practical examples.  

  • Descriptive statistics (e.g. means, medians, modes )
  • Inferential statistics (e.g. correlation, regression, structural equation modelling)

How do I choose a research methodology?

As you’ve probably picked up by now, your research aims and objectives have a major influence on the research methodology . So, the starting point for developing your research methodology is to take a step back and look at the big picture of your research, before you make methodology decisions. The first question you need to ask yourself is whether your research is exploratory or confirmatory in nature.

If your research aims and objectives are primarily exploratory in nature, your research will likely be qualitative and therefore you might consider qualitative data collection methods (e.g. interviews) and analysis methods (e.g. qualitative content analysis). 

Conversely, if your research aims and objective are looking to measure or test something (i.e. they’re confirmatory), then your research will quite likely be quantitative in nature, and you might consider quantitative data collection methods (e.g. surveys) and analyses (e.g. statistical analysis).

Designing your research and working out your methodology is a large topic, which we cover extensively on the blog . For now, however, the key takeaway is that you should always start with your research aims, objectives and research questions (the golden thread). Every methodological choice you make needs align with those three components. 

Example of a research methodology chapter

In the video below, we provide a detailed walkthrough of a research methodology from an actual dissertation, as well as an overview of our free methodology template .

Research Methodology Bootcamp

Learn More About Methodology

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Research Limitations 101: What You Need To Know

Research Limitations 101: What You Need To Know

Learn everything you need to know about research limitations (AKA limitations of the study). Includes practical examples from real studies.

In Vivo Coding 101: Full Explainer With Examples

In Vivo Coding 101: Full Explainer With Examples

Learn about in vivo coding, a popular qualitative coding technique ideal for studies where the nuances of language are central to the aims.

Process Coding 101: Full Explainer With Examples

Process Coding 101: Full Explainer With Examples

Learn about process coding, a popular qualitative coding technique ideal for studies exploring processes, actions and changes over time.

Qualitative Coding 101: Inductive, Deductive & Hybrid Coding

Qualitative Coding 101: Inductive, Deductive & Hybrid Coding

Inductive, Deductive & Abductive Coding Qualitative Coding Approaches Explained...

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

199 Comments

Leo Balanlay

Thank you for this simple yet comprehensive and easy to digest presentation. God Bless!

Derek Jansen

You’re most welcome, Leo. Best of luck with your research!

Asaf

I found it very useful. many thanks

Solomon F. Joel

This is really directional. A make-easy research knowledge.

Upendo Mmbaga

Thank you for this, I think will help my research proposal

vicky

Thanks for good interpretation,well understood.

Alhaji Alie Kanu

Good morning sorry I want to the search topic

Baraka Gombela

Thank u more

Boyd

Thank you, your explanation is simple and very helpful.

Suleiman Abubakar

Very educative a.nd exciting platform. A bigger thank you and I’ll like to always be with you

Daniel Mondela

That’s the best analysis

Okwuchukwu

So simple yet so insightful. Thank you.

Wendy Lushaba

This really easy to read as it is self-explanatory. Very much appreciated…

Lilian

Thanks for this. It’s so helpful and explicit. For those elements highlighted in orange, they were good sources of referrals for concepts I didn’t understand. A million thanks for this.

Tabe Solomon Matebesi

Good morning, I have been reading your research lessons through out a period of times. They are important, impressive and clear. Want to subscribe and be and be active with you.

Hafiz Tahir

Thankyou So much Sir Derek…

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on it so that we’ll continue to understand more.sorry that’s a suggestion.

James Olukoya

Beautiful presentation. I love it.

ATUL KUMAR

please provide a research mehodology example for zoology

Ogar , Praise

It’s very educative and well explained

Joseph Chan

Thanks for the concise and informative data.

Goja Terhemba John

This is really good for students to be safe and well understand that research is all about

Prakash thapa

Thank you so much Derek sir🖤🙏🤗

Abraham

Very simple and reliable

Chizor Adisa

This is really helpful. Thanks alot. God bless you.

Danushika

very useful, Thank you very much..

nakato justine

thanks a lot its really useful

karolina

in a nutshell..thank you!

Bitrus

Thanks for updating my understanding on this aspect of my Thesis writing.

VEDASTO DATIVA MATUNDA

thank you so much my through this video am competently going to do a good job my thesis

Jimmy

Thanks a lot. Very simple to understand. I appreciate 🙏

Mfumukazi

Very simple but yet insightful Thank you

Adegboyega ADaeBAYO

This has been an eye opening experience. Thank you grad coach team.

SHANTHi

Very useful message for research scholars

Teijili

Really very helpful thank you

sandokhan

yes you are right and i’m left

MAHAMUDUL HASSAN

Research methodology with a simplest way i have never seen before this article.

wogayehu tuji

wow thank u so much

Good morning thanks so much for the on line lectures am a student of university of Makeni.select a research topic and deliberate on is so that we will continue to understand more.sorry that’s a suggestion.

Gebregergish

Very precise and informative.

Javangwe Nyeketa

Thanks for simplifying these terms for us, really appreciate it.

Mary Benard Mwanganya

Thanks this has really helped me. It is very easy to understand.

mandla

I found the notes and the presentation assisting and opening my understanding on research methodology

Godfrey Martin Assenga

Good presentation

Nhubu Tawanda

Im so glad you clarified my misconceptions. Im now ready to fry my onions. Thank you so much. God bless

Odirile

Thank you a lot.

prathap

thanks for the easy way of learning and desirable presentation.

Ajala Tajudeen

Thanks a lot. I am inspired

Visor Likali

Well written

Pondris Patrick

I am writing a APA Format paper . I using questionnaire with 120 STDs teacher for my participant. Can you write me mthology for this research. Send it through email sent. Just need a sample as an example please. My topic is ” impacts of overcrowding on students learning

Thanks for your comment.

We can’t write your methodology for you. If you’re looking for samples, you should be able to find some sample methodologies on Google. Alternatively, you can download some previous dissertations from a dissertation directory and have a look at the methodology chapters therein.

All the best with your research.

Anon

Thank you so much for this!! God Bless

Keke

Thank you. Explicit explanation

Sophy

Thank you, Derek and Kerryn, for making this simple to understand. I’m currently at the inception stage of my research.

Luyanda

Thnks a lot , this was very usefull on my assignment

Beulah Emmanuel

excellent explanation

Gino Raz

I’m currently working on my master’s thesis, thanks for this! I’m certain that I will use Qualitative methodology.

Abigail

Thanks a lot for this concise piece, it was quite relieving and helpful. God bless you BIG…

Yonas Tesheme

I am currently doing my dissertation proposal and I am sure that I will do quantitative research. Thank you very much it was extremely helpful.

zahid t ahmad

Very interesting and informative yet I would like to know about examples of Research Questions as well, if possible.

Maisnam loyalakla

I’m about to submit a research presentation, I have come to understand from your simplification on understanding research methodology. My research will be mixed methodology, qualitative as well as quantitative. So aim and objective of mixed method would be both exploratory and confirmatory. Thanks you very much for your guidance.

Mila Milano

OMG thanks for that, you’re a life saver. You covered all the points I needed. Thank you so much ❤️ ❤️ ❤️

Christabel

Thank you immensely for this simple, easy to comprehend explanation of data collection methods. I have been stuck here for months 😩. Glad I found your piece. Super insightful.

Lika

I’m going to write synopsis which will be quantitative research method and I don’t know how to frame my topic, can I kindly get some ideas..

Arlene

Thanks for this, I was really struggling.

This was really informative I was struggling but this helped me.

Modie Maria Neswiswi

Thanks a lot for this information, simple and straightforward. I’m a last year student from the University of South Africa UNISA South Africa.

Mursel Amin

its very much informative and understandable. I have enlightened.

Mustapha Abubakar

An interesting nice exploration of a topic.

Sarah

Thank you. Accurate and simple🥰

Sikandar Ali Shah

This article was really helpful, it helped me understanding the basic concepts of the topic Research Methodology. The examples were very clear, and easy to understand. I would like to visit this website again. Thank you so much for such a great explanation of the subject.

Debbie

Thanks dude

Deborah

Thank you Doctor Derek for this wonderful piece, please help to provide your details for reference purpose. God bless.

Michael

Many compliments to you

Dana

Great work , thank you very much for the simple explanation

Aryan

Thank you. I had to give a presentation on this topic. I have looked everywhere on the internet but this is the best and simple explanation.

omodara beatrice

thank you, its very informative.

WALLACE

Well explained. Now I know my research methodology will be qualitative and exploratory. Thank you so much, keep up the good work

GEORGE REUBEN MSHEGAME

Well explained, thank you very much.

Ainembabazi Rose

This is good explanation, I have understood the different methods of research. Thanks a lot.

Kamran Saeed

Great work…very well explanation

Hyacinth Chebe Ukwuani

Thanks Derek. Kerryn was just fantastic!

Great to hear that, Hyacinth. Best of luck with your research!

Matobela Joel Marabi

Its a good templates very attractive and important to PhD students and lectuter

Thanks for the feedback, Matobela. Good luck with your research methodology.

Elie

Thank you. This is really helpful.

You’re very welcome, Elie. Good luck with your research methodology.

Sakina Dalal

Well explained thanks

Edward

This is a very helpful site especially for young researchers at college. It provides sufficient information to guide students and equip them with the necessary foundation to ask any other questions aimed at deepening their understanding.

Thanks for the kind words, Edward. Good luck with your research!

Ngwisa Marie-claire NJOTU

Thank you. I have learned a lot.

Great to hear that, Ngwisa. Good luck with your research methodology!

Claudine

Thank you for keeping your presentation simples and short and covering key information for research methodology. My key takeaway: Start with defining your research objective the other will depend on the aims of your research question.

Zanele

My name is Zanele I would like to be assisted with my research , and the topic is shortage of nursing staff globally want are the causes , effects on health, patients and community and also globally

Oluwafemi Taiwo

Thanks for making it simple and clear. It greatly helped in understanding research methodology. Regards.

Francis

This is well simplified and straight to the point

Gabriel mugangavari

Thank you Dr

Dina Haj Ibrahim

I was given an assignment to research 2 publications and describe their research methodology? I don’t know how to start this task can someone help me?

Sure. You’re welcome to book an initial consultation with one of our Research Coaches to discuss how we can assist – https://gradcoach.com/book/new/ .

BENSON ROSEMARY

Thanks a lot I am relieved of a heavy burden.keep up with the good work

Ngaka Mokoena

I’m very much grateful Dr Derek. I’m planning to pursue one of the careers that really needs one to be very much eager to know. There’s a lot of research to do and everything, but since I’ve gotten this information I will use it to the best of my potential.

Pritam Pal

Thank you so much, words are not enough to explain how helpful this session has been for me!

faith

Thanks this has thought me alot.

kenechukwu ambrose

Very concise and helpful. Thanks a lot

Eunice Shatila Sinyemu 32070

Thank Derek. This is very helpful. Your step by step explanation has made it easier for me to understand different concepts. Now i can get on with my research.

Michelle

I wish i had come across this sooner. So simple but yet insightful

yugine the

really nice explanation thank you so much

Goodness

I’m so grateful finding this site, it’s really helpful…….every term well explained and provide accurate understanding especially to student going into an in-depth research for the very first time, even though my lecturer already explained this topic to the class, I think I got the clear and efficient explanation here, much thanks to the author.

lavenda

It is very helpful material

Lubabalo Ntshebe

I would like to be assisted with my research topic : Literature Review and research methodologies. My topic is : what is the relationship between unemployment and economic growth?

Buddhi

Its really nice and good for us.

Ekokobe Aloysius

THANKS SO MUCH FOR EXPLANATION, ITS VERY CLEAR TO ME WHAT I WILL BE DOING FROM NOW .GREAT READS.

Asanka

Short but sweet.Thank you

Shishir Pokharel

Informative article. Thanks for your detailed information.

Badr Alharbi

I’m currently working on my Ph.D. thesis. Thanks a lot, Derek and Kerryn, Well-organized sequences, facilitate the readers’ following.

Tejal

great article for someone who does not have any background can even understand

Hasan Chowdhury

I am a bit confused about research design and methodology. Are they the same? If not, what are the differences and how are they related?

Thanks in advance.

Ndileka Myoli

concise and informative.

Sureka Batagoda

Thank you very much

More Smith

How can we site this article is Harvard style?

Anne

Very well written piece that afforded better understanding of the concept. Thank you!

Denis Eken Lomoro

Am a new researcher trying to learn how best to write a research proposal. I find your article spot on and want to download the free template but finding difficulties. Can u kindly send it to my email, the free download entitled, “Free Download: Research Proposal Template (with Examples)”.

fatima sani

Thank too much

Khamis

Thank you very much for your comprehensive explanation about research methodology so I like to thank you again for giving us such great things.

Aqsa Iftijhar

Good very well explained.Thanks for sharing it.

Krishna Dhakal

Thank u sir, it is really a good guideline.

Vimbainashe

so helpful thank you very much.

Joelma M Monteiro

Thanks for the video it was very explanatory and detailed, easy to comprehend and follow up. please, keep it up the good work

AVINASH KUMAR NIRALA

It was very helpful, a well-written document with precise information.

orebotswe morokane

how do i reference this?

Roy

MLA Jansen, Derek, and Kerryn Warren. “What (Exactly) Is Research Methodology?” Grad Coach, June 2021, gradcoach.com/what-is-research-methodology/.

APA Jansen, D., & Warren, K. (2021, June). What (Exactly) Is Research Methodology? Grad Coach. https://gradcoach.com/what-is-research-methodology/

sheryl

Your explanation is easily understood. Thank you

Dr Christie

Very help article. Now I can go my methodology chapter in my thesis with ease

Alice W. Mbuthia

I feel guided ,Thank you

Joseph B. Smith

This simplification is very helpful. It is simple but very educative, thanks ever so much

Dr. Ukpai Ukpai Eni

The write up is informative and educative. It is an academic intellectual representation that every good researcher can find useful. Thanks

chimbini Joseph

Wow, this is wonderful long live.

Tahir

Nice initiative

Thembsie

thank you the video was helpful to me.

JesusMalick

Thank you very much for your simple and clear explanations I’m really satisfied by the way you did it By now, I think I can realize a very good article by following your fastidious indications May God bless you

G.Horizon

Thanks very much, it was very concise and informational for a beginner like me to gain an insight into what i am about to undertake. I really appreciate.

Adv Asad Ali

very informative sir, it is amazing to understand the meaning of question hidden behind that, and simple language is used other than legislature to understand easily. stay happy.

Jonas Tan

This one is really amazing. All content in your youtube channel is a very helpful guide for doing research. Thanks, GradCoach.

mahmoud ali

research methodologies

Lucas Sinyangwe

Please send me more information concerning dissertation research.

Amamten Jr.

Nice piece of knowledge shared….. #Thump_UP

Hajara Salihu

This is amazing, it has said it all. Thanks to Gradcoach

Gerald Andrew Babu

This is wonderful,very elaborate and clear.I hope to reach out for your assistance in my research very soon.

Safaa

This is the answer I am searching about…

realy thanks a lot

Ahmed Saeed

Thank you very much for this awesome, to the point and inclusive article.

Soraya Kolli

Thank you very much I need validity and reliability explanation I have exams

KuzivaKwenda

Thank you for a well explained piece. This will help me going forward.

Emmanuel Chukwuma

Very simple and well detailed Many thanks

Zeeshan Ali Khan

This is so very simple yet so very effective and comprehensive. An Excellent piece of work.

Molly Wasonga

I wish I saw this earlier on! Great insights for a beginner(researcher) like me. Thanks a mil!

Blessings Chigodo

Thank you very much, for such a simplified, clear and practical step by step both for academic students and general research work. Holistic, effective to use and easy to read step by step. One can easily apply the steps in practical terms and produce a quality document/up-to standard

Thanks for simplifying these terms for us, really appreciated.

Joseph Kyereme

Thanks for a great work. well understood .

Julien

This was very helpful. It was simple but profound and very easy to understand. Thank you so much!

Kishimbo

Great and amazing research guidelines. Best site for learning research

ankita bhatt

hello sir/ma’am, i didn’t find yet that what type of research methodology i am using. because i am writing my report on CSR and collect all my data from websites and articles so which type of methodology i should write in dissertation report. please help me. i am from India.

memory

how does this really work?

princelow presley

perfect content, thanks a lot

George Nangpaak Duut

As a researcher, I commend you for the detailed and simplified information on the topic in question. I would like to remain in touch for the sharing of research ideas on other topics. Thank you

EPHRAIM MWANSA MULENGA

Impressive. Thank you, Grad Coach 😍

Thank you Grad Coach for this piece of information. I have at least learned about the different types of research methodologies.

Varinder singh Rana

Very useful content with easy way

Mbangu Jones Kashweeka

Thank you very much for the presentation. I am an MPH student with the Adventist University of Africa. I have successfully completed my theory and starting on my research this July. My topic is “Factors associated with Dental Caries in (one District) in Botswana. I need help on how to go about this quantitative research

Carolyn Russell

I am so grateful to run across something that was sooo helpful. I have been on my doctorate journey for quite some time. Your breakdown on methodology helped me to refresh my intent. Thank you.

Indabawa Musbahu

thanks so much for this good lecture. student from university of science and technology, Wudil. Kano Nigeria.

Limpho Mphutlane

It’s profound easy to understand I appreciate

Mustafa Salimi

Thanks a lot for sharing superb information in a detailed but concise manner. It was really helpful and helped a lot in getting into my own research methodology.

Rabilu yau

Comment * thanks very much

Ari M. Hussein

This was sooo helpful for me thank you so much i didn’t even know what i had to write thank you!

You’re most welcome 🙂

Varsha Patnaik

Simple and good. Very much helpful. Thank you so much.

STARNISLUS HAAMBOKOMA

This is very good work. I have benefited.

Dr Md Asraul Hoque

Thank you so much for sharing

Nkasa lizwi

This is powerful thank you so much guys

I am nkasa lizwi doing my research proposal on honors with the university of Walter Sisulu Komani I m on part 3 now can you assist me.my topic is: transitional challenges faced by educators in intermediate phase in the Alfred Nzo District.

Atonisah Jonathan

Appreciate the presentation. Very useful step-by-step guidelines to follow.

Bello Suleiman

I appreciate sir

Titilayo

wow! This is super insightful for me. Thank you!

Emerita Guzman

Indeed this material is very helpful! Kudos writers/authors.

TSEDEKE JOHN

I want to say thank you very much, I got a lot of info and knowledge. Be blessed.

Akanji wasiu

I want present a seminar paper on Optimisation of Deep learning-based models on vulnerability detection in digital transactions.

Need assistance

Clement Lokwar

Dear Sir, I want to be assisted on my research on Sanitation and Water management in emergencies areas.

Peter Sone Kome

I am deeply grateful for the knowledge gained. I will be getting in touch shortly as I want to be assisted in my ongoing research.

Nirmala

The information shared is informative, crisp and clear. Kudos Team! And thanks a lot!

Bipin pokhrel

hello i want to study

Kassahun

Hello!! Grad coach teams. I am extremely happy in your tutorial or consultation. i am really benefited all material and briefing. Thank you very much for your generous helps. Please keep it up. If you add in your briefing, references for further reading, it will be very nice.

Ezra

All I have to say is, thank u gyz.

Work

Good, l thanks

Artak Ghonyan

thank you, it is very useful

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] the literature review is to inform the choice of methodology for your own research. As we’ve discussed on the Grad Coach blog,…
  • Free Download: Research Proposal Template (With Examples) - Grad Coach - […] Research design (methodology) […]
  • Dissertation vs Thesis: What's the difference? - Grad Coach - […] and thesis writing on a daily basis – everything from how to find a good research topic to which…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

  • Print Friendly
  • Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

Research DesignResearch Methodology
The plan and structure for conducting research that outlines the procedures to be followed to collect and analyze data.The set of principles, techniques, and tools used to carry out the research plan and achieve research objectives.
Describes the overall approach and strategy used to conduct research, including the type of data to be collected, the sources of data, and the methods for collecting and analyzing data.Refers to the techniques and methods used to gather, analyze and interpret data, including sampling techniques, data collection methods, and data analysis techniques.
Helps to ensure that the research is conducted in a systematic, rigorous, and valid way, so that the results are reliable and can be used to make sound conclusions.Includes a set of procedures and tools that enable researchers to collect and analyze data in a consistent and valid manner, regardless of the research design used.
Common research designs include experimental, quasi-experimental, correlational, and descriptive studies.Common research methodologies include qualitative, quantitative, and mixed-methods approaches.
Determines the overall structure of the research project and sets the stage for the selection of appropriate research methodologies.Guides the researcher in selecting the most appropriate research methods based on the research question, research design, and other contextual factors.
Helps to ensure that the research project is feasible, relevant, and ethical.Helps to ensure that the data collected is accurate, valid, and reliable, and that the research findings can be interpreted and generalized to the population of interest.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Informed Consent in Research

Informed Consent in Research – Types, Templates...

Research Report

Research Report – Example, Writing Guide and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Dissertation

Dissertation – Format, Example and Template

Data Interpretation

Data Interpretation – Process, Methods and...

Research Gap

Research Gap – Types, Examples and How to...

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

methods of research to be used

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM

Pfeiffer Library

Research Methodologies

  • What are research designs?
  • What are research methodologies?

What are research methods?

Quantitative research methods, qualitative research methods, mixed method approach, selecting the best research method.

  • Additional Sources

Research methods are different from research methodologies because they are the ways in which you will collect the data for your research project.  The best method for your project largely depends on your topic, the type of data you will need, and the people or items from which you will be collecting data.  The following boxes below contain a list of quantitative, qualitative, and mixed research methods.

  • Closed-ended questionnaires/survey: These types of questionnaires or surveys are like "multiple choice" tests, where participants must select from a list of premade answers.  According to the content of the question, they must select the one that they agree with the most.  This approach is the simplest form of quantitative research because the data is easy to combine and quantify.
  • Structured interviews: These are a common research method in market research because the data can be quantified.  They are strictly designed for little "wiggle room" in the interview process so that the data will not be skewed.  You can conduct structured interviews in-person, online, or over the phone (Dawson, 2019).

Constructing Questionnaires

When constructing your questions for a survey or questionnaire, there are things you can do to ensure that your questions are accurate and easy to understand (Dawson, 2019):

  • Keep the questions brief and simple.
  • Eliminate any potential bias from your questions.  Make sure that they do not word things in a way that favor one perspective over another.
  • If your topic is very sensitive, you may want to ask indirect questions rather than direct ones.  This prevents participants from being intimidated and becoming unwilling to share their true responses.
  • If you are using a closed-ended question, try to offer every possible answer that a participant could give to that question.
  • Do not ask questions that assume something of the participant.  The question "How often do you exercise?" assumes that the participant exercises (when they may not), so you would want to include a question that asks if they exercise at all before asking them how often.
  • Try and keep the questionnaire as short as possible.  The longer a questionnaire takes, the more likely the participant will not complete it or get too tired to put truthful answers.
  • Promise confidentiality to your participants at the beginning of the questionnaire.

Quantitative Research Measures

When you are considering a quantitative approach to your research, you need to identify why types of measures you will use in your study.  This will determine what type of numbers you will be using to collect your data.  There are four levels of measurement:

  • Nominal: These are numbers where the order of the numbers do not matter.  They aim to identify separate information.  One example is collecting zip codes from research participants.  The order of the numbers does not matter, but the series of numbers in each zip code indicate different information (Adamson and Prion, 2013).
  • Ordinal: Also known as rankings because the order of these numbers matter.  This is when items are given a specific rank according to specific criteria.  A common example of ordinal measurements include ranking-based questionnaires, where participants are asked to rank items from least favorite to most favorite.  Another common example is a pain scale, where a patient is asked to rank their pain on a scale from 1 to 10 (Adamson and Prion, 2013).
  • Interval: This is when the data are ordered and the distance between the numbers matters to the researcher (Adamson and Prion, 2013).  The distance between each number is the same.  An example of interval data is test grades.
  • Ratio: This is when the data are ordered and have a consistent distance between numbers, but has a "zero point."  This means that there could be a measurement of zero of whatever you are measuring in your study (Adamson and Prion, 2013).  An example of ratio data is measuring the height of something because the "zero point" remains constant in all measurements.  The height of something could also be zero.

Focus Groups

This is when a select group of people gather to talk about a particular topic.  They can also be called discussion groups or group interviews (Dawson, 2019).  They are usually lead by a moderator  to help guide the discussion and ask certain questions.  It is critical that a moderator allows everyone in the group to get a chance to speak so that no one dominates the discussion.  The data that are gathered from focus groups tend to be thoughts, opinions, and perspectives about an issue.

Advantages of Focus Groups

  • Only requires one meeting to get different types of responses.
  • Less researcher bias due to participants being able to speak openly.
  • Helps participants overcome insecurities or fears about a topic.
  • The researcher can also consider the impact of participant interaction.

Disadvantages of Focus Groups

  • Participants may feel uncomfortable to speak in front of an audience, especially if the topic is sensitive or controversial.
  • Since participation is voluntary, not every participant may contribute equally to the discussion.
  • Participants may impact what others say or think.
  • A researcher may feel intimidated by running a focus group on their own.
  • A researcher may need extra funds/resources to provide a safe space to host the focus group.
  • Because the data is collective, it may be difficult to determine a participant's individual thoughts about the research topic.

Observation

There are two ways to conduct research observations:

  • Direct Observation: The researcher observes a participant in an environment.  The researcher often takes notes or uses technology to gather data, such as a voice recorder or video camera.  The researcher does not interact or interfere with the participants.  This approach is often used in psychology and health studies (Dawson, 2019).
  • Participant Observation:  The researcher interacts directly with the participants to get a better understanding of the research topic.  This is a common research method when trying to understand another culture or community.  It is important to decide if you will conduct a covert (participants do not know they are part of the research) or overt (participants know the researcher is observing them) observation because it can be unethical in some situations (Dawson, 2019).

Open-Ended Questionnaires

These types of questionnaires are the opposite of "multiple choice" questionnaires because the answer boxes are left open for the participant to complete.  This means that participants can write short or extended answers to the questions.  Upon gathering the responses, researchers will often "quantify" the data by organizing the responses into different categories.  This can be time consuming because the researcher needs to read all responses carefully.

Semi-structured Interviews

This is the most common type of interview where researchers aim to get specific information so they can compare it to other interview data.  This requires asking the same questions for each interview, but keeping their responses flexible.  This means including follow-up questions if a subject answers a certain way.  Interview schedules are commonly used to aid the interviewers, which list topics or questions that will be discussed at each interview (Dawson, 2019).

Theoretical Analysis

Often used for nonhuman research, theoretical analysis is a qualitative approach where the researcher applies a theoretical framework to analyze something about their topic.  A theoretical framework gives the researcher a specific "lens" to view the topic and think about it critically. it also serves as context to guide the entire study.  This is a popular research method for analyzing works of literature, films, and other forms of media.  You can implement more than one theoretical framework with this method, as many theories complement one another.

Common theoretical frameworks for qualitative research are (Grant and Osanloo, 2014):

  • Behavioral theory
  • Change theory
  • Cognitive theory
  • Content analysis
  • Cross-sectional analysis
  • Developmental theory
  • Feminist theory
  • Gender theory
  • Marxist theory
  • Queer theory
  • Systems theory
  • Transformational theory

Unstructured Interviews

These are in-depth interviews where the researcher tries to understand an interviewee's perspective on a situation or issue.  They are sometimes called life history interviews.  It is important not to bombard the interviewee with too many questions so they can freely disclose their thoughts (Dawson, 2019).

  • Open-ended and closed-ended questionnaires: This approach means implementing elements of both questionnaire types into your data collection.  Participants may answer some questions with premade answers and write their own answers to other questions.  The advantage to this method is that you benefit from both types of data collection to get a broader understanding of you participants.  However, you must think carefully about how you will analyze this data to arrive at a conclusion.

Other mixed method approaches that incorporate quantitative and qualitative research methods depend heavily on the research topic.  It is strongly recommended that you collaborate with your academic advisor before finalizing a mixed method approach.

How do you determine which research method would be best for your proposal?  This heavily depends on your research objective.  According to Dawson (2019), there are several questions to ask yourself when determining the best research method for your project:

  • Are you good with numbers and mathematics?
  • Would you be interested in conducting interviews with human subjects?
  • Would you enjoy creating a questionnaire for participants to complete?
  • Do you prefer written communication or face-to-face interaction?
  • What skills or experiences do you have that might help you with your research?  Do you have any experiences from past research projects that can help with this one?
  • How much time do you have to complete the research?  Some methods take longer to collect data than others.
  • What is your budget?  Do you have adequate funding to conduct the research in the method you  want?
  • How much data do you need?  Some research topics need only a small amount of data while others may need significantly larger amounts.
  • What is the purpose of your research? This can provide a good indicator as to what research method will be most appropriate.
  • << Previous: What are research methodologies?
  • Next: Additional Sources >>
  • Last Updated: Aug 2, 2022 2:36 PM
  • URL: https://library.tiffin.edu/researchmethodologies

methods of research to be used

What is Research Methodology? Definition, Types, and Examples

methods of research to be used

Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of the research. Several aspects must be considered before selecting an appropriate research methodology, such as research limitations and ethical concerns that may affect your research.

The research methodology section in a scientific paper describes the different methodological choices made, such as the data collection and analysis methods, and why these choices were selected. The reasons should explain why the methods chosen are the most appropriate to answer the research question. A good research methodology also helps ensure the reliability and validity of the research findings. There are three types of research methodology—quantitative, qualitative, and mixed-method, which can be chosen based on the research objectives.

What is research methodology ?

A research methodology describes the techniques and procedures used to identify and analyze information regarding a specific research topic. It is a process by which researchers design their study so that they can achieve their objectives using the selected research instruments. It includes all the important aspects of research, including research design, data collection methods, data analysis methods, and the overall framework within which the research is conducted. While these points can help you understand what is research methodology, you also need to know why it is important to pick the right methodology.

Paperpal your AI academic writing assistant

Having a good research methodology in place has the following advantages: 3

  • Helps other researchers who may want to replicate your research; the explanations will be of benefit to them.
  • You can easily answer any questions about your research if they arise at a later stage.
  • A research methodology provides a framework and guidelines for researchers to clearly define research questions, hypotheses, and objectives.
  • It helps researchers identify the most appropriate research design, sampling technique, and data collection and analysis methods.
  • A sound research methodology helps researchers ensure that their findings are valid and reliable and free from biases and errors.
  • It also helps ensure that ethical guidelines are followed while conducting research.
  • A good research methodology helps researchers in planning their research efficiently, by ensuring optimum usage of their time and resources.

Writing the methods section of a research paper? Let Paperpal help you achieve perfection  

Types of research methodology.

There are three types of research methodology based on the type of research and the data required. 1

  • Quantitative research methodology focuses on measuring and testing numerical data. This approach is good for reaching a large number of people in a short amount of time. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations.
  • Qualitative research methodology examines the opinions, behaviors, and experiences of people. It collects and analyzes words and textual data. This research methodology requires fewer participants but is still more time consuming because the time spent per participant is quite large. This method is used in exploratory research where the research problem being investigated is not clearly defined.
  • Mixed-method research methodology uses the characteristics of both quantitative and qualitative research methodologies in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method.

What are the types of sampling designs in research methodology?

Sampling 4 is an important part of a research methodology and involves selecting a representative sample of the population to conduct the study, making statistical inferences about them, and estimating the characteristics of the whole population based on these inferences. There are two types of sampling designs in research methodology—probability and nonprobability.

  • Probability sampling

In this type of sampling design, a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are:

  • Systematic —sample members are chosen at regular intervals. It requires selecting a starting point for the sample and sample size determination that can be repeated at regular intervals. This type of sampling method has a predefined range; hence, it is the least time consuming.
  • Stratified —researchers divide the population into smaller groups that don’t overlap but represent the entire population. While sampling, these groups can be organized, and then a sample can be drawn from each group separately.
  • Cluster —the population is divided into clusters based on demographic parameters like age, sex, location, etc.
  • Convenience —selects participants who are most easily accessible to researchers due to geographical proximity, availability at a particular time, etc.
  • Purposive —participants are selected at the researcher’s discretion. Researchers consider the purpose of the study and the understanding of the target audience.
  • Snowball —already selected participants use their social networks to refer the researcher to other potential participants.
  • Quota —while designing the study, the researchers decide how many people with which characteristics to include as participants. The characteristics help in choosing people most likely to provide insights into the subject.

What are data collection methods?

During research, data are collected using various methods depending on the research methodology being followed and the research methods being undertaken. Both qualitative and quantitative research have different data collection methods, as listed below.

Qualitative research 5

  • One-on-one interviews: Helps the interviewers understand a respondent’s subjective opinion and experience pertaining to a specific topic or event
  • Document study/literature review/record keeping: Researchers’ review of already existing written materials such as archives, annual reports, research articles, guidelines, policy documents, etc.
  • Focus groups: Constructive discussions that usually include a small sample of about 6-10 people and a moderator, to understand the participants’ opinion on a given topic.
  • Qualitative observation : Researchers collect data using their five senses (sight, smell, touch, taste, and hearing).

Quantitative research 6

  • Sampling: The most common type is probability sampling.
  • Interviews: Commonly telephonic or done in-person.
  • Observations: Structured observations are most commonly used in quantitative research. In this method, researchers make observations about specific behaviors of individuals in a structured setting.
  • Document review: Reviewing existing research or documents to collect evidence for supporting the research.
  • Surveys and questionnaires. Surveys can be administered both online and offline depending on the requirement and sample size.

Let Paperpal help you write the perfect research methods section. Start now!

What are data analysis methods.

The data collected using the various methods for qualitative and quantitative research need to be analyzed to generate meaningful conclusions. These data analysis methods 7 also differ between quantitative and qualitative research.

Quantitative research involves a deductive method for data analysis where hypotheses are developed at the beginning of the research and precise measurement is required. The methods include statistical analysis applications to analyze numerical data and are grouped into two categories—descriptive and inferential.

Descriptive analysis is used to describe the basic features of different types of data to present it in a way that ensures the patterns become meaningful. The different types of descriptive analysis methods are:

  • Measures of frequency (count, percent, frequency)
  • Measures of central tendency (mean, median, mode)
  • Measures of dispersion or variation (range, variance, standard deviation)
  • Measure of position (percentile ranks, quartile ranks)

Inferential analysis is used to make predictions about a larger population based on the analysis of the data collected from a smaller population. This analysis is used to study the relationships between different variables. Some commonly used inferential data analysis methods are:

  • Correlation: To understand the relationship between two or more variables.
  • Cross-tabulation: Analyze the relationship between multiple variables.
  • Regression analysis: Study the impact of independent variables on the dependent variable.
  • Frequency tables: To understand the frequency of data.
  • Analysis of variance: To test the degree to which two or more variables differ in an experiment.

Qualitative research involves an inductive method for data analysis where hypotheses are developed after data collection. The methods include:

  • Content analysis: For analyzing documented information from text and images by determining the presence of certain words or concepts in texts.
  • Narrative analysis: For analyzing content obtained from sources such as interviews, field observations, and surveys. The stories and opinions shared by people are used to answer research questions.
  • Discourse analysis: For analyzing interactions with people considering the social context, that is, the lifestyle and environment, under which the interaction occurs.
  • Grounded theory: Involves hypothesis creation by data collection and analysis to explain why a phenomenon occurred.
  • Thematic analysis: To identify important themes or patterns in data and use these to address an issue.

How to choose a research methodology?

Here are some important factors to consider when choosing a research methodology: 8

  • Research objectives, aims, and questions —these would help structure the research design.
  • Review existing literature to identify any gaps in knowledge.
  • Check the statistical requirements —if data-driven or statistical results are needed then quantitative research is the best. If the research questions can be answered based on people’s opinions and perceptions, then qualitative research is most suitable.
  • Sample size —sample size can often determine the feasibility of a research methodology. For a large sample, less effort- and time-intensive methods are appropriate.
  • Constraints —constraints of time, geography, and resources can help define the appropriate methodology.

Got writer’s block? Kickstart your research paper writing with Paperpal now!

How to write a research methodology .

A research methodology should include the following components: 3,9

  • Research design —should be selected based on the research question and the data required. Common research designs include experimental, quasi-experimental, correlational, descriptive, and exploratory.
  • Research method —this can be quantitative, qualitative, or mixed-method.
  • Reason for selecting a specific methodology —explain why this methodology is the most suitable to answer your research problem.
  • Research instruments —explain the research instruments you plan to use, mainly referring to the data collection methods such as interviews, surveys, etc. Here as well, a reason should be mentioned for selecting the particular instrument.
  • Sampling —this involves selecting a representative subset of the population being studied.
  • Data collection —involves gathering data using several data collection methods, such as surveys, interviews, etc.
  • Data analysis —describe the data analysis methods you will use once you’ve collected the data.
  • Research limitations —mention any limitations you foresee while conducting your research.
  • Validity and reliability —validity helps identify the accuracy and truthfulness of the findings; reliability refers to the consistency and stability of the results over time and across different conditions.
  • Ethical considerations —research should be conducted ethically. The considerations include obtaining consent from participants, maintaining confidentiality, and addressing conflicts of interest.

Streamline Your Research Paper Writing Process with Paperpal  

The methods section is a critical part of the research papers, allowing researchers to use this to understand your findings and replicate your work when pursuing their own research. However, it is usually also the most difficult section to write. This is where Paperpal can help you overcome the writer’s block and create the first draft in minutes with Paperpal Copilot, its secure generative AI feature suite.  

With Paperpal you can get research advice, write and refine your work, rephrase and verify the writing, and ensure submission readiness, all in one place. Here’s how you can use Paperpal to develop the first draft of your methods section.  

  • Generate an outline: Input some details about your research to instantly generate an outline for your methods section 
  • Develop the section: Use the outline and suggested sentence templates to expand your ideas and develop the first draft.  
  • P araph ras e and trim : Get clear, concise academic text with paraphrasing that conveys your work effectively and word reduction to fix redundancies. 
  • Choose the right words: Enhance text by choosing contextual synonyms based on how the words have been used in previously published work.  
  • Check and verify text : Make sure the generated text showcases your methods correctly, has all the right citations, and is original and authentic. .   

You can repeat this process to develop each section of your research manuscript, including the title, abstract and keywords. Ready to write your research papers faster, better, and without the stress? Sign up for Paperpal and start writing today!

Frequently Asked Questions

Q1. What are the key components of research methodology?

A1. A good research methodology has the following key components:

  • Research design
  • Data collection procedures
  • Data analysis methods
  • Ethical considerations

Q2. Why is ethical consideration important in research methodology?

A2. Ethical consideration is important in research methodology to ensure the readers of the reliability and validity of the study. Researchers must clearly mention the ethical norms and standards followed during the conduct of the research and also mention if the research has been cleared by any institutional board. The following 10 points are the important principles related to ethical considerations: 10

  • Participants should not be subjected to harm.
  • Respect for the dignity of participants should be prioritized.
  • Full consent should be obtained from participants before the study.
  • Participants’ privacy should be ensured.
  • Confidentiality of the research data should be ensured.
  • Anonymity of individuals and organizations participating in the research should be maintained.
  • The aims and objectives of the research should not be exaggerated.
  • Affiliations, sources of funding, and any possible conflicts of interest should be declared.
  • Communication in relation to the research should be honest and transparent.
  • Misleading information and biased representation of primary data findings should be avoided.

methods of research to be used

Q3. What is the difference between methodology and method?

A3. Research methodology is different from a research method, although both terms are often confused. Research methods are the tools used to gather data, while the research methodology provides a framework for how research is planned, conducted, and analyzed. The latter guides researchers in making decisions about the most appropriate methods for their research. Research methods refer to the specific techniques, procedures, and tools used by researchers to collect, analyze, and interpret data, for instance surveys, questionnaires, interviews, etc.

Research methodology is, thus, an integral part of a research study. It helps ensure that you stay on track to meet your research objectives and answer your research questions using the most appropriate data collection and analysis tools based on your research design.

Accelerate your research paper writing with Paperpal. Try for free now!  

  • Research methodologies. Pfeiffer Library website. Accessed August 15, 2023. https://library.tiffin.edu/researchmethodologies/whatareresearchmethodologies
  • Types of research methodology. Eduvoice website. Accessed August 16, 2023. https://eduvoice.in/types-research-methodology/
  • The basics of research methodology: A key to quality research. Voxco. Accessed August 16, 2023. https://www.voxco.com/blog/what-is-research-methodology/
  • Sampling methods: Types with examples. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/types-of-sampling-for-social-research/
  • What is qualitative research? Methods, types, approaches, examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-qualitative-research-methods-types-examples/
  • What is quantitative research? Definition, methods, types, and examples. Researcher.Life blog. Accessed August 15, 2023. https://researcher.life/blog/article/what-is-quantitative-research-types-and-examples/
  • Data analysis in research: Types & methods. QuestionPro website. Accessed August 16, 2023. https://www.questionpro.com/blog/data-analysis-in-research/#Data_analysis_in_qualitative_research
  • Factors to consider while choosing the right research methodology. PhD Monster website. Accessed August 17, 2023. https://www.phdmonster.com/factors-to-consider-while-choosing-the-right-research-methodology/
  • What is research methodology? Research and writing guides. Accessed August 14, 2023. https://paperpile.com/g/what-is-research-methodology/
  • Ethical considerations. Business research methodology website. Accessed August 17, 2023. https://research-methodology.net/research-methodology/ethical-considerations/

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Dangling Modifiers and How to Avoid Them in Your Writing 
  • Research Outlines: How to Write An Introduction Section in Minutes with Paperpal Copilot
  • How to Paraphrase Research Papers Effectively
  • What is a Literature Review? How to Write It (with Examples)

Language and Grammar Rules for Academic Writing

Climatic vs. climactic: difference and examples, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers....

Banner

Research Guide: Research Methods

  • Postgraduate Online Training subject guide This link opens in a new window
  • Open Educational Resources (OERs)
  • Library support
  • Research ideas
  • You and your supervisor
  • Researcher skills
  • Research Data Management This link opens in a new window
  • Literature review
  • Plagiarism This link opens in a new window
  • Research Methods
  • Data analysis and reporting findings
  • Statistical support
  • Writing support
  • Researcher visibility
  • Conferences and Presentations
  • Postgraduate Forums
  • Soft skills development
  • Emotional support
  • The Commons Informer (blog)
  • Research Tip Archives
  • RC Newsletter Archives
  • Evaluation Forms
  • Editing FAQs

Past presentations

Prof. D. Walwyn: 2017

  • Lecture 1: Introduction
  • Lecture 2: Research Proposal
  • Lecture 3: Research Design
  • Lecture 4: Data Gathering and Analysis
  • Article: Singh & Walwyn

Dr. A. Nyika: 2017

  • Mixed Methods
  • Qualitative Research Tools

 Prof. C.M.E. McCrindle: 2017

  • Quantitative Research Tools

Prof. D. Walwyn: 2016

  • Lecture 2: Research Design
  • Lecture 3: Mixed Methods

Prof. J. Burnett: 2009

  • Qualitative Data Collection Methods

External Resources

methods of research to be used

Methodology

Research methodology can be understood as a way to systemically solve or answer the research problem. Thus essentially, it can be understood as the process of studying how research is done in a scientific manner. Through the methodology, we study the various steps that are generally adopted by a researcher in studying his/her research problem and the underlying logic behind them. The selection of the research method is crucial for what conclusions you can make about a phenomenon. It affects what you can say about the cause and factors influencing the phenomenon.

Research methods

Research methods refers to the tools that one uses to do research. These can either be qualitative or quantitative or mixed. Quantitative methods examines numerical data and often requires the use of statistical tools to analyse data collected. This allows for the measurement of variables and relationships between them can then be established. This type of data can be represented using graphs and tables. Qualitative data is non-numerical and focuses on establishing patterns. Mixed methods are composed of both qualitative and quantitative research methods. Mixed methods allow for explanation of unexpected results.

methods of research to be used

  • Determine what kind of knowledge you are trying to uncover (is it subjective or objective? experimental or interpretive?).
  • Let the literature be your guide: A thorough literature review is the best starting point for choosing your methods. Due to the fact that evaluating previous researchers' efforts can suggest a direction to answer your own research question.
  • Align your chosen methodology with research questions, aims and objectives (in other words, make sure your research questions and objectives can be answered through your chosen methodology).
  • The authenticity of your research depends upon the validity of the research data, the reliability of measures taken to amass the data, as well as the time taken to conduct the analysis, so it is essential to ensure that there is continuity throughout the research process.
  • It is also important to choose a research method which is within the limits of what the researcher can do. Time, money, feasibility, ethics and availability to measure the phenomenon correctly are examples of issues constraining the research.
  • When confused, ask! Do not be afraid to lean on the expertise of your supervisor, departmental research specialists etc. They are all there to help you.

Recommended Quantitative Methods books

methods of research to be used

Recommended Qualitative Methods books

methods of research to be used

Recommended Mixed Methods research sources

Cover Art

  • Advances in Mixed Methods Research by Prof J. W. Creswell
  • << Previous: Plagiarism
  • Next: Data collection techniques >>
  • Last Updated: Aug 23, 2024 12:44 PM
  • URL: https://library.up.ac.za/c.php?g=485435

Research Methods In Psychology

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

research methods3

Hypotheses are statements about the prediction of the results, that can be verified or disproved by some investigation.

There are four types of hypotheses :
  • Null Hypotheses (H0 ) – these predict that no difference will be found in the results between the conditions. Typically these are written ‘There will be no difference…’
  • Alternative Hypotheses (Ha or H1) – these predict that there will be a significant difference in the results between the two conditions. This is also known as the experimental hypothesis.
  • One-tailed (directional) hypotheses – these state the specific direction the researcher expects the results to move in, e.g. higher, lower, more, less. In a correlation study, the predicted direction of the correlation can be either positive or negative.
  • Two-tailed (non-directional) hypotheses – these state that a difference will be found between the conditions of the independent variable but does not state the direction of a difference or relationship. Typically these are always written ‘There will be a difference ….’

All research has an alternative hypothesis (either a one-tailed or two-tailed) and a corresponding null hypothesis.

Once the research is conducted and results are found, psychologists must accept one hypothesis and reject the other. 

So, if a difference is found, the Psychologist would accept the alternative hypothesis and reject the null.  The opposite applies if no difference is found.

Sampling techniques

Sampling is the process of selecting a representative group from the population under study.

Sample Target Population

A sample is the participants you select from a target population (the group you are interested in) to make generalizations about.

Representative means the extent to which a sample mirrors a researcher’s target population and reflects its characteristics.

Generalisability means the extent to which their findings can be applied to the larger population of which their sample was a part.

  • Volunteer sample : where participants pick themselves through newspaper adverts, noticeboards or online.
  • Opportunity sampling : also known as convenience sampling , uses people who are available at the time the study is carried out and willing to take part. It is based on convenience.
  • Random sampling : when every person in the target population has an equal chance of being selected. An example of random sampling would be picking names out of a hat.
  • Systematic sampling : when a system is used to select participants. Picking every Nth person from all possible participants. N = the number of people in the research population / the number of people needed for the sample.
  • Stratified sampling : when you identify the subgroups and select participants in proportion to their occurrences.
  • Snowball sampling : when researchers find a few participants, and then ask them to find participants themselves and so on.
  • Quota sampling : when researchers will be told to ensure the sample fits certain quotas, for example they might be told to find 90 participants, with 30 of them being unemployed.

Experiments always have an independent and dependent variable .

  • The independent variable is the one the experimenter manipulates (the thing that changes between the conditions the participants are placed into). It is assumed to have a direct effect on the dependent variable.
  • The dependent variable is the thing being measured, or the results of the experiment.

variables

Operationalization of variables means making them measurable/quantifiable. We must use operationalization to ensure that variables are in a form that can be easily tested.

For instance, we can’t really measure ‘happiness’, but we can measure how many times a person smiles within a two-hour period. 

By operationalizing variables, we make it easy for someone else to replicate our research. Remember, this is important because we can check if our findings are reliable.

Extraneous variables are all variables which are not independent variable but could affect the results of the experiment.

It can be a natural characteristic of the participant, such as intelligence levels, gender, or age for example, or it could be a situational feature of the environment such as lighting or noise.

Demand characteristics are a type of extraneous variable that occurs if the participants work out the aims of the research study, they may begin to behave in a certain way.

For example, in Milgram’s research , critics argued that participants worked out that the shocks were not real and they administered them as they thought this was what was required of them. 

Extraneous variables must be controlled so that they do not affect (confound) the results.

Randomly allocating participants to their conditions or using a matched pairs experimental design can help to reduce participant variables. 

Situational variables are controlled by using standardized procedures, ensuring every participant in a given condition is treated in the same way

Experimental Design

Experimental design refers to how participants are allocated to each condition of the independent variable, such as a control or experimental group.
  • Independent design ( between-groups design ): each participant is selected for only one group. With the independent design, the most common way of deciding which participants go into which group is by means of randomization. 
  • Matched participants design : each participant is selected for only one group, but the participants in the two groups are matched for some relevant factor or factors (e.g. ability; sex; age).
  • Repeated measures design ( within groups) : each participant appears in both groups, so that there are exactly the same participants in each group.
  • The main problem with the repeated measures design is that there may well be order effects. Their experiences during the experiment may change the participants in various ways.
  • They may perform better when they appear in the second group because they have gained useful information about the experiment or about the task. On the other hand, they may perform less well on the second occasion because of tiredness or boredom.
  • Counterbalancing is the best way of preventing order effects from disrupting the findings of an experiment, and involves ensuring that each condition is equally likely to be used first and second by the participants.

If we wish to compare two groups with respect to a given independent variable, it is essential to make sure that the two groups do not differ in any other important way. 

Experimental Methods

All experimental methods involve an iv (independent variable) and dv (dependent variable)..

The researcher decides where the experiment will take place, at what time, with which participants, in what circumstances,  using a standardized procedure.

  • Field experiments are conducted in the everyday (natural) environment of the participants. The experimenter still manipulates the IV, but in a real-life setting. It may be possible to control extraneous variables, though such control is more difficult than in a lab experiment.
  • Natural experiments are when a naturally occurring IV is investigated that isn’t deliberately manipulated, it exists anyway. Participants are not randomly allocated, and the natural event may only occur rarely.

Case studies are in-depth investigations of a person, group, event, or community. It uses information from a range of sources, such as from the person concerned and also from their family and friends.

Many techniques may be used such as interviews, psychological tests, observations and experiments. Case studies are generally longitudinal: in other words, they follow the individual or group over an extended period of time. 

Case studies are widely used in psychology and among the best-known ones carried out were by Sigmund Freud . He conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

Case studies provide rich qualitative data and have high levels of ecological validity. However, it is difficult to generalize from individual cases as each one has unique characteristics.

Correlational Studies

Correlation means association; it is a measure of the extent to which two variables are related. One of the variables can be regarded as the predictor variable with the other one as the outcome variable.

Correlational studies typically involve obtaining two different measures from a group of participants, and then assessing the degree of association between the measures. 

The predictor variable can be seen as occurring before the outcome variable in some sense. It is called the predictor variable, because it forms the basis for predicting the value of the outcome variable.

Relationships between variables can be displayed on a graph or as a numerical score called a correlation coefficient.

types of correlation. Scatter plot. Positive negative and no correlation

  • If an increase in one variable tends to be associated with an increase in the other, then this is known as a positive correlation .
  • If an increase in one variable tends to be associated with a decrease in the other, then this is known as a negative correlation .
  • A zero correlation occurs when there is no relationship between variables.

After looking at the scattergraph, if we want to be sure that a significant relationship does exist between the two variables, a statistical test of correlation can be conducted, such as Spearman’s rho.

The test will give us a score, called a correlation coefficient . This is a value between 0 and 1, and the closer to 1 the score is, the stronger the relationship between the variables. This value can be both positive e.g. 0.63, or negative -0.63.

Types of correlation. Strong, weak, and perfect positive correlation, strong, weak, and perfect negative correlation, no correlation. Graphs or charts ...

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

Correlation does not always prove causation, as a third variable may be involved. 

causation correlation

Interview Methods

Interviews are commonly divided into two types: structured and unstructured.

A fixed, predetermined set of questions is put to every participant in the same order and in the same way. 

Responses are recorded on a questionnaire, and the researcher presets the order and wording of questions, and sometimes the range of alternative answers.

The interviewer stays within their role and maintains social distance from the interviewee.

There are no set questions, and the participant can raise whatever topics he/she feels are relevant and ask them in their own way. Questions are posed about participants’ answers to the subject

Unstructured interviews are most useful in qualitative research to analyze attitudes and values.

Though they rarely provide a valid basis for generalization, their main advantage is that they enable the researcher to probe social actors’ subjective point of view. 

Questionnaire Method

Questionnaires can be thought of as a kind of written interview. They can be carried out face to face, by telephone, or post.

The choice of questions is important because of the need to avoid bias or ambiguity in the questions, ‘leading’ the respondent or causing offense.

  • Open questions are designed to encourage a full, meaningful answer using the subject’s own knowledge and feelings. They provide insights into feelings, opinions, and understanding. Example: “How do you feel about that situation?”
  • Closed questions can be answered with a simple “yes” or “no” or specific information, limiting the depth of response. They are useful for gathering specific facts or confirming details. Example: “Do you feel anxious in crowds?”

Its other practical advantages are that it is cheaper than face-to-face interviews and can be used to contact many respondents scattered over a wide area relatively quickly.

Observations

There are different types of observation methods :
  • Covert observation is where the researcher doesn’t tell the participants they are being observed until after the study is complete. There could be ethical problems or deception and consent with this particular observation method.
  • Overt observation is where a researcher tells the participants they are being observed and what they are being observed for.
  • Controlled : behavior is observed under controlled laboratory conditions (e.g., Bandura’s Bobo doll study).
  • Natural : Here, spontaneous behavior is recorded in a natural setting.
  • Participant : Here, the observer has direct contact with the group of people they are observing. The researcher becomes a member of the group they are researching.  
  • Non-participant (aka “fly on the wall): The researcher does not have direct contact with the people being observed. The observation of participants’ behavior is from a distance

Pilot Study

A pilot  study is a small scale preliminary study conducted in order to evaluate the feasibility of the key s teps in a future, full-scale project.

A pilot study is an initial run-through of the procedures to be used in an investigation; it involves selecting a few people and trying out the study on them. It is possible to save time, and in some cases, money, by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e. unusual things) or confusion in the information given to participants or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect, because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling”.

Research Design

In cross-sectional research , a researcher compares multiple segments of the population at the same time

Sometimes, we want to see how people change over time, as in studies of human development and lifespan. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time.

In cohort studies , the participants must share a common factor or characteristic such as age, demographic, or occupation. A cohort study is a type of longitudinal study in which researchers monitor and observe a chosen population over an extended period.

Triangulation means using more than one research method to improve the study’s validity.

Reliability

Reliability is a measure of consistency, if a particular measurement is repeated and the same result is obtained then it is described as being reliable.

  • Test-retest reliability :  assessing the same person on two different occasions which shows the extent to which the test produces the same answers.
  • Inter-observer reliability : the extent to which there is an agreement between two or more observers.

Meta-Analysis

Meta-analysis is a statistical procedure used to combine and synthesize findings from multiple independent studies to estimate the average effect size for a particular research question.

Meta-analysis goes beyond traditional narrative reviews by using statistical methods to integrate the results of several studies, leading to a more objective appraisal of the evidence.

This is done by looking through various databases, and then decisions are made about what studies are to be included/excluded.

  • Strengths : Increases the conclusions’ validity as they’re based on a wider range.
  • Weaknesses : Research designs in studies can vary, so they are not truly comparable.

Peer Review

A researcher submits an article to a journal. The choice of the journal may be determined by the journal’s audience or prestige.

The journal selects two or more appropriate experts (psychologists working in a similar field) to peer review the article without payment. The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language.

Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and re-submit or rejected without the possibility of submission.

The editor makes the final decision whether to accept or reject the research report based on the reviewers comments/ recommendations.

Peer review is important because it prevent faulty data from entering the public domain, it provides a way of checking the validity of findings and the quality of the methodology and is used to assess the research rating of university departments.

Peer reviews may be an ideal, whereas in practice there are lots of problems. For example, it slows publication down and may prevent unusual, new work being published. Some reviewers might use it as an opportunity to prevent competing researchers from publishing work.

Some people doubt whether peer review can really prevent the publication of fraudulent research.

The advent of the internet means that a lot of research and academic comment is being published without official peer reviews than before, though systems are evolving on the internet where everyone really has a chance to offer their opinions and police the quality of research.

Types of Data

  • Quantitative data is numerical data e.g. reaction time or number of mistakes. It represents how much or how long, how many there are of something. A tally of behavioral categories and closed questions in a questionnaire collect quantitative data.
  • Qualitative data is virtually any type of information that can be observed and recorded that is not numerical in nature and can be in the form of written or verbal communication. Open questions in questionnaires and accounts from observational studies collect qualitative data.
  • Primary data is first-hand data collected for the purpose of the investigation.
  • Secondary data is information that has been collected by someone other than the person who is conducting the research e.g. taken from journals, books or articles.

Validity means how well a piece of research actually measures what it sets out to, or how well it reflects the reality it claims to represent.

Validity is whether the observed effect is genuine and represents what is actually out there in the world.

  • Concurrent validity is the extent to which a psychological measure relates to an existing similar measure and obtains close results. For example, a new intelligence test compared to an established test.
  • Face validity : does the test measure what it’s supposed to measure ‘on the face of it’. This is done by ‘eyeballing’ the measuring or by passing it to an expert to check.
  • Ecological validit y is the extent to which findings from a research study can be generalized to other settings / real life.
  • Temporal validity is the extent to which findings from a research study can be generalized to other historical times.

Features of Science

  • Paradigm – A set of shared assumptions and agreed methods within a scientific discipline.
  • Paradigm shift – The result of the scientific revolution: a significant change in the dominant unifying theory within a scientific discipline.
  • Objectivity – When all sources of personal bias are minimised so not to distort or influence the research process.
  • Empirical method – Scientific approaches that are based on the gathering of evidence through direct observation and experience.
  • Replicability – The extent to which scientific procedures and findings can be repeated by other researchers.
  • Falsifiability – The principle that a theory cannot be considered scientific unless it admits the possibility of being proved untrue.

Statistical Testing

A significant result is one where there is a low probability that chance factors were responsible for any observed difference, correlation, or association in the variables tested.

If our test is significant, we can reject our null hypothesis and accept our alternative hypothesis.

If our test is not significant, we can accept our null hypothesis and reject our alternative hypothesis. A null hypothesis is a statement of no effect.

In Psychology, we use p < 0.05 (as it strikes a balance between making a type I and II error) but p < 0.01 is used in tests that could cause harm like introducing a new drug.

A type I error is when the null hypothesis is rejected when it should have been accepted (happens when a lenient significance level is used, an error of optimism).

A type II error is when the null hypothesis is accepted when it should have been rejected (happens when a stringent significance level is used, an error of pessimism).

Ethical Issues

  • Informed consent is when participants are able to make an informed judgment about whether to take part. It causes them to guess the aims of the study and change their behavior.
  • To deal with it, we can gain presumptive consent or ask them to formally indicate their agreement to participate but it may invalidate the purpose of the study and it is not guaranteed that the participants would understand.
  • Deception should only be used when it is approved by an ethics committee, as it involves deliberately misleading or withholding information. Participants should be fully debriefed after the study but debriefing can’t turn the clock back.
  • All participants should be informed at the beginning that they have the right to withdraw if they ever feel distressed or uncomfortable.
  • It causes bias as the ones that stayed are obedient and some may not withdraw as they may have been given incentives or feel like they’re spoiling the study. Researchers can offer the right to withdraw data after participation.
  • Participants should all have protection from harm . The researcher should avoid risks greater than those experienced in everyday life and they should stop the study if any harm is suspected. However, the harm may not be apparent at the time of the study.
  • Confidentiality concerns the communication of personal information. The researchers should not record any names but use numbers or false names though it may not be possible as it is sometimes possible to work out who the researchers were.

Print Friendly, PDF & Email

Cookies on our website

We use some essential cookies to make this website work.

We'd like to set additional cookies to understand how you use our site so we can improve it for everyone. Also, we'd like to serve you some cookies set by other services to show you relevant content.

Research Methods for Economics (840L1)

15 credits, Level 7 (Masters)

Spring teaching

This module equips you with practical econometric tools for analysis, information about economic data sources and their limitations, an understanding of how research and analysis policy fit into the policy-making process and how to communicate with policy makers and other users of analysis.

Contact hours and workload

We regularly review our modules to incorporate student feedback, staff expertise, as well as the latest research and teaching methodology. We’re planning to run these modules in the academic year 2020/21. However, there may be changes to these modules in response to feedback, staff availability, student demand or updates to our curriculum. We’ll make sure to let you know of any material changes to modules at the earliest opportunity.

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 02 September 2024

Green spaces provide substantial but unequal urban cooling globally

  • Yuxiang Li 1 ,
  • Jens-Christian Svenning   ORCID: orcid.org/0000-0002-3415-0862 2 ,
  • Weiqi Zhou   ORCID: orcid.org/0000-0001-7323-4906 3 , 4 , 5 ,
  • Kai Zhu   ORCID: orcid.org/0000-0003-1587-3317 6 ,
  • Jesse F. Abrams   ORCID: orcid.org/0000-0003-0411-8519 7 ,
  • Timothy M. Lenton   ORCID: orcid.org/0000-0002-6725-7498 7 ,
  • William J. Ripple 8 ,
  • Zhaowu Yu   ORCID: orcid.org/0000-0003-4576-4541 9 ,
  • Shuqing N. Teng 1 ,
  • Robert R. Dunn 10 &
  • Chi Xu   ORCID: orcid.org/0000-0002-1841-9032 1  

Nature Communications volume  15 , Article number:  7108 ( 2024 ) Cite this article

Metrics details

  • Climate-change mitigation
  • Urban ecology

Climate warming disproportionately impacts countries in the Global South by increasing extreme heat exposure. However, geographic disparities in adaptation capacity are unclear. Here, we assess global inequality in green spaces, which urban residents critically rely on to mitigate outdoor heat stress. We use remote sensing data to quantify daytime cooling by urban greenery in the warm seasons across the ~500 largest cities globally. We show a striking contrast, with Global South cities having ~70% of the cooling capacity of cities in the Global North (2.5 ± 1.0 °C vs. 3.6 ± 1.7 °C). A similar gap occurs for the cooling adaptation benefits received by an average resident in these cities (2.2 ± 0.9 °C vs. 3.4 ± 1.7 °C). This cooling adaptation inequality is due to discrepancies in green space quantity and quality between cities in the Global North and South, shaped by socioeconomic and natural factors. Our analyses further suggest a vast potential for enhancing cooling adaptation while reducing global inequality.

Introduction

Heat extremes are projected to be substantially intensified by global warming 1 , 2 , imposing a major threat to human mortality and morbidity in the coming decades 3 , 4 , 5 , 6 . This threat is particularly concerning as a majority of people now live in cities 7 , including those cities suffering some of the hottest climate extremes. Cities face two forms of warming: warming due to climate change and warming due to the urban heat island effect 8 , 9 , 10 . These two forms of warming have the potential to be additive, or even multiplicative. Climate change in itself is projected to result in rising maximum temperatures above 50 °C for a considerable fraction of the world if 2 °C global warming is exceeded 2 ; the urban heat island effect will cause up to >10 °C additional (surface) warming 11 . Exposures to temperatures above 35 °C with high humidity or above 40 °C with low humidity can lead to lethal heat stress for humans 12 . Even before such lethal temperatures are reached, worker productivity 13 and general health and well-being 14 can suffer. Heat extremes are especially risky for people living in the Global South 15 , 16 due to warmer climates at low latitudes. Climate models project that the lethal temperature thresholds will be exceeded with increasing frequencies and durations, and such extreme conditions will be concentrated in low-latitude regions 17 , 18 , 19 . These low-latitude regions overlap with the major parts of the Global South where population densities are already high and where population growth rates are also high. Consequently, the number of people exposed to extreme heat will likely increase even further, all things being equal 16 , 20 . That population growth will be accompanied by expanded urbanization and intensified urban heat island effects 21 , 22 , potentially exacerbating future Global North-Global South heat stress exposure inequalities.

Fortunately, we know that heat stress can be buffered, in part, by urban vegetation 23 . Urban green spaces, and especially urban forests, have proven an effective means through which to ameliorate heat stress through shading 24 , 25 and transpirational cooling 26 , 27 . The buffering effect of urban green spaces is influenced by their area (relative to the area of the city) and their spatial configuration 28 . In this context, green spaces become a kind of infrastructure that can and should be actively managed. At broad spatial scales, the effect of this urban green infrastructure is also mediated by differences among regions, whether in their background climate 29 , composition of green spaces 30 , or other factors 31 , 32 , 33 , 34 . The geographic patterns of the buffering effects of green spaces, whether due to geographic patterns in their areal extent or region-specific effects, have so far been poorly characterized.

On their own, the effects of climate change and urban heat islands on human health are likely to become severe. However, these effects will become even worse if they fall disproportionately in cities or countries with less economic ability to invest in green space 35 or in other forms of cooling 36 , 37 . A number of studies have now documented the so-called ‘luxury effect,’ wherein lower-income parts of cities tend to have less green space and, as a result, reduced biodiversity 38 , 39 . Where the luxury effect exists, green space and its benefits become, in essence, a luxury good 40 . If the luxury effect holds among cities, and lower-income cities also have smaller green spaces, the Global South may have the least potential to mitigate the combined effects of climate warming and urban heat islands, leading to exacerbated and rising inequalities in heat exposure 41 .

Here, we assess the global inequalities in the cooling capability of existing urban green infrastructure across urban areas worldwide. To this end, we use remotely sensed data to quantify three key variables, i.e., (1) cooling efficiency, (2) cooling capacity, and (3) cooling benefit of existing urban green infrastructure for ~500 major cities across the world. Urban green infrastructure and temperature are generally negatively and relatively linearly correlated at landscape scales, i.e., higher quantities of urban green infrastructure yield lower temperatures 42 , 43 . Cooling efficiency is widely used as a measure of the extent to which a given proportional increase in the area of urban green infrastructure leads to a decrease in temperature, i.e., the slope of the urban green infrastructure-temperature relationship 42 , 44 , 45 (see Methods for details). This simple metric allows quantifying the quality of urban green infrastructure in terms of ameliorating the urban heat island effect. Meanwhile, the extent to which existing urban green infrastructure cools down an entire city’s surface temperatures (compared to the non-vegetated built-up areas) is referred to as cooling capacity. Hence, cooling capacity is a function of the total quantity of urban green infrastructure and its cooling efficiency (see Methods).

As a third step, we account for the spatial distributions of urban green infrastructure and populations to quantify the benefit of cooling mitigation received by an average urban inhabitant in each city given their location. This cooling benefit is a more direct measure of the cooling realized by people, after accounting for the within-city geography of urban green infrastructure and population density. We focus on cooling capacity and cooling benefit as the measures of the cooling capability of individual cities for assessing their global inequalities. We are particularly interested in linking cooling adaptation inequality with income inequality 40 , 46 . While this can be achieved using existing income metrics for country classifications 47 , here we use the traditional Global North/South classification due to its historical ties to geography which is influential in climate research.

Results and discussion

Our analyses indicate that existing green infrastructure of an average city has a capability of cooling down surface temperatures by ~3 °C during warm seasons. However, a concerning disparity is evident; on average Global South cities have only two-thirds the cooling capacity and cooling benefit compared to Global North cities. This inequality is attributable to the differences in both quantity and quality of existing urban green infrastructure among cities. Importantly, we find that there exists considerable potential for many cities to enhance the cooling capability of their green infrastructure; achieving this potential could dramatically reduce global inequalities in adaptation to outdoor heat stress.

Quantifying cooling inequality

Our analyses showed that both the quantity and quality of the existing urban green infrastructure vary greatly among the world’s ~500 most populated cities (see Methods for details, and Fig.  1 for examples). The quantity of urban green infrastructure measured based on remotely sensed indicators of spectral greenness (Normalized Difference Vegetation Index, NDVI, see Methods) had a coefficient of variation (CV) of 35%. Similarly, the quality of urban green infrastructure in terms of cooling efficiency (daytime land surface temperatures during peak summer) had a CV of 37% (Supplementary Figs.  1 , 2 ). The global mean value of cooling capacity is 2.9 °C; existing urban green infrastructure ameliorates warm-season heat stress by 2.9 °C of surface temperature in an average city. In truth, however, the variation in cooling capacity was great (global CV in cooling capacity as large as ~50%), such that few cities were average. This variation is strongly geographically structured. Cities closer to the equator - tropical and subtropical cities - tend to have relatively weak cooling capacities (Fig.  2a, b ). As Global South countries are predominantly located at low latitudes, this pattern leads to a situation in which Global South cities, which tend to be hotter and relatively lower-income, have, on average, approximately two-thirds the cooling capacity of the Global North cities (2.5 ± 1.0 vs. 3.6 ± 1.7°C, Wilcoxon test, p  = 2.7e-12; Fig.  2c ). The cities that most need to rely on green infrastructure are, at present, those that are least able to do so.

figure 1

a , e , i , m , q Los Angeles, US. b , f , j , n , r Paris, France. c , g , k , o , s Shanghai, China. d , h , l , p , t Cairo, Egypt. Local cooling efficiency is calculated for different local climate zone types to account for within-city heterogeneity. In densely populated parts of cities, local cooling capacity tends to be lower due to reduced green space area, whereas local cooling benefit (local cooling capacity multiplied by a weight term of local population density relative to city mean) tends to be higher as more urban residents can receive cooling amelioration.

figure 2

a Global distribution of cooling capacity for the 468 major urbanized areas. b Latitudinal pattern of cooling capacity. c Cooling capacity difference between the Global North and South cities. The cooling capacity offered by urban green infrastructure evinces a latitudinal pattern wherein lower-latitude cities have weaker cooling capacity ( b , cubic-spline fitting of cooling capacity with 95% confidence interval is shown), representing a significant inequality between Global North and South countries: city-level cooling capacity for Global North cities are about 1.5-fold higher than in Global South cities ( c ). Data are presented as box plots, where median values (center black lines), 25th percentiles (box lower bounds), 75th percentiles (box upper bounds), whiskers extending to 1.5-fold of the interquartile range (IQR), and outliers are shown. The tails of the cooling capacity distributions are truncated at zero as all cities have positive values of cooling capacity. Notice that no cities in the Global South have a cooling capacity greater than 5.5 °C ( c ). This is because no cities in the Global South have proportional green space areas as great as those seen in the Global North (see also Fig.  4b ). A similar pattern is found for cooling benefit (Supplementary Fig.  3 ). The two-sided non-parametric Wilcoxon test was used for statistical comparisons.

When we account for the locations of urban green infrastructure relative to humans within cities, the cooling benefit of urban green infrastructure realized by an average urban resident generally becomes slightly lower than suggested by cooling capacity (see Methods; Supplementary Fig.  3 ). Urban residents tend to be densest in the parts of cities with less green infrastructure. As a result, the average urban resident experiences less cooling amelioration than expected. However, this heterogeneity has only a minor effect on global-scale inequality. As a result, the geographic trends in cooling capacity and cooling benefit are similar: mean cooling benefit for an average urban resident also presents a 1.5-fold gap between Global South and North cities (2.2 ± 0.9 vs. 3.4 ± 1.7 °C, Wilcoxon test, p  = 3.2e-13; Supplementary Fig.  3c ). Urban green infrastructure is a public good that has the potential to help even the most marginalized populations stay cool; unfortunately, this public benefit is least available in the Global South. When walking outdoors, the average person in an average Global South city receives only two-thirds the cooling amelioration from urban green infrastructure experienced by a person in an average Global North city. The high cooling amelioration capacity and benefit of the Global North cities is heavily influenced by North America (specifically, Canada and the US), which have both the highest cooling efficiency and the largest area of green infrastructure, followed by Europe (Supplementary Fig.  4 ).

One way to illustrate the global inequality of cooling capacity or benefit is to separately look at the cities that are most and least effective in ameliorating outdoor heat stress. Our results showed that ~85% of the 50 most effective cities (with highest cooling capacity or cooling benefit) are located in the Global North, while ~80% of the 50 least effective are Global South cities (Fig.  3 , Supplementary Fig.  5 ). This is true without taking into account the differences in the background temperatures and climate warming of these cities, which will exacerbate the effects on human health; cities in the Global South are likely to be closer to the limits of human thermal comfort and even, increasingly, the limits of the temperatures and humidities (wet-bulb temperatures) at which humans can safely work or even walk, such that the ineffectiveness of green spaces in those cities in cooling will lead to greater negative effects on human health 48 , work 14 , and gross domestic product (GDP) 49 . In addition, Global South cities commonly have higher population densities (Fig.  3 , Supplementary Fig.  5 ) and are projected to have faster population growth 50 . This situation will plausibly intensify the urban heat island effect because of the need of those populations for housing (and hence tensions between the need for buildings and the need for green spaces). It will also increase the number of people exposed to extreme urban heat island effects. Therefore, it is critical to increase cooling benefit via expanding urban green spaces, so that more people can receive the cooling mitigation from a given new neighboring green space if they live closer to each other. Doing so will require policies that incentivize urban green spaces as well as architectural innovations that make innovations such as plant-covered buildings easier and cheaper to implement.

figure 3

The axes on the right are an order of magnitude greater than those on the left, such that the cooling capacity of Charlotte in the United States is about 37-fold greater than that of Mogadishu (Somalia) and 29-fold greater than that of Sana’a (Yemen). The cities presenting lowest cooling capacities are most associated with Global South cities at higher population densities.

Of course, cities differ even within the Global North or within the Global South. For example, some Global South cities have high green space areas (or relatively high cooling efficiency in combination with moderate green space areas) and hence high cooling capacity. These cities, such as Pune (India), will be important to study in more detail, to shed light on the mechanistic details of their cooling abilities as well as the sociopolitical and other factors that facilitated their high green area coverage and cooling capabilities (Supplementary Figs.  6 , 7 ).

We conducted our primary analyses using a spatial grain of 100-m grid cells and Landsat NDVI data for quantifying spectral greenness. Our results, however, were robust at the coarser spatial grain of 1 km. We find a slightly larger global cooling inequality (~2-fold gap between Global South and North cities) at the 1-km grain using MODIS data (see Methods and Supplementary Fig.  17 ). MODIS data have been frequently used for quantifying urban heat island effects and cooling mitigation 44 , 45 , 51 . Our results reinforce its robustness for comparing urban thermal environments between cities across broad scales.

Influencing factors

The global inequality of cooling amelioration could have a number of proximate causes. To understand their relative influence, we first separately examined the effects of quality (cooling efficiency) and quantity (NDVI as a proxy indicator of urban green space area) of urban green infrastructure. The simplest null model is one in which cooling capacity (at the city scale) and cooling benefit (at the human scale) are driven primarily by the proportional area in a city dedicated to green spaces. Indeed, we found that both cooling capacity and cooling benefit were strongly correlated with urban green space area (Fig.  4 , Supplementary Fig.  8 ). This finding is useful with regards to practical interventions. In general, cities that invest in saving or restoring more green spaces will receive more cooling benefits from those green spaces. By contrast, differences among cities in cooling efficiency played a more minor role in determining the cooling capacity and benefit of cities (Fig.  4 , Supplementary Fig.  8 ).

figure 4

a Relationship between cooling efficiency and cooling capacity. b Relationship between green space area (measured by mean Landsat NDVI in the hottest month of 2018) and cooling capacity. Note that the highest level of urban green space area in the Global South cities is much lower than that in the Global North (dashed line in b ). Gray bands indicate 95% confidence intervals. Two-sided t-tests were conducted. c A piecewise structural equation model based on assumed direct and indirect (through influencing cooling efficiency and urban green space area) effects of essential natural and socioeconomic factors on cooling capacity. Mean annual temperature and precipitation, and topographic variation (elevation range) are selected to represent basic background natural conditions; GDP per capita is selected to represent basic socioeconomic conditions. The spatial extent of built-up areas is included to correct for city size. A bi-directional relationship (correlation) is fitted between mean annual temperature and precipitation. Red and blue solid arrows indicate significantly negative and positive coefficients with p  ≤ 0.05, respectively. Gray dashed arrows indicate p  > 0.05. The arrow width illustrates the effect size. Similar relationships are found for cooling benefits realized by an average urban resident (see Supplementary Fig.  8 ).

A further question is what shapes the quality and quantity of urban green infrastructure (which in turn are driving cooling capacity)? Many inter-correlated factors are possibly operating at multiple scales, making it difficult to disentangle their effects, especially since experiment-based causal inference is usually not feasible for large-scale urban systems. From a macroscopic perspective, we test the simple hypothesis that the background natural and socioeconomic conditions of cities jointly affect their cooling capacity and benefit in both direct and indirect ways. To this end, we constructed a minimal structural equation model including only the most essential variables reflecting background climate (mean annual temperature and precipitation), topographic variation (elevation range), as well as gross domestic product (GDP) per capita and city area (see Methods; Fig.  4c ).

We found that the quantity of green spaces in a city (again, in proportion to its size) was positively correlated with GDP per capita and city area; wealthier cities have more green spaces. It is well known that wealth and green spaces are positively correlated within cities (the luxury effect) 40 , 46 ; our analysis shows that a similar luxury effect occurs among them at a global scale. In addition, larger cities often have proportionally more green spaces, an effect that may be due to the tendency for large cities (particularly in the US and Canada) to have lower population densities. Cities that were hotter and had more topographic variation tended to have fewer green spaces and those that were more humid tended to have more green spaces. Given that temperature and humidity are highly correlated with the geography of the Global South and Global North, it is difficult to know whether these effects are due to the direct effects of temperature and precipitation, for example, on the growth rate of vegetation and hence the transition of abandoned lots into green spaces, or are associated with historical, cultural and political differences that via various mechanisms correlate to climate. Our structural equation model explained only a small fraction of variation among cities in their cooling efficiency, which is to say the quality of their green space. Cooling efficiency was modestly influenced by background temperature and precipitation—the warmer a city, the greater the cooling efficiency in that city; conversely, the more humid a city the less the cooling efficiency of that city.

Our analyses suggested that the lower cooling adaptation capabilities of Global South cities can be explained by their lower quantity of green infrastructure and, to a much lesser extent, their weaker cooling efficiency (quality; Supplementary Fig.  2 ). These patterns appear to be in part structured by GDP, but are also associated with climatic conditions 39 , and other factors. A key question, unresolved by our work, is whether the climatic correlates of the size of green spaces in cities are due to the effects of climate per se or if they, instead, reflect correlates between contemporary climate and the social, cultural, and political histories of cities in the Global South 52 . Since urban planning has much inertia, especially in big cities, those choices might be correlated with climate because of the climatic correlates of political histories. It is also possible that these dynamics relate, in part, to the ways in which climate influences vegetation structure. However, this seems less likely given that under non-urban conditions vegetation cover (and hence cooling capacity) is normally positively correlated with mean annual temperature across the globe, opposite to our observed negative relationships for urban systems (Supplementary Fig.  9g ). Still, it is possible that increased temperatures in cities due to the urban heat island effects may lead to temperature-vegetation cover-cooling capacity relationships that differ from those in natural environments 53 , 54 . Indeed, a recent study found that climate warming will put urban forests at risk, and the risk is disproportionately higher in the Global South 55 .

Our model serves as a starting point for unraveling the mechanisms underlying global cooling inequality. We cannot rule out the possibility that other unconsidered factors correlated with the studied variables play important roles. We invite systematic studies incorporating detailed sociocultural and ecological variables to address this question across scales.

Potential of enhancing cooling and reducing inequality

Can we reduce the inequality in cooling capacity and benefits that we have discovered among the world’s largest cities? Nuanced assessments of the potential to improve cooling mitigation require comprehensive considerations of socioeconomic, cultural, and technological aspects of urban management and policy. It is likely that cities differ greatly in their capacity to implement cooling through green infrastructure, whether as a function of culture, governance, policy or some mix thereof. However, any practical attempts to achieve greater cooling will occur in the context of the realities of climate and existing land use. To understand these realities, we modeled the maximum additional cooling capacity that is possible in cities, given existing constraints. We assume that this capacity depends on the quality (cooling efficiency) and quantity of urban green infrastructure. Our approach provides a straightforward metric of the cooling that could be achieved if all parts of a city’s green infrastructure were to be enhanced systematically.

The positive outlook is that our analyses suggest a considerable potential of improving cooling capacity by optimizing urban green infrastructure. An obvious way is through increases in urban green infrastructure quantity. We employ an approach in which we consider each local climate zone 56 to have a maximum NDVI and cooling efficiency (see Methods). For a given local climate zone, the city with the largest NDVI values or cooling efficiency sets the regional upper bounds for urban green infrastructure quantities or quality that can be achieved. Notably, these maxima are below the maxima for forests or other non-urban spaces for the simple reason that, as currently imagined, cities must contain gray (non-green) spaces in the form of roads and buildings. In this context, we conduct a thought experiment. What if we could systematically increase NDVI of all grid cells in each city, per local climate zone type, to a level corresponding to the median NDVI of grid cells in that upper bound city while keeping cooling efficiency unchanged (see Methods). If we were able to achieve this goal, the cooling capacity of cities would increase by ~2.4 °C worldwide. The increase would be even greater, ~3.8°C, if the 90th percentile (within the reference maximum city) was reached (Fig.  5a ). The potential for cooling benefit to the average urban resident is similar to that of cooling capacity (Supplementary Fig.  10a ). There is also potential to reduce urban temperatures if we can enhance cooling efficiency. However, the benefits of increases in cooling efficiency are modest (~1.5 °C increases at the 90th percentile of regional upper bounds) when holding urban green infrastructure quantity constant. In theory, if we could maximize both quantity and cooling efficiency of urban green infrastructure (to 90th percentiles of their regional upper bounds respectively), we would yield increases in cooling capacity and benefit up to ~10 °C, much higher than enhancing green space area or cooling efficiency alone (Fig.  5a , Supplementary Fig.  10a ). Notably, such co-maximization of green space area and cooling efficiency would substantially reduce global inequality to Gini <0.1 (Fig.  5b , Supplementary Fig.  10b ). Our analyses thus provide an important suggestion that enhancing both green space quantity and quality can yield a synergistic effect leading to much larger gains than any single aspect alone.

figure 5

a The potential of enhancing cooling capacity via either enhancing urban green infrastructure quality (i.e., cooling efficiency) while holding quantity (i.e., green space area) fixed (yellow), or enhancing quantity while holding quality fixed (blue) is much lower than that of enhancing both quantity and quality (green). The x-axis indicates the targets of enhancing urban green infrastructure quantity and/or quality relative to the 50–90th percentiles of NDVI or cooling efficiency, see Methods). The dashed horizontal lines indicate the median cooling capacity of current cities. Data are presented as median values with the colored bands corresponding to 25–75th percentiles. b The potential of reducing cooling capacity inequality is also higher when enhancing both urban green infrastructure quantity and quality. The Gini index weighted by population density is used to measure inequality. Similar results were found for cooling benefit (Supplementary Fig.  10 ).

Different estimates of cooling capacity potential may be reached based on varying estimates and assumptions regarding the maximum possible quantity and quality of urban green infrastructure. There is no single, simple way to make these estimates, especially considering the huge between-city differences in society, culture, and structure across the globe. Our example case (above) begins from the upper bound city’s median NDVI, taking into account different local climate zone types and background climate regions (regional upper bounds). This is based on the assumption that for cities within the same climate regions, their average green space quantity may serve as an attainable target. Still, urban planning is often made at the level of individual cities, often only implemented to a limited extent and made with limited consideration of cities in other regions and countries. A potentially more realistic reference may be taken from the existing green infrastructure (again, per local climate zone type) within each particular city itself (see Methods): if a city’s sparsely vegetated areas was systematically elevated to the levels of 50–90th percentiles of NDVI within their corresponding local climate zones within the city, cooling capacity would still increase, but only by 0.5–1.5 °C and with only slightly reduced inequalities among cities (Supplementary Fig.  11 ). This highlights that ambitious policies, inspired by the greener cities worldwide, are necessary to realize the large cooling potential in urban green infrastructure.

In summary, our results demonstrate clear inequality in the extent to which urban green infrastructure cools cities and their denizens between the Global North and South. Much attention has been paid to the global inequality of indoor heat adaptation arising from the inequality of resources (e.g., less affordable air conditioning and more frequent power shortages in the Global South) 36 , 57 , 58 , 59 . Our results suggest that the inequality in outdoor adaptation is particularly concerning, especially as urban populations in the Global South are growing rapidly and are likely to face the most severe future temperature extremes 60 .

Previous studies have been focusing on characterizing urban heat island effects, urban vegetation patterns, resident exposure, and cooling effects in particular cities 26 , 28 , 34 , 61 , regions 22 , 25 , 62 , or continents 32 , 44 , 63 . Recent studies start looking at global patterns with respect to cooling efficiency or green space exposure 35 , 45 , 64 , 65 . Our approach is one drawn from the fields of large-scale ecology and macroecology. This approach is complementary to and, indeed, can, in the future, be combined with (1) mechanism driven biophysical models 66 , 67 to predict the influence of the composition and climate of green spaces on their cooling efficiency, (2) social theory aimed at understanding the factors that govern the amount of green space in cities as well as the disparity among cities 68 , (3) economic models of the effects of policy changes on the amount of greenspace and even (4) artist-driven projects that seek to understand the ways in which we might reimagine future cities 69 . Our simple explanatory model is, ultimately, one lens on a complex, global phenomenon.

Our results convey some positive outlook in that there is considerable potential to strengthen the cooling capability of cities and to reduce inequalities in cooling capacities at the same time. Realizing this nature-based solution, however, will be challenging. First, enhancing urban green infrastructure requires massive investments, which are more difficult to achieve in Global South cities. Second, it also requires smart planning strategies and advanced urban design and greening technologies 37 , 70 , 71 , 72 . Spatial planning of urban green spaces needs to consider not only the cooling amelioration effect, but also their multifunctional aspects that involve multiple ecosystem services, mental health benefits, accessibility, and security 73 . In theory, a city can maximize its cooling while also maximizing density through the combination of high-density living, ground-level green spaces, and vertical and rooftop gardens (or even forests). In practice, the current cities with the most green spaces tend to be lower-density cities 74 (Supplementary Fig.  12 ). Still, innovation and implementation of new technologies that allow green spaces and high-density living to be combined have the potential to reduce or disconnect the negative relationship between green space area and population density 71 , 75 . However, this development has yet to be realized. Another dimension of green spaces that deserves more attention is the geography of green spaces relative to where people are concentrated within cities. A critical question is how best should we distribute green spaces within cities to maximize cooling efficiency 76 and minimize within-city cooling inequality towards social equity 77 ? Last but not least, it is crucial to design and manage urban green spaces to be as resilient as possible to future climate stress 78 . For many cities, green infrastructure is likely to remain the primary means people will have to rely on to mitigate the escalating urban outdoor heat stress in the coming decades 79 .

We used the world population data from the World’s Cities in 2018 Data Booklet 80 to select 502 major cities with population over 1 million people (see Supplementary Data  1 for the complete list of the studied cities). Cities are divided into the Global North and Global South based on the Human Development Index (HDI) from the Human Development Report 2019 81 . For each selected city, we used the 2018 Global Artificial Impervious Area (GAIA) data at 30 m resolution 82 to determine its geographic extent. The derived urban boundary polygons thus encompass a majority of the built-up areas and urban residents. In using this approach, rather than urban administrative boundaries, we can focus on the relatively densely populated areas where cooling mitigation is most needed, and exclude areas dominated by (semi) natural landscapes that may bias the subsequent quantifications of the cooling effect. Our analyses on the cooling effect were conducted at the 100 m spatial resolution using Landsat data and WorldPop Global Project Population Data of 2018 83 . In order to test for the robustness of the results to coarser spatial scales, we also repeated the analyses at 1 km resolution using MODIS data, which have been extensively used for quantifying urban heat island effects and cooling mitigation 44 , 45 , 51 . We discarded the five cities with sizes <30 km 2 as they were too small for us to estimate their cooling efficiency based on linear regression (see section below for details). We combined closely located cities that form contiguous urban areas or urban agglomerations, if their urban boundary polygons from GAIA merged (e.g., Phoenix and Mesa in the United States were combined). Our approach yielded 468 polygons, each representing a major urbanized area that were the basis for all subsequent analyses. Because large water bodies can exert substantial and confounding cooling effects, we excluded permanent water bodies including lakes, reservoirs, rivers, and oceans using the Copernicus Global Land Service (CGLS) Land Cover data for 2018 at 10 m resolution 84 .

Quantifying the cooling effect

As a first step, we calculated cooling efficiency for each studied city within the GAIA-derived urban boundary. Cooling efficiency quantifies the extent to which a given area of green spaces in a city can reduce temperatures. It is a measure of the effectiveness (quality) of urban green spaces in terms of heat amelioration. Cooling efficiency is typically measured by calculating the slope of the relationship between remotely-sensed land surface temperature (LST) and vegetation cover through ordinary least square regression 42 , 44 , 45 . It is known that cooling efficiency varies between cities. Influencing factors might include background climate 29 , species composition 30 , 85 , landscape configuration 28 , topography 86 , proximity to large water bodies 33 , 87 , urban morphology 88 , and city management practices 31 . However, the mechanism underlying the global pattern of cooling efficiency remains unclear.

We used Landsat satellite data provided by the United States Geological Survey (USGS) to calculate the cooling efficiency of each studied city. We used the cloud-free Landsat 8 Level 2 LST and NDVI data. For each city we calculated the mean LST in each month of 2018 to identify the hottest month, and then derived the hottest month LST; we used the cloud-free Landsat 8 data to calculate the mean NDVI for the hottest month correspondingly.

We quantified cooling efficiency for different local climate zones 56 separately for each city, to account for within-city variability of thermal environments. To this end, we used the Copernicus Global Land Service data (CGLS) 84 and Global Human Settlement Layers (GHSL) Built-up height data 89 of 2018 at the 100 m resolution to identify five types of local climate zones: non-tree vegetation (shrubs, herbaceous vegetation, and cultivated vegetation according to the CGLS classification system), low-rise buildings (built up and bare according to the CGLS classification system, with building heights ≤10 m according to the GHSL data), medium-high-rise buildings (built up and bare areas with building heights >10 m), open tree cover (open forest with tree cover 15–70% according to the CGLS system), and closed tree cover (closed forest with tree cover >70%).

For each local climate zone type in each city, we constructed a regression model with NDVI as the predictor variable and LST as the response variable (using the ordinary least square method). We took into account the potential confounding factors including topographic elevation (derived from MERIT DEM dataset 90 ), building height (derived from the GHSL dataset 89 ), and distance to water bodies (derived from the GSHHG dataset 91 ), the model thus became: LST ~ NDVI + topography + building height + distance to water. Cooling efficiency was calculated as the absolute value of the regression coefficient of NDVI, after correcting for those confounding factors. To account for the multi-collinearity issue, we conducted variable selection based on the variance inflation factor (VIF) to achieve VIF < 5. Before the analysis, we discarded low-quality Landsat pixels, and filtered out the pixels with NDVI < 0 (normally less than 1% in a single city). Cooling efficiency is known to be influenced by within-city heterogeneity 92 , 93 , and, as a result, might sometimes better fit non-linear relationships at local scales 65 , 76 . However, our central aim is to assess global cooling inequality based on generalized relationships that fit the majority of global cities. Previous studies have shown that linear relationships can do this job 42 , 44 , 45 , therefore, here we used linear models to assess cooling efficiency.

As a second step, we calculated the cooling capacity of each city. Cooling capacity is a positive function of the magnitude of cooling efficiency and the proportional area of green spaces in a city and is calculated based on NDVI and the derived cooling efficiency (Eq.  1 , Supplementary Fig.  13 ):

where CC lcz and CE lcz are the cooling capacity and cooling efficiency for a given local climate zone type in a city, respectively; NDVI i is the mean NDVI for 100-m grid cell i ; NDVI min is the minimum NDVI across the city; and n is the total number of grid cells within the local climate zone. Local cooling capacity for each grid cell i (Fig.  1 , Supplementary Fig.  7 ) can be derived in this way as well (Supplementary Fig.  13 ). For a particular city, cooling capacity may be dependent on the spatial configuration of its land use/cover 28 , 94 , but here we condensed cooling capacity to city average (Eq.  2 ), thus did not take into account these local-scale factors.

where CC is the average cooling capacity of a city; n lcz is the number of grid cells of the local climate zone; m is the total number of grid cells within the whole city.

As a third step, we calculated the cooling benefit realized by an average urban resident (cooling benefit in short) in each city. Cooling benefit depends not only on the cooling capacity of a city, but also on where people live within a city relative to greener or grayer areas of the city. For example, cooling benefits in a city might be low even if the cooling capacity is high if the green parts and the dense-population parts of a city are inversely correlated. Here, we are calculating these averages while aware that in any particular city the exposure of a particular person will depend on the distribution of green spaces in a city, and the occupation, movement trajectories of a person, etc. On the scale of a city, we calculated cooling benefit following a previous study 35 , that is, simply adding a weight term of population size per 100-m grid cell into cooling capacity in Eq. ( 1 ):

Where CB lcz is the cooling benefit of a given local climate zone type in a specific city, pop i is the number of people within grid cell i , \(\overline{{pop}}\) is the mean population of the city.

Where CB is the average cooling benefit of a city. The population data were obtained from the 100-m resolution WorldPop Global Project Population Data of 2018 83 . Local cooling benefit for a given grid cell i can be calculated in a similar way, i.e., local cooling capacity multiplied by a weight term of local population density relative to mean population density. Local cooling benefits were mapped for example cities for the purpose of illustrating the effect of population spatial distribution (Fig.  1 , Supplementary Fig.  7 ), but their patterns were not examined here.

Based on the aforementioned three key variables quantified at 100 m grid cells, we conducted multivariate analyses to examine if and to what extent cooling efficiency and cooling benefit are shaped by essential natural and socioeconomic factors, including background climate (mean annual temperature from ECMWF ERA5 dataset 95 and precipitation from TerraClimate dataset 96 ), topography (elevation range 90 ), and GDP per capita 97 , with city size (geographic extent) corrected for. We did not include humidity because it is strongly correlated with temperature and precipitation, causing serious multi-collinearity problems. We used piecewise structural equation modeling to test the direct effects of these factors and indirect effects via influencing cooling efficiency and vegetation cover (Fig.  4c , Supplementary Fig.  8c ). To account for the potential influence of spatial autocorrelation, we used spatially autoregressive models (SAR) to test for the robustness of the observed effects of natural and socioeconomic factors on cooling capacity and benefit (Supplementary Fig.  14 ).

Testing for robustness

We conducted the following additional analyses to test for robustness. We obtained consistent results from these robustness analyses.

(1) We looked at the mean hottest-month LST and NDVI within 3 years (2017-2019) to check the consistency between the results based on relatively short (1 year) vs. long (3-year average) time periods (Supplementary Fig.  15 ).

(2) We carried out the approach at a coarser spatial scale of 1 km, using MODIS-derived NDVI and LST, as well as the population data 83 in the hottest month of 2018. In line with our finer-scale analysis of Landsat data, we selected the hottest month and excluded low-quality grids affected by cloud cover and water bodies 98 (water cover > 20% in 1 × 1 km 2 grid cells) of MODIS LST, and calculated the mean NDVI for the hottest month. We ultimately obtained 441 cities (or urban agglomerations) for analysis. At the 1 km resolution, some local climate zone types would yield insufficient samples for constructing cooling efficiency models. Therefore, instead of identifying local climate zone explicitly, we took an indirect approach to account for local climate confounding factors, that is, we constructed a multiple regression model for a whole city incorporating the hottest-month local temperature 95 , precipitation 96 , and humidity (based on NASA FLDAS dataset 99 ), albedo (derived from the MODIS MCD43A3 product 100 ), aerosol loading (derived from the MODIS MCD19A2 product 101 ), wind speed (based on TerraClimate dataset 96 ), topography elevation 90 , distance to water 91 , urban morphology (building height 102 ), and human activity intensity (VIIRS nighttime light data as a proxy indicator 103 ). We used the absolute value of the linear regression coefficient of NDVI as the cooling efficiency of the whole city (model: LST ~ NDVI + temperature + precipitation + humidity + distance to water + topography + building height + albedo + aerosol + wind speed + nighttime light), and calculated cooling capacity and cooling benefit based on the same method. Variable selection was conducted using the criterion of VIF < 5.

Our results indicated that MODIS-based cooling capacity and cooling benefit are significantly correlated with the Landsat-based counterparts (Supplementary Fig.  16 ); importantly, the gap between the Global South and North cities is around two-fold, close to the result from the Landsat-based result (Supplementary Fig.  17 ).

(3) For the calculation of cooling benefit, we considered different spatial scales of human accessibility to green spaces: assuming the population in each 100 × 100 m 2 grid cell could access to green spaces within neighborhoods of certain extents, we calculated cooling benefit by replacing NDVI i in Eq. ( 3 ) with mean NDVI within the 300 × 300 m 2 and 500 × 500 m 2 extents centered at the focal grid cell (Supplementary Fig.  18 ).

(4) Considering cities may vary in minimum NDVI, we assessed if this variation could affect resulting cooling capacity patterns. To this end, we calculated the cooling capacity for each studied city using NDVI = 0 as the reference (i.e., using NDVI = 0 instead of minimum NDVI in Supplementary Fig.  13b ), and correlated it with that using minimum NDVI as the reference (Supplementary Fig.  19 ).

Quantifying between-city inequality

Inequalities in access to the benefits of green spaces in cities exist within cities, as is increasingly well-documented 104 . Here, we focus instead on the inequalities among cities. We used the Gini coefficient to measure the inequality in cooling capacity and cooling benefit between all studied cities across the globe as well as between Global North or South cities. We calculated Gini using the population-density weighted method (Fig.  5b ), as well as the unweighted and population-size weighted methods (Supplementary Fig.  20 ).

Estimating the potential for more effective and equal cooling amelioration

We estimated the potential of enhancing cooling amelioration based on the assumptions that urban green space quality (cooling efficiency) and quantity (NDVI) can be increased to different levels, and that relative spatial distributions of green spaces and population can be idealized (so that their spatial matches can maximize cooling benefit). We assumed that macro-climate conditions act as the constraints of vegetation cover and cooling efficiency. We calculated the 50th, 60th, 70th, 80th, and 90th percentiles of NDVI within each type of local climate zone of each city. For a given local climate zone type, we obtained the city with the highest NDVI per percentile value as the regional upper bounds of urban green infrastructure quantity. The regional upper bounds of cooling efficiency are derived in a similar way. For each local climate zone in a city, we generated a potential NDVI distribution where all grid cells reach the regional upper bound values for the 50th, 60th, 70th, 80th, or 90th percentile of urban green space quantity or quality, respectively. NDVI values below these percentiles were increased, whereas those above these percentiles remained unchanged. The potential estimates are essentially dependent on the references, i.e., the optimal cooling efficiency and NDVI that a given city can reach. However, such references are obviously difficult to determine, because complex natural and socioeconomic conditions could play important roles in determining those cooling optima, and the dominant factors are unknown at a global scale. We employed the simplifying assumption that background climate could act as an essential constraint according to our results. We therefore used the Köppen climate classification system 105 to determine the reference separately in each climate region (tropical, arid, temperate, and continental climate regions were involved for all studied cities).

We calculated potential cooling capacity and cooling benefit based on these potential NDVI maps (Fixed cooling efficiency in Fig.  5 ). We then calculated the potentials if cooling efficiency of each city can be enhanced to 50–90th percentile across all urban local climate zones within the corresponding biogeographic region (Fixed green space area in Fig.  5 ). We also calculated the potentials if both NDVI and cooling efficiency were enhanced (Enhancing both in Fig.  5) to a certain corresponding level (i.e., i th percentile NDVI +  i th percentile cooling efficiency). We examined if there are additional effects of idealizing relative spatial distributions of urban green spaces and humans on cooling benefits. To this end, the pixel values of NDVI or population amount remained unchanged, but their one-to-one correspondences were based on their ranking: the largest population corresponds to the highest NDVI, and so forth. Under each scenario, we calculated cooling capacity and cooling benefit for each city, and the between-city inequality was measured by the Gini coefficient.

We used the Google Earth Engine to process the spatial data. The statistical analyses were conducted using R v4.3.3 106 , with car v3.1-2 107 , piecewiseSEM v2.1.2 108 , and ineq v0.2-13 109 packages. The global maps of cooling were created using the ArcGIS v10.3 software.

Reporting summary

Further information on research design is available in the  Nature Portfolio Reporting Summary linked to this article.

Data availability

City population statistics data is collected from the Population Division of the Department of Economic and Social Affairs of the United Nations ( https://www.un.org/development/desa/pd/content/worlds-cities-2018-data-booklet ). Global North-South division is based on Human Development Report 2019 which from United Nations Development Programme ( https://hdr.undp.org/content/human-development-report-2019 ). Global urban boundaries from GAIA data are available from Star Cloud Data Service Platform ( https://data-starcloud.pcl.ac.cn/resource/14 ) . Global water data is derived from 2018 Copernicus Global Land Service (CGLS 100-m) data ( https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global ), European Space Agency (ESA) WorldCover 10 m 2020 product ( https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v100 ), and GSHHG (A Global Self-consistent, Hierarchical, High-resolution Geography Database) at https://www.soest.hawaii.edu/pwessel/gshhg/ . Landsat 8 LST and NDVI data with 30 m resolution are available at  https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 . Land surface temperature (LST) data with 1 km from MODIS Aqua product (MYD11A1) is available at https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD11A1 . NDVI (1 km) dataset from MYD13A2 is available at https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD13A2 . Population data (100 m) is derived from WorldPop ( https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop ). Local climate zones are also based on 2018 CGLS data ( https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global ), and built-up height data is available from Global Human Settlement Layers (GHSL, 100 m) ( https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_BUILT_H ). Temperature data is calculated from ERA5-Land Monthly Aggregated dataset ( https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR ). Precipitation and wind data are calculated from TerraClimate (Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces, University of Idaho) ( https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE ). Humidity data is calculated from Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System ( https://developers.google.com/earth-engine/datasets/catalog/NASA_FLDAS_NOAH01_C_GL_M_V001 ). Topography data from MERIT DEM (Multi-Error-Removed Improved-Terrain DEM) product is available at https://developers.google.com/earth-engine/datasets/catalog/MERIT_DEM_v1_0_3 . GDP from Gross Domestic Product and Human Development Index dataset is available at https://doi.org/10.5061/dryad.dk1j0 . VIIRS nighttime light data is available at https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMSLCFG . City building volume data from Global 3D Building Structure (1 km) is available at https://doi.org/10.34894/4QAGYL . Albedo data is derived from the MODIS MCD43A3 product ( https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD43A3 ), and aerosol data is derived from the MODIS MCD19A2 product ( https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD19A2_GRANULES ). All data used for generating the results are publicly available at https://doi.org/10.6084/m9.figshare.26340592.v1 .

Code availability

The codes used for data collection and analyses are publicly available at https://doi.org/10.6084/m9.figshare.26340592.v1 .

Dosio, A., Mentaschi, L., Fischer, E. M. & Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 13 , 054006 (2018).

Article   ADS   Google Scholar  

Suarez-Gutierrez, L., Müller, W. A., Li, C. & Marotzke, J. Hotspots of extreme heat under global warming. Clim. Dyn. 55 , 429–447 (2020).

Article   Google Scholar  

Guo, Y. et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25 , 781–789 (2014).

Article   PubMed   PubMed Central   Google Scholar  

Mora, C. et al. Global risk of deadly heat. Nat. Clim. Chang. 7 , 501–506 (2017).

Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398 , 698–708 (2021).

Article   PubMed   Google Scholar  

Lüthi, S. et al. Rapid increase in the risk of heat-related mortality. Nat. Commun. 14 , 4894 (2023).

Article   ADS   PubMed   PubMed Central   Google Scholar  

United Nations Department of Economic Social Affairs, Population Division. in World Population Prospects 2022: Summary of Results (United Nations Fund for Population Activities, 2022).

Sachindra, D., Ng, A., Muthukumaran, S. & Perera, B. Impact of climate change on urban heat island effect and extreme temperatures: a case‐study. Q. J. R. Meteorol. Soc. 142 , 172–186 (2016).

Guo, L. et al. Evaluating contributions of urbanization and global climate change to urban land surface temperature change: a case study in Lagos, Nigeria. Sci. Rep. 12 , 14168 (2022).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Liu, Z. et al. Surface warming in global cities is substantially more rapid than in rural background areas. Commun. Earth Environ. 3 , 219 (2022).

Mentaschi, L. et al. Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes. Glob. Environ. Change 72 , 102441 (2022).

Asseng, S., Spänkuch, D., Hernandez-Ochoa, I. M. & Laporta, J. The upper temperature thresholds of life. Lancet Planet. Health 5 , e378–e385 (2021).

Zander, K. K., Botzen, W. J., Oppermann, E., Kjellstrom, T. & Garnett, S. T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Chang. 5 , 647–651 (2015).

Flouris, A. D. et al. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet. Health 2 , e521–e531 (2018).

Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117 , 11350–11355 (2020).

Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6 , 1237–1247 (2023).

Harrington, L. J. et al. Poorest countries experience earlier anthropogenic emergence of daily temperature extremes. Environ. Res. Lett. 11 , 055007 (2016).

Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4 , eaar5809 (2018).

Alizadeh, M. R. et al. Increasing heat‐stress inequality in a warming climate. Earth Future 10 , e2021EF002488 (2022).

Tuholske, C. et al. Global urban population exposure to extreme heat. Proc. Natl Acad. Sci. USA 118 , e2024792118 (2021).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Manoli, G. et al. Magnitude of urban heat islands largely explained by climate and population. Nature 573 , 55–60 (2019).

Article   ADS   CAS   PubMed   Google Scholar  

Wang, J. et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat. Clim. Chang. 11 , 1084–1089 (2021).

Article   ADS   CAS   Google Scholar  

Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, A. S. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc. Urban Plan. 97 , 147–155 (2010).

Armson, D., Stringer, P. & Ennos, A. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 11 , 245–255 (2012).

Wang, C., Wang, Z. H. & Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth Future 6 , 1066–1081 (2018).

Pataki, D. E., McCarthy, H. R., Litvak, E. & Pincetl, S. Transpiration of urban forests in the Los Angeles metropolitan area. Ecol. Appl. 21 , 661–677 (2011).

Konarska, J. et al. Transpiration of urban trees and its cooling effect in a high latitude city. Int. J. Biometeorol. 60 , 159–172 (2016).

Article   ADS   PubMed   Google Scholar  

Li, X., Zhou, W., Ouyang, Z., Xu, W. & Zheng, H. Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 27 , 887–898 (2012).

Yu, Z., Xu, S., Zhang, Y., Jørgensen, G. & Vejre, H. Strong contributions of local background climate to the cooling effect of urban green vegetation. Sci. Rep. 8 , 6798 (2018).

Richards, D. R., Fung, T. K., Belcher, R. & Edwards, P. J. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Green. 50 , 126651 (2020).

Winbourne, J. B. et al. Tree transpiration and urban temperatures: current understanding, implications, and future research directions. BioScience 70 , 576–588 (2020).

Schwaab, J. et al. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 12 , 6763 (2021).

Vo, T. T. & Hu, L. Diurnal evolution of urban tree temperature at a city scale. Sci. Rep. 11 , 10491 (2021).

Wang, J. et al. Comparing relationships between urban heat exposure, ecological structure, and socio-economic patterns in Beijing and New York City. Landsc. Urban Plan. 235 , 104750 (2023).

Chen, B. et al. Contrasting inequality in human exposure to greenspace between cities of Global North and Global South. Nat. Commun. 13 , 4636 (2022).

Pavanello, F. et al. Air-conditioning and the adaptation cooling deficit in emerging economies. Nat. Commun. 12 , 6460 (2021).

Turner, V. K., Middel, A. & Vanos, J. K. Shade is an essential solution for hotter cities. Nature 619 , 694–697 (2023).

Hope, D. et al. Socioeconomics drive urban plant diversity. Proc. Natl Acad. Sci. USA 100 , 8788–8792 (2003).

Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14 , 20180082 (2018).

Schwarz, K. et al. Trees grow on money: urban tree canopy cover and environmental justice. PloS ONE 10 , e0122051 (2015).

Chakraborty, T., Hsu, A., Manya, D. & Sheriff, G. Disproportionately higher exposure to urban heat in lower-income neighborhoods: a multi-city perspective. Environ. Res. Lett. 14 , 105003 (2019).

Wang, J. et al. Significant effects of ecological context on urban trees’ cooling efficiency. ISPRS J. Photogramm. Remote Sens. 159 , 78–89 (2020).

Marando, F. et al. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sust. Cities Soc. 77 , 103564 (2022).

Cheng, X., Peng, J., Dong, J., Liu, Y. & Wang, Y. Non-linear effects of meteorological variables on cooling efficiency of African urban trees. Environ. Int. 169 , 107489 (2022).

Yang, Q. et al. Global assessment of urban trees’ cooling efficiency based on satellite observations. Environ. Res. Lett. 17 , 034029 (2022).

Yin, Y., He, L., Wennberg, P. O. & Frankenberg, C. Unequal exposure to heatwaves in Los Angeles: Impact of uneven green spaces. Sci. Adv. 9 , eade8501 (2023).

Fantom N., Serajuddin U. The World Bank’s Classification of Countries by Income (The World Bank, 2016).

Iungman, T. et al. Cooling cities through urban green infrastructure: a health impact assessment of European cities. Lancet 401 , 577–589 (2023).

He, C. et al. The inequality labor loss risk from future urban warming and adaptation strategies. Nat. Commun. 13 , 3847 (2022).

Kii, M. Projecting future populations of urban agglomerations around the world and through the 21st century. npj Urban Sustain 1 , 10 (2021).

Paschalis, A., Chakraborty, T., Fatichi, S., Meili, N. & Manoli, G. Urban forests as main regulator of the evaporative cooling effect in cities. AGU Adv. 2 , e2020AV000303 (2021).

Hunte, N., Roopsind, A., Ansari, A. A. & Caughlin, T. T. Colonial history impacts urban tree species distribution in a tropical city. Urban For. Urban Green. 41 , 313–322 (2019).

Kabano, P., Harris, A. & Lindley, S. Sensitivity of canopy phenology to local urban environmental characteristics in a tropical city. Ecosystems 24 , 1110–1124 (2021).

Frank, S. D. & Backe, K. M. Effects of urban heat islands on temperate forest trees and arthropods. Curr. Rep. 9 , 48–57 (2023).

Esperon-Rodriguez, M. et al. Climate change increases global risk to urban forests. Nat. Clim. Chang. 12 , 950–955 (2022).

Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93 , 1879–1900 (2012).

Biardeau, L. T., Davis, L. W., Gertler, P. & Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 3 , 25–28 (2020).

Davis, L., Gertler, P., Jarvis, S. & Wolfram, C. Air conditioning and global inequality. Glob. Environ. Change 69 , 102299 (2021).

Colelli, F. P., Wing, I. S. & Cian, E. D. Air-conditioning adoption and electricity demand highlight climate change mitigation–adaptation tradeoffs. Sci. Rep. 13 , 4413 (2023).

Sun, L., Chen, J., Li, Q. & Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 11 , 5366 (2020).

Liu, D., Kwan, M.-P. & Kan, Z. Analysis of urban green space accessibility and distribution inequity in the City of Chicago. Urban For. Urban Green. 59 , 127029 (2021).

Hsu, A., Sheriff, G., Chakraborty, T. & Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 12 , 2721 (2021).

Zhao, L., Lee, X., Smith, R. B. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511 , 216–219 (2014).

Wu, S., Chen, B., Webster, C., Xu, B. & Gong, P. Improved human greenspace exposure equality during 21st century urbanization. Nat. Commun. 14 , 6460 (2023).

Zhao, J., Zhao, X., Wu, D., Meili, N. & Fatichi, S. Satellite-based evidence highlights a considerable increase of urban tree cooling benefits from 2000 to 2015. Glob. Chang. Biol. 29 , 3085–3097 (2023).

Article   CAS   PubMed   Google Scholar  

Nice, K. A., Coutts, A. M. & Tapper, N. J. Development of the VTUF-3D v1. 0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Clim. 24 , 1052–1076 (2018).

Meili, N. et al. An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1. 0). Geosci. Model Dev. 13 , 335–362 (2020).

Nesbitt, L., Meitner, M. J., Sheppard, S. R. & Girling, C. The dimensions of urban green equity: a framework for analysis. Urban For. Urban Green. 34 , 240–248 (2018).

Hedblom, M., Prévot, A.-C. & Grégoire, A. Science fiction blockbuster movies—a problem or a path to urban greenery? Urban For. Urban Green. 74 , 127661 (2022).

Norton, B. A. et al. Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan 134 , 127–138 (2015).

Medl, A., Stangl, R. & Florineth, F. Vertical greening systems—a review on recent technologies and research advancement. Build. Environ. 125 , 227–239 (2017).

Chen, B., Lin, C., Gong, P. & An, J. Optimize urban shade using digital twins of cities. Nature 622 , 242–242 (2023).

Pamukcu-Albers, P. et al. Building green infrastructure to enhance urban resilience to climate change and pandemics. Landsc. Ecol. 36 , 665–673 (2021).

Haaland, C. & van Den Bosch, C. K. Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban For. Urban Green. 14 , 760–771 (2015).

Shafique, M., Kim, R. & Rafiq, M. Green roof benefits, opportunities and challenges—a review. Renew. Sust. Energ. Rev. 90 , 757–773 (2018).

Wang, J., Zhou, W. & Jiao, M. Location matters: planting urban trees in the right places improves cooling. Front. Ecol. Environ. 20 , 147–151 (2022).

Lan, T., Liu, Y., Huang, G., Corcoran, J. & Peng, J. Urban green space and cooling services: opposing changes of integrated accessibility and social equity along with urbanization. Sust. Cities Soc. 84 , 104005 (2022).

Wood, S. & Dupras, J. Increasing functional diversity of the urban canopy for climate resilience: Potential tradeoffs with ecosystem services? Urban For. Urban Green. 58 , 126972 (2021).

Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2 , 166–181 (2021).

United Nations. Department of economic and social affairs, population division. in The World’s Cities in 2018—Data Booklet (UN, 2018).

United Nations Development Programme (UNDP). Human Development Report 2019: Beyond Income, Beyond Averages, Beyond Today: Inequalities in Human Development in the 21st Century (United Nations Development Programme (UNDP), 2019)

Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett. 15 , 094044 (2020).

Stevens, F. R., Gaughan, A. E., Linard, C. & Tatem, A. J. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PloS ONE 10 , e0107042 (2015).

Buchhorn, M. et al. Copernicus global land cover layers—collection 2. Remote Sens 12 , 1044 (2020).

Gillerot, L. et al. Forest structure and composition alleviate human thermal stress. Glob. Change Biol. 28 , 7340–7352 (2022).

Article   CAS   Google Scholar  

Hamada, S., Tanaka, T. & Ohta, T. Impacts of land use and topography on the cooling effect of green areas on surrounding urban areas. Urban For. Urban Green. 12 , 426–434 (2013).

Sun, X. et al. Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: the study of Nanjing, China. Urban For . Urban Green. 55 , 126838 (2020).

Zhang, Q., Zhou, D., Xu, D. & Rogora, A. Correlation between cooling effect of green space and surrounding urban spatial form: Evidence from 36 urban green spaces. Build. Environ. 222 , 109375 (2022).

Pesaresi, M., Politis, P. GHS-BUILT-H R2023A - GHS building height, derived from AW3D30, SRTM30, and Sentinel2 composite (2018) . European Commission, Joint Research Centre (JRC) https://doi.org/10.2905/85005901-3A49-48DD-9D19-6261354F56FE (2023).

Yamazaki, D. et al. A high‐accuracy map of global terrain elevations. Geophys. Res. Lett. 44 , 5844–5853 (2017).

Wessel, P. & Smith, W. H. A global, self‐consistent, hierarchical, high‐resolution shoreline database. J. Geophys. Res. Solid Earth 101 , 8741–8743 (1996).

Ren et al. climatic map studies: a review. Int. J. Climatol. 31 , 2213–2233 (2011).

Zhou, X. et al. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze. Sust. Cities Soc. 55 , 102060 (2020).

Zhou, W., Huang, G. & Cadenasso, M. L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan 102 , 54–63 (2011).

Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present . Copernicus Climate Change Service (C3S) Climate Data Store (CDS) https://doi.org/10.24381/cds.68d2bb30 (2019).

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5 , 1–12 (2018).

Kummu, M., Taka, M. & Guillaume, J. H. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. Data 5 , 1–15 (2018).

Zanaga, D. et al. ESA WorldCover 10 m 2020 v100. https://doi.org/10.5281/zenodo.5571936 (2021).

McNally, A. et al. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 4 , 1–19 (2017).

Schaaf C., & Wang Z. MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global - 500m V061 . NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD43A3.061 (2021).

Lyapustin A., & Wang Y. MODIS/Terra+Aqua Land Aerosol Optical Depth Daily L2G Global 1km SIN Grid V061 . NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD19A2.061 (2022).

Li, M., Wang, Y., Rosier, J. F., Verburg, P. H. & Vliet, J. V. Global maps of 3D built-up patterns for urban morphological analysis. Int. J. Appl. Earth Obs. Geoinf. 114 , 103048 (2022).

Google Scholar  

Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 38 , 5860–5879 (2017).

Zhou, W. et al. Urban tree canopy has greater cooling effects in socially vulnerable communities in the US. One Earth 4 , 1764–1775 (2021).

Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5 , 1–12 (2018).

R. Core Team. R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2023).

Fox J., & Weisberg S. An R Companion to Applied Regression 3rd edn (Sage, 2019). https://socialsciences.mcmaster.ca/jfox/Books/Companion/ .

Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7 , 573–579 (2016).

Zeileis, A. _ineq: Measuring Inequality, Concentration, and Poverty_ . R package version 0.2-13. https://CRAN.R-project.org/package=ineq (2014).

Download references

Acknowledgements

We thank all the data providers. We thank Marten Scheffer for valuable discussion. C.X. is supported by the National Natural Science Foundation of China (Grant No. 32061143014). J.-C.S. was supported by Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (grant DNRF173), and his VILLUM Investigator project “Biodiversity Dynamics in a Changing World”, funded by VILLUM FONDEN (grant 16549). W.Z. was supported by the National Science Foundation of China through Grant No. 42225104. T.M.L. and J.F.A. are supported by the Open Society Foundations (OR2021-82956). W.J.R. is supported by the funding received from Roger Worthington.

Author information

Authors and affiliations.

School of Life Sciences, Nanjing University, Nanjing, China

Yuxiang Li, Shuqing N. Teng & Chi Xu

Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus, Denmark

Jens-Christian Svenning

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China

Beijing Urban Ecosystem Research Station, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA

Global Systems Institute, University of Exeter, Exeter, UK

Jesse F. Abrams & Timothy M. Lenton

Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA

William J. Ripple

Department of Environmental Science and Engineering, Fudan University, Shanghai, China

Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA

Robert R. Dunn

You can also search for this author in PubMed   Google Scholar

Contributions

Y.L., S.N.T., R.R.D., and C.X. designed the study. Y.L. collected the data, generated the code, performed the analyses, and produced the figures with inputs from J.-C.S., W.Z., K.Z., J.F.A., T.M.L., W.J.R., Z.Y., S.N.T., R.R.D. and C.X. Y.L., S.N.T., R.R.D. and C.X. wrote the first draft with inputs from J.-C.S., W.Z., K.Z., J.F.A., T.M.L., W.J.R., and Z.Y. All coauthors interpreted the results and revised the manuscript.

Corresponding authors

Correspondence to Shuqing N. Teng , Robert R. Dunn or Chi Xu .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Communications thanks Chris Webster and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, description of additional supplementary files, supplementary data 1, reporting summary, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Li, Y., Svenning, JC., Zhou, W. et al. Green spaces provide substantial but unequal urban cooling globally. Nat Commun 15 , 7108 (2024). https://doi.org/10.1038/s41467-024-51355-0

Download citation

Received : 06 December 2023

Accepted : 05 August 2024

Published : 02 September 2024

DOI : https://doi.org/10.1038/s41467-024-51355-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

methods of research to be used

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Mixed Methods Research | Definition, Guide & Examples

Mixed Methods Research | Definition, Guide & Examples

Published on August 13, 2021 by Tegan George . Revised on June 22, 2023.

Mixed methods research combines elements of quantitative research and qualitative research in order to answer your research question . Mixed methods can help you gain a more complete picture than a standalone quantitative or qualitative study, as it integrates benefits of both methods.

Mixed methods research is often used in the behavioral, health, and social sciences, especially in multidisciplinary settings and complex situational or societal research.

  • To what extent does the frequency of traffic accidents ( quantitative ) reflect cyclist perceptions of road safety ( qualitative ) in Amsterdam?
  • How do student perceptions of their school environment ( qualitative ) relate to differences in test scores ( quantitative ) ?
  • How do interviews about job satisfaction at Company X ( qualitative ) help explain year-over-year sales performance and other KPIs ( quantitative ) ?
  • How can voter and non-voter beliefs about democracy ( qualitative ) help explain election turnout patterns ( quantitative ) in Town X?
  • How do average hospital salary measurements over time (quantitative) help to explain nurse testimonials about job satisfaction (qualitative) ?

Table of contents

When to use mixed methods research, mixed methods research designs, advantages of mixed methods research, disadvantages of mixed methods research, other interesting articles, frequently asked questions.

Mixed methods research may be the right choice if your research process suggests that quantitative or qualitative data alone will not sufficiently answer your research question. There are several common reasons for using mixed methods research:

  • Generalizability : Qualitative research usually has a smaller sample size , and thus is not generalizable. In mixed methods research, this comparative weakness is mitigated by the comparative strength of “large N,” externally valid quantitative research.
  • Contextualization: Mixing methods allows you to put findings in context and add richer detail to your conclusions. Using qualitative data to illustrate quantitative findings can help “put meat on the bones” of your analysis.
  • Credibility: Using different methods to collect data on the same subject can make your results more credible. If the qualitative and quantitative data converge, this strengthens the validity of your conclusions. This process is called triangulation .

As you formulate your research question , try to directly address how qualitative and quantitative methods will be combined in your study. If your research question can be sufficiently answered via standalone quantitative or qualitative analysis, a mixed methods approach may not be the right fit.

But mixed methods might be a good choice if you want to meaningfully integrate both of these questions in one research study.

Keep in mind that mixed methods research doesn’t just mean collecting both types of data; you need to carefully consider the relationship between the two and how you’ll integrate them into coherent conclusions.

Mixed methods can be very challenging to put into practice, and comes with the same risk of research biases as standalone studies, so it’s a less common choice than standalone qualitative or qualitative research.

Prevent plagiarism. Run a free check.

There are different types of mixed methods research designs . The differences between them relate to the aim of the research, the timing of the data collection , and the importance given to each data type.

As you design your mixed methods study, also keep in mind:

  • Your research approach ( inductive vs deductive )
  • Your research questions
  • What kind of data is already available for you to use
  • What kind of data you’re able to collect yourself.

Here are a few of the most common mixed methods designs.

Convergent parallel

In a convergent parallel design, you collect quantitative and qualitative data at the same time and analyze them separately. After both analyses are complete, compare your results to draw overall conclusions.

  • On the qualitative side, you analyze cyclist complaints via the city’s database and on social media to find out which areas are perceived as dangerous and why.
  • On the quantitative side, you analyze accident reports in the city’s database to find out how frequently accidents occur in different areas of the city.

In an embedded design, you collect and analyze both types of data at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.

This is a good approach to take if you have limited time or resources. You can use an embedded design to strengthen or supplement your conclusions from the primary type of research design.

Explanatory sequential

In an explanatory sequential design, your quantitative data collection and analysis occurs first, followed by qualitative data collection and analysis.

You should use this design if you think your qualitative data will explain and contextualize your quantitative findings.

Exploratory sequential

In an exploratory sequential design, qualitative data collection and analysis occurs first, followed by quantitative data collection and analysis.

You can use this design to first explore initial questions and develop hypotheses . Then you can use the quantitative data to test or confirm your qualitative findings.

“Best of both worlds” analysis

Combining the two types of data means you benefit from both the detailed, contextualized insights of qualitative data and the generalizable , externally valid insights of quantitative data. The strengths of one type of data often mitigate the weaknesses of the other.

For example, solely quantitative studies often struggle to incorporate the lived experiences of your participants, so adding qualitative data deepens and enriches your quantitative results.

Solely qualitative studies are often not very generalizable, only reflecting the experiences of your participants, so adding quantitative data can validate your qualitative findings.

Method flexibility

Mixed methods are less tied to disciplines and established research paradigms. They offer more flexibility in designing your research, allowing you to combine aspects of different types of studies to distill the most informative results.

Mixed methods research can also combine theory generation and hypothesis testing within a single study, which is unusual for standalone qualitative or quantitative studies.

Mixed methods research is very labor-intensive. Collecting, analyzing, and synthesizing two types of data into one research product takes a lot of time and effort, and often involves interdisciplinary teams of researchers rather than individuals. For this reason, mixed methods research has the potential to cost much more than standalone studies.

Differing or conflicting results

If your analysis yields conflicting results, it can be very challenging to know how to interpret them in a mixed methods study. If the quantitative and qualitative results do not agree or you are concerned you may have confounding variables , it can be unclear how to proceed.

Due to the fact that quantitative and qualitative data take two vastly different forms, it can also be difficult to find ways to systematically compare the results, putting your data at risk for bias in the interpretation stage.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Non-probability sampling
  • Quantitative research
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

George, T. (2023, June 22). Mixed Methods Research | Definition, Guide & Examples. Scribbr. Retrieved September 2, 2024, from https://www.scribbr.com/methodology/mixed-methods-research/

Is this article helpful?

Tegan George

Tegan George

Other students also liked, writing strong research questions | criteria & examples, what is quantitative research | definition, uses & methods, what is qualitative research | methods & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

COMMENTS

  1. Research Methods

    The research methods you use depend on the type of data you need to answer your research question. If you want to measure something or test a hypothesis, use quantitative methods. If you want to explore ideas, thoughts and meanings, use qualitative methods. If you want to analyze a large amount of readily-available data, use secondary data.

  2. Research Methods

    Quantitative research methods are used to collect and analyze numerical data. This type of research is useful when the objective is to test a hypothesis, determine cause-and-effect relationships, and measure the prevalence of certain phenomena. Quantitative research methods include surveys, experiments, and secondary data analysis.

  3. Research Methods

    The research methods you use depend on the type of data you need to answer your research question. If you want to measure something or test a hypothesis, use quantitative methods. If you want to explore ideas, thoughts, and meanings, use qualitative methods. If you want to analyse a large amount of readily available data, use secondary data.

  4. Research Methods--Quantitative, Qualitative, and More: Overview

    About Research Methods. This guide provides an overview of research methods, how to choose and use them, and supports and resources at UC Berkeley. As Patten and Newhart note in the book Understanding Research Methods, "Research methods are the building blocks of the scientific enterprise. They are the "how" for building systematic knowledge.

  5. Research Methodology

    The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

  6. Choosing the Right Research Methodology: A Guide

    These methods are used to understand how language is used in real-world situations, identify common themes or overarching ideas, and describe and interpret various texts. Data analysis for qualitative research typically includes discourse analysis, thematic analysis, and textual analysis. Quantitative research methodology:

  7. Research Methods: What are research methods?

    What are research methods. Research methods are the strategies, processes or techniques utilized in the collection of data or evidence for analysis in order to uncover new information or create better understanding of a topic. There are different types of research methods which use different tools for data collection.

  8. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Other interesting articles.

  9. What are Research Methods?

    Research Methods. Research Methods are systematic strategies, steps, and tools that researchers use to gather, analyze, and interpret data about a particular topic. It's like cooking a new recipe; you need the right ingredients (data), a good method (research design), and the proper tools (instruments like surveys or experiments) to create a delightful dish (knowledge).

  10. Types of Research Designs Compared

    Other interesting articles. If you want to know more about statistics, methodology, or research bias, make sure to check out some of our other articles with explanations and examples. Statistics. Normal distribution. Skewness. Kurtosis. Degrees of freedom. Variance. Null hypothesis.

  11. How To Choose The Right Research Methodology

    1. Understanding the options. Before we jump into the question of how to choose a research methodology, it's useful to take a step back to understand the three overarching types of research - qualitative, quantitative and mixed methods -based research. Each of these options takes a different methodological approach.

  12. 15 Types of Research Methods (2024)

    Research methods refer to the strategies, tools, and techniques used to gather and analyze data in a structured way in order to answer a research question or investigate a hypothesis (Hammond & Wellington, 2020). Generally, we place research methods into two categories: quantitative and qualitative. Each has its own strengths and weaknesses ...

  13. What Is Research Methodology? Definition + Examples

    Data analysis methods refer to the methods and techniques that you'll use to make sense of your data. These can be grouped according to whether the research is qualitative (words-based) or quantitative (numbers-based). Popular data analysis methods in qualitative research include: Qualitative content analysis; Thematic analysis; Discourse ...

  14. Research Design

    Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices. Health sciences: In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases.

  15. Research Methods Guide: Research Design & Method

    Most frequently used methods include: Observation / Participant Observation. Surveys. Interviews. Focus Groups. Experiments. Secondary Data Analysis / Archival Study. Mixed Methods (combination of some of the above) One particular method could be better suited to your research goal than others, because the data you collect from different ...

  16. Types of Research Methods (With Best Practices and Examples)

    Professionals use research methods while studying medicine, human behavior and other scholarly topics. There are two main categories of research methods: qualitative research methods and quantitative research methods. Quantitative research methods involve using numbers to measure data. Researchers can use statistical analysis to find ...

  17. What are research methods?

    Research methods are different from research methodologies because they are the ways in which you will collect the data for your research project. The best method for your project largely depends on your topic, the type of data you will need, and the people or items from which you will be collecting data. The following boxes below contain a ...

  18. What is Research Methodology? Definition, Types, and Examples

    Definition, Types, and Examples. Research methodology 1,2 is a structured and scientific approach used to collect, analyze, and interpret quantitative or qualitative data to answer research questions or test hypotheses. A research methodology is like a plan for carrying out research and helps keep researchers on track by limiting the scope of ...

  19. Research Guide: Research Methods

    Research methods. Research methods refers to the tools that one uses to do research. These can either be qualitative or quantitative or mixed. Quantitative methods examines numerical data and often requires the use of statistical tools to analyse data collected. This allows for the measurement of variables and relationships between them can ...

  20. Research Methods In Psychology

    Olivia Guy-Evans, MSc. Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

  21. Media Review: The Sage Handbook of Mixed Methods Research Design

    I am pleased to offer this media review of the Sage Handbook of Mixed Methods Research Design edited by Dr Cheryl Poth.Dr Poth is a leading Canadian expert in the field of mixed methods research. Dr Poth is a Professor in the Faculty of Education and faculty member of the Centre for Applied Research in Assessment and Measurement in Education (CRAME) at the University of Alberta.

  22. Advocating the Use of Informal Conversations as a Qualitative Method at

    Data collection at live events has used a wide variety of methods from a range of disciplines in contemporary research, but this was predominantly via quantitative or secondary research approaches (see Draper et al., 2018; Getz, 2010; Park & Park, 2017). Mair (2012) highlighted that qualitative methodologies were significantly underrepresented in high impact journals, and the event research ...

  23. How do I decide which research methods to use?

    The research methods you use depend on the type of data you need to answer your research question. If you want to measure something or test a hypothesis, use quantitative methods. If you want to explore ideas, thoughts and meanings, use qualitative methods. If you want to analyze a large amount of readily-available data, use secondary data.

  24. An Integrative Review of the Methods Used to Research the Prevalence of

    It incorporates a method of analyzing research from diverse empirical and theoretical sources and delineates a systematic framework that enhances the rigor of the integrative review process . The integrative review methodology begins with identifying the problem and its related concepts in order to facilitate data extraction from the primary ...

  25. Research Methods for Economics module : University of Sussex

    Research Methods for Economics (840L1) 15 credits, Level 7 (Masters) Spring teaching. This module equips you with practical econometric tools for analysis, information about economic data sources and their limitations, an understanding of how research and analysis policy fit into the policy-making process and how to communicate with policy makers and other users of analysis.

  26. Kidney disease medication found to reduce risk of cardiovascular ...

    A medication that is commonly used for chronic kidney disease has been found to reduce the risk of worsening heart failure and cardiovascular death in certain people with heart failure, according ...

  27. Some methods of initial assessment appear to be more ...

    Management document from Vb Institute Of Teacher Training & Research, 1 page, Some methods of initial assessment appear to be more useful than others. If you were starting your own business, which initial assessment methods would you use and why? When faced with the need to hire, how are you going to approach the task (as outlined

  28. Research on prediction method of coal mining surface ...

    Coal seam mining causes fracture and movement of overlying strata in goaf, and endangers the safety of surface structures and underground pipelines. Based on the engineering geological conditions ...

  29. Green spaces provide substantial but unequal urban cooling ...

    A 1.5-fold gap exists in green space cooling adaptation between cities in the Global South and North. Enhancing urban green space quality and quantity offers vast potential for improving outdoor ...

  30. Mixed Methods Research

    Mixed methods research combines elements of quantitative research and qualitative research in order to answer your research question. Mixed methods can help you gain a more complete picture than a standalone quantitative or qualitative study, as it integrates benefits of both methods. Mixed methods research is often used in the behavioral ...